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Abstract

Video relation grounding (VRG) is a significant and
challenging problem in the domains of cross-modal learn-
ing and video understanding. In this study, we introduce a
novel approach called inverse compositional learning (ICL)
for weakly-supervised video relation grounding. Our ap-
proach represents relations at both the holistic and partial
levels, formulating VRG as a joint optimization problem
that encompasses reasoning at both levels. For holistic-
level reasoning, we propose an inverse attention mechanism
and a compositional encoder to generate compositional rel-
evance features. Additionally, we introduce an inverse loss
to evaluate and learn the relevance between visual features
and relation features. At the partial-level reasoning, we
introduce a grounding by classification scheme. By lever-
aging the learned holistic-level features and partial-level
features, we train the entire model in an end-to-end man-
ner. We conduct evaluations on two challenging datasets
and demonstrate the substantial superiority of our proposed
method over state-of-the-art methods. Extensive ablation
studies confirm the effectiveness of our approach.

1. Introduction

The objective of the Video Relation Grounding (VRG)
task is to determine the spatial and temporal extents
of a given query relation within an untrimmed video.
A relation is represented as a three-tuple linguistic
phrase ⟨subject, predicate, object⟩, where the subject and
object are interconnected by the predicate, such as
⟨person, ride, bicycle⟩, as illustrated in Fig. 1 (a). VRG
is approached as a weakly supervised problem [40], where
only the relation phrase is provided during training, while
the spatial bounding boxes of the subject and object, and
the temporal duration of the relation in the video, are not
available. VRG is a crucial task for various multimodal ap-
plications, including video captioning [34] and visual ques-
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Figure 1. (a) VRG task. (b) An ambiguous result. (c) Video
grounding. (d) Holistic-partial structure of a relation.

tion answering [14].
Existing visual grounding approaches adopt the

paradigm of linguistic reconstruction to ground targets
[40, 25, 46, 18, 12]. They learn a linguistic description
representation to match visual features of the targets and
then reconstruct the linguistic description with the matched
visual features. This paradigm has demonstrated effective-
ness in previous visual grounding tasks involving lengthy
and intricate linguistic descriptions [25, 18], as depicted
in Fig. 1 (b). The effectiveness of this paradigm can be
attributed to the fact that sophisticated linguistic descrip-
tions contain abundant semantic and intricate information,
imposing stringent constraints on feature matching and
enabling precise target grounding. However, this paradigm
proves to be less productive in the VRG, primarily due to
the simplicity and sparsity of the information present in
a 3-tuple relation phrase. These relation phrases impose
weaker constraints on feature matching. As a result, certain
visual features that are weakly related or ambiguous, as
illustrated in Fig. 1 (c), can still effectively reconstruct the
relation phrase. This phenomenon can potentially cause the
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model to become ‘lazy’ in terms of accurately localizing
the precise targets, thereby impeding the performance.

Another issue of the current grounding methods is that
they treat a relation as a whole and reason about it at a holis-
tic level, without accounting for partial aspects [40, 25, 2,
18]. Indeed, a relation encompasses both holistic attributes
and partial attributes, as exemplified in Fig. 1 (d). The re-
lation person-ride-bicycle can be perceived as a holistic
concept that represents the overall relation. It can also be
disassembled into three constituent parts: person, ride, and
bicycle, allowing for a description at the partial level. Ne-
glecting the partial-level relation may result in a failure to
identify the crucial cues and information embedded within
these constituent parts.

In this paper, we rethink video relations from a new per-
spective and propose a novel inverse compositional learning
(ICL) approach for video relation grounding. A relation is
represented both at the holistic level and the partial level,
acknowledging their distinct characteristics. We formulate
VRG as a joint optimization problem that incorporates both
holistic-level reasoning and partial-level reasoning. For the
holistic-level reasoning, we propose an inverse composition
learning method, where both the attention and inverse atten-
tion are computed for the subject and object, respectively.
The attention encodes the distribution of relevant visual fea-
tures, while the inverse attention captures the distribution
of irrelevant visual features. By paring different attention
and inverse attention features of the subject and object, the
compositional visual features are generated. We devise an
inverse loss function to learn the compositional relevance
between the relation and visual features, which encourages
the model to extract and emphasize the visual features that
are most pertinent to the given relation. To facilitate partial-
level reasoning, we decompose the relation phrase into three
parts: subject, predicate and object. A grounding by clas-
sification scheme is proposed to learn the partial-level fea-
ture. By employing this partial-level reasoning approach,
we aim to enhance the accuracy of the localization process,
enabling a more precise identification and tracking of the
subject and object throughout the video.

With the holistic-level and partial-level features, the
model is trained in an end to end way. In inference, the
grounding results are computed by jointly optimizing the
holistic-level reasoning and partial-level reasoning. The
proposed method is tested on two challenging datasets:
ImageNet-VidVRD [27] and HICO-Det [1]. It outperforms
the state-of-the-art methods by a large margin.

2. Related Work
Modeling Visual Relation. Relation detection [19, 41,

43, 21, 17, 35, 6, 10, 31, 9] has attracted growing atten-
tion in recent years. By effectively modeling the relations
between different objects, the models have the capability

to acquire and comprehend fine-grained scene information
[38, 39, 13, 20, 32]. Li et al. [16] proposed an integration-
decomposition network for human-object interaction detec-
tion. Visual relation understanding has been extended to the
domain of videos [27, 33, 30, 15, 23]. Video relation detec-
tion is a task that focuses on detecting relation instances
within videos. Recently, there have been several advance-
ments in this field. Shang et al. [26] introduced a novel
iterative inference method for video relation detection. Gao
et al. [7] proposed a transformer-based method for relation
detection in videos. This approach formulates the relation
detection task as a set prediction problem. Instead of fo-
cusing on video relation detection, Xiao et al. [40] intro-
duced the video relation grounding task, which aims to lo-
calize the spatial and temporal positions of query relations
within videos. They proposed an attention-based learning
structure and utilized phrase reconstruction to accomplish
this task. Recently, ARC [12] presents an asymmetrical
reasoning pattern for grounding relation instances, which
addresses the challenge of grounding relation instances by
leveraging an asymmetric reasoning strategy. We propose a
novel inverse compositional learning method to address the
challenge of sparse relation semantics.

Weakly-Supervised Video Grounding. Temporal
video grounding [4, 29, 44, 42, 45] aims to localize the
temporal duration of given query sentence in an untrimmed
video. Since fine-grained annotating of videos is time-
consuming, several weakly-supervised video grounding
methods [36, 3, 37] have been proposed. These methods
aim to address the challenge of training without access to
the temporal labels. For instance, the work [28] introduced
a contextual similarity model and visual clustering loss to
facilitate feature alignment between two frames. Lin et al.
[18] formulated a semantic completion network for weakly-
supervised video moment retrieval. Zheng et al. [46] pro-
posed a novel hard negative sample mining method based
on sentence reconstruction. This approach evaluates the
temporal interval using a gaussian distribution, enhancing
the mining of challenging negative samples. Existing meth-
ods primarily focus on learning rich semantic representa-
tions from query sentences. However, these methods may
not be directly suitable for video relation grounding. Mod-
eling the semantic integrity between the video and the given
relation is the key problem for video relation grounding.

3. Method

3.1. Problem Formulation

A relation R is represented as a three-tuple R = ⟨s, p, o⟩,
where s, p, and o denote subject, predicate, and object, re-
spectively. Following the previous work [40, 12], we repre-
sent a video V consisting of N frames as a region proposal
set V = (B1, ..., BN ). Here, Bi = {Bi,j | j = 1, ...,m}
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Figure 2. The architecture of the inverse compositional learning model.

denotes the set of region proposals in the i-th frame. Bi,j

refers to the j-th region proposal in the i-th frame, and m
represents the total number of proposals in each frame. In
our work, the region proposals are extracted with a pre-
trained object detector Faster R-CNN [24].

Given the video V and the query relation R, VRG aims
to spatially and temporally localize the subject (s) and ob-
ject (o) entities with respect to the predicate (p) within
the given video. With the proposed bounding box sets,
VRG is equivalent to computing two box sequences: S =
(Sk, ..., Sl) and O = (Ok, ..., Ol) for s and o, respectively,
where k, l ∈ [1, N ] (k < l) are the start time and end time of
the relation instance, respectively. Si and Oi (i ∈ [k, l]) are
the bounding boxes of s and o in the ith frame, respectively.
We formulate the VRG task from two levels: the holistic
level and the partial level. At the holistic level, the relation
phrase R is taken as a whole to match the visual features.
At the partial level, the relation is decomposed into subject
(s), predicate (p), and object (o), and each component is in-
dividually matched with corresponding visual features. The
grounding results are then obtained by jointly optimizing
the holistic-level reasoning and the partial-level reasoning:

(S∗, O∗) = argmax
S,O

h(S,O, V,R)g(S,O, V,R), (1)

where h(S,O, V,R) is the holistic-level reasoning function
and g(S,O, V,R) is the partial-level reasoning function.

The holistic-level reasoning function is defined as:

h(S,O, V,R) = P (S,O|V,R)P (R|S,O, V ). (2)

P (S,O|V,R) describes the joint probability of the subject
box sequence and object box sequence. P (R|S,O, V ) char-
acterizes the similarity between the relation phrase R and

the visual feature given S,O and V . Eq. (2) follows the
previous studies [40, 12]. The partial-level reasoning func-
tion is defined as:

g(S,O, V,R) = P (s|S, V )P (o|O, V )P (p|S,O, V ). (3)

P (s|S, V ) represents recognition of subject s given S, V .
Similarly, P (o|O, V ) represents recognition of object o
given O, V . P (p|S,O, V ) describes recognition of predi-
cate p. Our framework reasons about a relation by integrat-
ing the holistic-level and partial-level information, which
not only utilizes the global patterns of the relation but also
the inner structures of it.

3.2. Architecture Overview

Fig. 2 shows the overall architecture of the proposed
model. Our model contains four major correlative func-
tional components: feature extraction, compositional fea-
ture computing, holistic-level learning, and partial-level
learning. The feature extraction component extracts the
raw visual features and relation word embeddings from the
input video and the given relation, respectively. Given a
video V of N frames and a query relation R = ⟨s, p, o⟩,
a pre-trained Faster R-CNN [24] is used to propose m re-
gions and the region features in each video frame. Sup-
pose x̂i is the set of the m region features in frame i, and
the entire video proposal feature set is represented as {x̂i}
(i ∈ [1, N ]). The Glove 300 [22] is used to extract the re-
lation word embeddings. The word embeddings of s and o
are denoted as es and eo, respectively.

The compositional feature computing component takes
the raw visual features and relation word embeddings as in-
puts and outputs the compositional features by the proposed
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Figure 3. Illustration of the inverse attention and compositional encoder.

inverse attention and compositional encoder. The holistic-
level learning component and the partial-level learning
component take the compositional features as inputs and
reason about video relations at the holistic and partial
level, respectively. The four functional components form
a closely-interacting loop. In inference, the grounding re-
sults are computed by jointly optimizing the holistic-level
reasoning and partial-level reasoning.

3.3. Compositional Computing

As Fig. 2 shows, the compositional computing compo-
nent takes as inputs the raw video proposal features {x̂i}
and the relation word embeddings es, eo. x̂i is embedded
into a m×d feature which adds the position encoding [40] to
generate the feature xi ∈ Rm×d for the frame i. Given the
feature xi and the word embeddings es, eo, an Inverse At-
tention module is proposed to compute the attention feature
f+
i,s and the inverse attention feature f−

i,s for subject s, and
f+
i,o, f−

i,o for object o. f+
i,s, f−

i,s, f+
i,o, and f−

i,o are grouped in
pair and encoded into four fusion features f++

i , f+−
i , f−+

i

and f−−
i by a Compositional Encoder. Then, the fusion fea-

tures of all frames are utilized to generate the compositional
features v++, v+−, v−+, and v−− by a Temporal Attention
module for the video.

Inverse Attention. We propose an inverse attention
module to compute the attention and inverse attention fea-
tures, as shown in Fig. 3 (a). The inverse attention module
operates on the visual feature xi and word embedding es
(or eo). Let’s focus on the subject s to explain the computa-
tion in more detail. The feature xi and es first pass through
a layer normalization (LN) layer followed by a linear em-
bedding (LE) to generate x̄i and ēs, respectively. Then the
attention score of the word s with respect to a region is com-

puted as:

αs
i,j =

exp(βj
i )∑m

q=1 exp(βq
i )

, βi =
ēs(x̄i)

T
√
dx

, (4)

where 1√
dx

is a scaling factor. βq
i corresponds to the qth

region in βi, i.e., βi = {βq
i |q = 1, ...,m}. αs

i,j is the
normalized relevant score of the word s to the jth region
in the ith frame. The word attention distribution M+

i,s ={
αs
i,j |j = 1, ...,m

}
is defined to represent the relevance

scores of the word s to all m region proposals in the ith
frame. Conversely, the inverse attention score of the word s
that is irrelevant to a region is computed as:

ᾱs
i,j =

exp((−1) ∗ βj
i )∑m

q=1 exp((−1) ∗ βq
i )

. (5)

The inverse attention distribution is denoted as M−
i,s ={

ᾱs
i,j |j = 1, ...,m

}
. Then, the attention distribution M+

i,s

is multiplied by the input xi and then passed through a lin-
ear embedding layer to get the attention feature f+

i,s. Simi-
larly, the inverse attention feature f−

i,s is obtained using the
same operation. With the same computing, we obtain the at-
tention distribution M+

i,o, the inverse attention distribution
M−

i,o, the attention features f+
i,o, and the inverse attention

features f−
i,o for object o.

Compositional Encoder. The attention features and in-
verse attention features, namely f+

i,s, f+
i,o, f−

i,s, and f−
i,o, cor-

responding to the subject and object, are paired together.
These paired features are then fed into four encoders, result-
ing in fusion features f++

i , f+−
i , f−+

i , and f−−
i , as shown

in Fig. 3 (b). This computing process is summarized as:

f++
i = E(

[
f+
i,s, f

+
i,o

]
), f+−

i = E(
[
f+
i,s, f

−
i,o

]
),

f−+
i = E(

[
f−
i,s, f

+
i,o

]
), f−−

i = E(
[
f−
i,s, f

−
i,o

]
),

(6)
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where [·] denotes a concatenation operation. E(·) is the en-
coder which consists of a fully-connected layer with ReLU
activation followed by a dropout layer.

Subsequently, a temporal attention module is applied to
the fusion features of all frames. This process generates
compositional features v++, v+−, v−+, and v−− for the
video. The temporal attention is defined as:

τi =
exp(σi)∑N

n=1 exp(σn)
, σ =

ec(f
++)T√
df

, (7)

where ec is the merged word feature. It is obtained by con-
catenating the word embeddings es and eo, and then apply-
ing a linear layer to fuse them. f++ =

{
f++
i |i = 1, ...N

}
and df is the dimension of f++

i . {τi|i = 1, ..., N} is the
temporal attention distribution. The four types of the com-
positional features for the video are computed as:

v++ =

N∑
i=1

τif
++
i , v+− =

N∑
i=1

τif
+−
i ,

v−+ =

N∑
i=1

τif
−+
i , v−− =

N∑
i=1

τif
−−
i .

(8)

3.4. Holistic-level Learning

3.4.1 Inverse Compositional Mechanism

As mentioned earlier, existing reconstruction-based
learning methods [40, 25] struggle to accurately localize
relation instances in videos due to the sparse and simplis-
tic nature of relation phrases. To overcome this limitation,
we introduce an inverse compositional mechanism to tackle
this problem. As introduced in Sec. 3.3, we compute the at-
tention and inverse attention features for subject and object,
respectively. The attention mechanism quantifies the rele-
vance of the subject or object to the regions, while the in-
verse attention mechanism quantifies their irrelevance. By
crosswise pairing the attention features and inverse atten-
tion features of the subject and object, we aim to obtain both
the ‘relevant’ and ‘irrelevant’ visual features related to the
relation. Through the competition between these ‘relevant’
and ‘irrelevant’ features, the model is driven to extract the
most pertinent visual features for the relation. We refer to
this mechanism as the inverse compositional mechanism.

As the various combinations of subject features (relevant
or irrelevant) and object features (relevant or irrelevant), the
four types of compositional features v++, v+−, v−+, and
v−− (as defined in Eq. (8)) inherently possess different lev-
els of relevance to the query relation R. We evaluate the
relevance between each type of compositional feature and
the relation R. v++, composed of the relevant attention
feature of subject and the relevant attention feature of ob-
ject, exhibits high relevance with R. v+− derives from the

relevant attention feature of subject and the irrelevant atten-
tion feature of object, and thus it partly correlates with R.
Similarly, v−+ also partly correlates with R. Since v−− is
composed of both the irrelevant attention feature of subject
and irrelevant attention feature of object, it has low rele-
vance with R. The relevances between these features and
the query relation R can be summarized:

C(v++, R) > C(v+−, R) > C(v−−, R),

C(v++, R) > C(v−+, R) > C(v−−, R),
(9)

where C(·) represents the relevance between the composi-
tional feature and the relation. Based on the relevance eval-
uation, our objective is to learn a more relevant feature v++.

3.4.2 Inverse Learning Loss

We introduce a novel inverse learning loss to actualize
the inverse compositional mechanism and formulate the rel-
evance evaluation defined in Eq. (9). To this end, we begin
by evaluating the semantic similarity. Specifically, we first
train a transformer-based encoder [5, 12] to learn the query
relation feature fR. In this process, we incorporate an addi-
tional learnable class token into the word embeddings of the
relation phrase. The relation word embeddings, along with
the class token, are passed through multiple encoder layers.
The resulting updated class token serves as the query rela-
tion feature fR. Then we compute the semantic similarity
between the compositional features and the query relation
feature. Specifically, the compositional features v++, v+−,
v−+, and v−− are respectively used to compute the Eu-
clidean distance with the query relation feature fR. Corre-
spondingly, the four different distances are denoted as d++,
d+−, d−+, and d−−, respectively. The distance d++ mea-
sures the similarity between the query relation and the video
feature v++. A smaller value of d++ indicates a higher sim-
ilarity. As shown in Eq. (9), the relevance between v++ and
R is stronger than the relevance between v+− and R, and
the relevance between v+− and R is greater than the rele-
vance between v−− and R. Therefore, we define the inverse
learning loss with respect to L+− as follows:

L+− = δ(d++ − d+−) + δ(d+− − d−−), (10)

where δ(a) = ln(1+ea) is a monotonically increasing func-
tion. The implication behind the inverse learning loss is
that, by minimizing L+−, the semantic similarity of the re-
lation with v++ is higher than that with v+− and meanwhile
the semantic similarity with v+− is better than that with
v−−. Intuitively, we can directly minimize δ(d++ − d−−)
and ignore the term d−+. In this case, since d−− measures
the similarity evaluated with the completely irrelevant fea-
ture v−−, the term of δ(d++ − d−−) can be easily mini-
mized. Consequently, the learning result would be subopti-
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mal. By introducing d−+ and incorporating it into the min-
imization of L+−, the objective is to improve the learning
of semantic similarity with the relevant feature v++ com-
pared to the partly relevant feature v+−, and to enhance
the learning of semantic similarity with v+− compared to
v−−. With this adversarial competition, the learned feature
v++ will be more relevant and robust. Similarly, the inverse
learning loss with respect to L−+ is defined as follows:

L−+ = δ(d++ − d−+) + δ(d−+ − d−−). (11)

The total holistic-level inverse learning loss is:

Lw = L+− + L−+. (12)

3.5. Partial-level Learning

In addition to the holistic-level learning, we propose rea-
soning about video relations at the partial level, which offers
two main benefits. First, by reasoning about the subject and
object separately, we can localize them as precisely as pos-
sible in each video frame, which reduces the difficulty of the
holistic-level learning. Second, reasoning about the predi-
cate solely from the video can learn the visual commonali-
ties of certain actions. For example, actions like ‘ride horse’
and ‘ride bicycle’ share some visual similarities in terms of
the action of ‘ride’. By isolating the predicate and analyzing
its visual appearance, we can capture these commonalities
and extract the underlying visual cues that contribute to the
understanding of similar actions.

For partial-level learning, we employ a grounding by
classification scheme, which means that more relevant fea-
tures result in higher classification scores. As shown in Fig.
2, we assemble the attention feature f+

i,s and f+
i,o as spa-

tial feature sets
{
f+
i,s

}
and

{
f+
i,o

}
for the subject and ob-

ject, respectively. These two feature sets are mapped by
a linear embedding layer and converted as two classifica-
tion features f+

s , f+
o by taking a temporal average pooling.

Meanwhile, the two classification features are concatenated
and transformed into a unified classification feature for the
predicate p. The three classification features, f+

s , f+
o , and

fp, are fed into three fully connected layers to compute the
respective classification scores ŷs, ŷo, and ŷp for the cur-
rent given relation. The cross-entropy loss Lce is then used
to establish the partial-level learning loss, given by:

La =
1

N

N∑
n=1

(Lce(ysn, ŷ
s
n) + (Lce(yon, ŷ

o
n) + (Lce(ypn, ŷ

p
n)).

(13)

N represents the total number of video frames. ysn, yon, and
ypn are the ground truth labels for the nth frame, where we
assume that each frame contains the query relation and is
assigned the same label.

The entire model is jointly optimized by integrating both
the holistic-level learning and partial-level learning. To
achieve this, we introduce a hyper-parameter λ to balance
the contributions of these two components. The total loss of
our model can be formalized as follows:

L = La + λLw. (14)

3.6. Inference

During the inference stage, we employ a thresh-
old η to generate temporal candidate segments for each
video, leveraging the learned temporal attention distribu-
tion {τi|i = 1, ..., N}. These candidate segments represent
potential regions of interest within the video timeline. For
each candidate segment, we select the box pair with the
maximum score based on the attention distribution M+

i,s

for the subject and M+
i,o for the object, considering each

frame of the segment. We average the maximum scores of
all frames in each segment as the segment evaluation score.
Then the segment with the highest score is selected, and the
box sequences S∗ and O∗ chosen within this segment are
considered as the grounding result.

4. Experiment
4.1. Datasets and Metrics

Following the previous methods [40, 12], we test our
model on the ImageNet-VidVRD dataset [27] which con-
sists of more than 30,000 relation instances, 35 object
classes and 132 predicate classes. We also conduct exper-
iments on the image based relation dataset HICO-DET [1]
which contains 38,118 images for training and 9,658 images
for testing. It contains 80 object classes and 117 predicate
classes. Our model is evaluated with accuracy (Acc). We
define true positives as the temporal intersection over union
(tIoU) between the predicted subject box sequence and ob-
ject box sequence and one of the ground-truth instances,
with a tIoU greater than 0.5. Three different spatial inter-
section over union (sIoU) thresholds are evaluated, respec-
tively. Following vRGV [40], we use the whole relation
accuracy (AccR) to evaluate the performance of our model.
And the separate subject accuracy (AccS) and object accu-
racy (AccO) are also reported to analyse models.

4.2. Implementation Details

We sample 120 frames from each video and extract 40
proposals for each frame. The region proposal features are
extracted with the pretrained Faster R-CNN [24] with back-
bone ResNet101 [8]. The region features and word embed-
dings are transformed into the same dimension of d = 512.
The batch size is 32. We conduct the experiment using the
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Models
sIOU=0.3 sIOU=0.5 sIOU=0.7 Average

AccS AccO AccR AccS AccO AccR AccS AccO AccR AccS AccO AccR
baseline 42.09 40.53 30.80 37.73 36.28 26.20 30.07 29.00 16.98 35.98 35.08 24.10
w/o La

p 40.15 39.37 29.39 36.41 36.17 26.20 26.82 28.48 15.43 33.52 33.30 22.68
w/o La

o 42.76 40.87 31.91 39.41 37.41 27.70 29.50 29.36 18.30 36.59 34.94 25.07
w/o La

s 41.14 40.91 31.64 37.47 37.83 26.89 29.73 30.46 17.96 35.93 36.61 25.06
w/o L+− 42.63 41.48 31.88 38.04 37.01 27.00 29.73 30.17 17.62 35.45 34.94 24.04
w/o L−+ 42.30 41.62 32.20 38.21 37.70 27.94 29.51 30.03 17.76 35.53 35.04 24.95

δ(d++ − d−−) 42.95 41.57 31.53 37.63 36.36 26.42 29.13 29.27 16.78 35.71 34.97 24.49
Our ICL 42.38 40.95 31.85 38.66 37.88 27.51 30.16 30.30 18.46 36.54 36.51 26.05

Table 1. Ablation study experiment results dataset with different spatial overlaps on ImageNet-VidVRD dataset (Acc %).

Models
tIOU=0.3 tIOU=0.5 tIOU=0.7

AccS AccO AccR AccS AccO AccR AccS AccO AccR
w/o La

p 49.21 49.11 35.70 33.52 33.30 22.68 21.51 23.64 12.84
w/o La

o 50.93 50.17 36.67 36.59 34.94 25.07 23.96 23.57 14.50
w/o La

s 50.42 49.60 37.54 35.93 36.61 25.06 25.78 24.86 15.69
w/o L+− 50.98 50.43 36.92 35.45 34.94 24.04 25.67 24.55 15.78
w/o L−+ 50.94 50.24 36.76 35.53 35.04 24.95 26.12 24.67 15.78

δ(d++ − d−−) 50.27 49.56 35.97 35.71 34.97 24.49 25.34 24.15 15.34
Our ICL 51.18 50.25 37.33 36.54 36.51 26.05 25.39 24.66 15.82

Table 2. Ablation study experiment results with different temporal overlaps on ImageNet-VidVRD dataset (Acc %).

Models
sIOU=0.3 sIOU=0.5 sIOU=0.7

AccS AccO AccR AccS AccO AccR AccS AccO AccR
baseline 42.13 73.26 30.81 30.58 64.18 18.08 22.59 49.24 9.62
w/o La

p 72.50 68.44 47.21 67.93 58.11 36.91 57.51 44.06 23.23
w/o La

o 59.93 66.75 37.74 52.07 54.50 24.21 42.02 39.60 13.97
w/o La

s 67.17 73.27 46.65 61.31 64.05 36.36 51.16 49.39 23.30
w/o L−+ 57.88 72.65 39.92 47.53 61.31 25.49 37.76 46.45 14.29
w/o L+− 57.43 74.55 40.82 47.29 63.23 26.40 37.64 48.19 15.16

δ(d++ − d−−) 53.81 70.21 37.45 42.51 57.85 22.54 32.86 43.38 12.16
Our ICL 80.90 73.12 56.75 75.95 63.65 46.09 64.61 48.08 29.14

Table 3. Ablation study experiment results on HICO-DET dataset (Acc %).

Pytorch toolbox with FP16 training and Adam optimizer. λ
is set to 2 for ImageNet-VidVRD dataset and 1 for HICO-
DET dataset. In inference, η is set to 0.00001. For vali-
dating the effectiveness on the image-level relation dataset,
we slightly modulate the model to adapt to the image-level
grounding. The temporal attention module is removed from
the model. We directly use the f++

i , f+−
i , f−+

i and f−−
i to

conduct the partial-level and holistic-level inverse learning.

4.3. Ablation Analysis

Table 1 shows the ablation study results on ImageNet-
VidVRD dataset. We first compare our ICL model with
our baseline model that solely focuses on relation recon-
structions [40, 12]. Obviously, our ICL outperforms the
baseline by a large margin under all experimental settings.
This result illustrates the proposed partial-level learning and
holistic-level inverse learning are effective.

We investigate the influence of each term in the total loss.

We remove each component from the loss function respec-
tively to train the model. ‘w/o La

o’, ‘w/o La
s ’, and ‘w/o La

p’
represent removing the object, subject, predicate term, re-
spectively from the partial-level loss. Table 1 shows missing
any partial component degrades the performance. Specially,
removing La

p results in a significant performance degrada-
tion. Omitting La

p results in the model erroneously localiz-
ing subject and object entities that share the same class as s
and o but lack the predicate p. This undermines the model’s
ability to discern and accurately localize relation instances
associated with the specific predicate. Although excluding
the L−+ term improves results for sIOU thresholds of 0.5
and 0.3, our overall model achieves superior performance
in the more challenging sIOU=0.7 and average settings.

We also report experiment results with different tempo-
ral overlaps, as shown in Table 2. Our overall model consis-
tently achieves optimal performance under both sIOU=0.5
and sIOU=0.7, as evidenced by the results. These findings

15483



Models
sIOU=0.3 sIOU=0.5 sIOU=0.7 Average

AccS AccO AccR AccS AccO AccR AccS AccO AccR AccS AccO AccR
T-Rank V1 [2] 33.55 27.52 17.25 22.61 12.79 4.49 6.31 3.30 0.76 20.27 10.68 3.99
T-Rank V2 [2] 34.35 21.71 15.06 23.00 9.18 3.82 7.06 2.09 0.50 20.83 7.35 3.16
Co-occur [11] 27.84 25.62 18.44 23.50 20.40 13.81 17.02 14.93 7.29 22.99 19.33 12.80

vRGV [40] 37.61 37.75 27.54 32.17 32.32 21.43 21.34 21.02 10.62 31.64 30.92 20.54
ARC [12] 41.60 40.61 30.23 37.13 36.78 26.09 28.65 29.41 17.56 34.96 34.72 23.75
Our ICL 42.38 40.95 31.85 38.66 37.88 27.51 30.16 30.30 18.46 36.54 36.51 26.05

Co-occur# [11] 31.31 30.65 21.79 28.02 27.69 18.86 21.99 21.64 13.16 25.90 25.23 16.48
vRGV# [40] 42.31 41.31 29.95 37.11 37.52 24.77 29.71 29.72 17.09 36.77 36.30 24.58
ARC# [12] 45.66 44.01 32.53 40.99 40.41 27.83 33.24 33.39 20.44 39.66 39.20 26.42
Our ICL# 44.28 42.82 33.29 41.90 40.92 30.31 32.91 33.14 19.87 39.57 38.88 27.87

Table 4. Comparison with SOTA methods on ImageNet-VidVRD with different spatial overlap thresholds (Acc %. # means Viterbi
algorithm adopted in inference).

illustrate the effectiveness of our model. As discussed in
section 3.4, bypassing d−+, d−+ and only optimizing the
term of δ(d++ − d−−) are unfeasible to learn robust visual
semantic features. The observed performance degradation
only with δ(d++ − d−−) provides substantial evidence to
support this assumption.

Table 3 presents the ablation results on the HICO-DET
dataset. Our proposed ICL method outperforms all other ap-
proaches across various spatial overlap threshold settings,
confirming the effectiveness of its different components.
Notably, we observe that AccS (subject accuracy) surpasses
AccO (object accuracy), indicating the relatively easier lo-
calization of the subject in the HICO-DET dataset. Fur-
thermore, removing the term of La

o results in a signifi-
cant decrease in performance. This can be attributed to
the dataset’s human-centered nature, where the subjects of
the relations are always ‘person’. Consequently, localizing
the subject tends to be relatively more straightforward com-
pared to localizing the object involved in the relation. Based
on the comprehensive ablation results discussed above, we
can conclude that our ICL model demonstrates excellent
performance on both video relation dataset and image re-
lation dataset. The model’s effectiveness is validated by its
superior results across various metrics and settings.

4.4. Comparison with State-of-the-Art

Our model is compared with some SOTA methods, in-
cluding T-Rank V1[2], Co-occur[11], vRGV[40] and ARC
[12]. The results of T-Rank [2] and Co-occur[11] were re-
ported by [40]. Table 4 shows the results on ImageNet-
VidVRD dataset with different spatial overlap thresholds.
The relation accuracy of our ICL obviously outperforms
the SOTA method ARC [12] under all spatial threshold set-
tings. Since some methods employ the Viterbi algorithms
during the inference phrase, we initially compare our meth-
ods with variations of these approaches that greedily con-
nect regions based on their maximum attention scores in

each frame. Specifically, under the average setting, our ICL
model demonstrates a significant performance improvement
compared to the ARC method. The ARC method achieves
an accuracy of 23.75% (AccR), whereas our model achieves
a higher accuracy of 26.05% (AccR).

Additionally, we evaluate the results obtained by em-
ploying the Viterbi algorithm during inference (indicated by
#). Across different settings, our model consistently outper-
forms the ARC model by a substantial margin. It achieves
27.87%, 33.29%, and 30.31% (AccR) under different eval-
uation settings, surpassing the ARC model in most cases.
An important point to emphasize is that even without em-
ploying the Viterbi algorithm, our model consistently out-
performs the majority of methods that do utilize the Viterbi
algorithm. Our model’s performances, even in the absence
of Viterbi algorithm, is only slightly worse than the results
achieved by the ARC model when it utilizes the Viterbi al-
gorithm. This phenomenon highlights the superiority and
the ability of our model to effectively capture temporal con-
tinuity. Under the average setting, we have observed a slight
advantage of the ARC model over our model in terms of
AccS and AccO. However, our model achieves a higher
accuracy for relation (AccR). This observation suggests
that the ARC method may occasionally localize incorrect
subject-object pairs, leading to higher accuracy for individ-
ual entities but lower accuracy for the overall relation.

In the comparison of different temporal overlap thresh-
olds (Table 5), our model consistently outperforms other
methods. Utilizing Viterbi algorithm in inference also leads
to performance improvement. Our model achieves the best
results under tIOU=0.3 and tIOU=0.5, outperforming the
compared methods in multiple evaluation metrics. These
results highlight the effectiveness of our model, particularly
in capturing and leveraging temporal dependencies.
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Figure 4. Visualization results comparison between vRGV [40] and our ICL (Top), and comparison between the model without using the
holistic-level learning and our ICL (Bottom). Query relation: person-ride-bicycle.

Models
tIOU=0.3 tIOU=0.5 tIOU=0.7

AccS AccO AccR AccS AccO AccR AccS AccO AccR
T-Rank V1 [2] 36.51 28.67 15.05 20.27 10.68 3.99 6.15 2.67 0.55
T-Rank V2 [2] 36.99 20.70 12.81 20.83 7.35 3.16 6.19 1.30 0.21

ARC [12] 49.61 49.43 35.68 34.96 34.72 23.75 24.14 25.25 14.46
Our ICL 51.18 50.25 37.33 36.54 36.51 26.05 25.39 24.66 15.82

Co-occur# [11] 35.30 35.50 23.23 25.90 25.23 16.48 16.81 15.04 8.94
vRGV# [40] 49.97 48.98 33.16 36.77 36.30 24.58 24.27 22.11 13.69
ARC# [12] 52.74 52.41 35.61 39.66 39.20 26.42 28.68 28.68 17.67
Our ICL# 53.38 52.66 37.62 39.57 38.88 27.87 28.57 27.37 17.61

Table 5. Comparison with SOTA methods on ImageNet-VidVRD with different temporal overlap thresholds (Acc %).

4.5. Visualization

Fig. 4 shows the grounding results from the vRGV
model [40] and our ICL model (Top). Our ICL model
demonstrates superior performance compared to the vRGV
model. Our model excels in accurately localizing rela-
tion instances, even in challenging multi-instance scenarios.
vRGV model often generates incorrect matching pairs. Ad-
ditionally, we compare our ICL model with a variant that
does not employ the holistic-level learning (Bottom). The
comparison showcases that our ICL model produces more
precise bicycle bounding boxes, indicating the effectiveness
of holistic-level learning.

5. Conclusion
This paper addresses the challenging task of weakly-

supervised relation grounding in videos and images. We

propose a novel inverse compositional learning (ICL) model
that combines the holistic-level learning and partial-level
learning. The partial-level learning adopts a grounding by
classification strategy, while the holistic-level learning uti-
lizes an inverse attention module and a compositional en-
coder, guided by the proposed inverse loss. Extensive ex-
periments validate the effectiveness of our method. Future
work will investigate the application of inverse composi-
tional learning in other grounding tasks.
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