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Abstract

Recent studies on dynamic facial action unit (AU) de-
tection have extensively relied on dense annotations. How-
ever, manual annotations are difficult, time-consuming, and
costly. The canonical semi-supervised learning (SSL) meth-
ods ignore the consistency, extensibility, and adaptability
of structural knowledge across spatial-temporal domains.
Furthermore, the reliance on offline design and excessive
parameters hinder the efficiency of the learning process.
To remedy these issues, we propose a lightweight and on-
line semi-supervised framework, a so-called Knowledge-
Spreader (KS), to learn AU dynamics with sparse anno-
tations. By formulating SSL as a Progressive Knowledge
Distillation (PKD) problem, we aim to infer cross-domain
information, specifically from spatial to temporal domains,
by consistifying knowledge granularity within Teacher-
Students Network. Specifically, KS employs sparsely anno-
tated key-frames to learn AU dependencies as the privileged
knowledge. Then, the model spreads the learned knowledge
to their unlabeled neighbours by jointly applying knowledge
distillation and pseudo-labeling, and completes the tempo-
ral information as the expanded knowledge. We term the
progressive knowledge distillation as “Knowledge Spread-
ing”, which allows our model to learn spatial-temporal
knowledge from video clips with only one label allocated.
Extensive experiments demonstrate that KS achieves com-
petitive performance as compared to the state of the arts
under the circumstances of using only 2% labels on BP4D
and 5% labels on DISFA. In addition, we have tested it
on our newly developed large-scale comprehensive emotion
database BP4D++, which contains considerable samples
across well-synchronized and aligned sensor modalities for
alleviating the scarcity issue of annotations and identities.

1. Introduction and Related Work
Facial action unit (AU) detection plays a vital role in au-

tomatic facial action analysis. Over the past few years, the
deep neural networks [46, 10, 18, 19, 48] trained on large
scale data have become the de facto model for AU detec-
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Figure 1: Overall pipeline of “Knowledge Spreader”. The
blue color indicates the privileged knowledge (AU depen-
dencies) learned by Spatial Teacher on sparse annotations.
After fully distilled to the Spatial Students, the privileged
knowledge promotes to generate a sequential pseudo labels
with high confidence, and complete the temporal relation-
ship as the expanded knowledge (orange color). expanded
knowledge can build a more powerful Temporal Teacher
that feeds the learned knowledge to Temporal Student (Spa-
tial Teacher) reversely.

tion. However, a lab-controlled AU video typically contains
thousands of frames that need to be densely labeled by hu-
man annotators.

Semi-supervised learning (SSL) aims to tackle the is-
sue where the labeled instances are inadequate, yet a large
amount of unlabeled data are easy to obtain. Some early
SSL work [38, 44] summarized the distribution or co-
occurrence statistics from existing ground-truth AU labels,
as the knowledge constrain, to detect AUs using partially
labeled data. These models often yield unsatisfactory per-
formance due to lacking sufficient supervision information.
Besides, only applying the prior distribution or manually
defined knowledge may fall into sub-optimal due to lack-
ing adaptation mechanism. For instance, some scholars
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[35, 22] pointed out that the real world AU distribution
or dependencies may vary in terms of individual’s expres-
sions, age, gender, and ethnicity. Most recent advances
[28, 25, 5, 39] achieved excellent performance improve-
ment by utilizing a larger external dataset as the auxiliary
information. However, these improvements often come at
the cost of consuming millions or larger sized data, which
indicates the intensive demand of annotation and data is
still not effectively alleviated. Besides, most of current re-
search trends to design static SSL from the spatial perspec-
tive. Whereas, some recent work [3, 20] have demonstrated
that explicitly relationship modeling of contiguous frames
is also an important factor for robust AU detection. Ap-
plying these image-level SSL methods on dynamic corpus
is challenging due to some nuisance factors such as motion
blur, video defuse, and frequent pose occlusions. The afore-
mentioned issues motivate us to explore a balanced SSL ap-
proach that can reduce the need of dense annotations, while
maximize the knowledge acquisition by expanding informa-
tion from spatial-wise to temporal-wise.

Knowledge Distillation (KD) was initially proposed by
[9] to reduce the computational cost of the deep neural
networks. After that, [40] proposed a new paradigm for
training model with auxiliary knowledge named “Learn-
ing Using Privileged Information” (LUPI). Here the priv-
ileged information, which serve as the additional descrip-
tions to the training data, can only be used by the teacher.
By combining the privilege information and KD into a uni-
fied framework, [21] proposed a novel framework “Gen-
eralized Distillation” (GD). Following this, [6] is the first
work to formulates SSL as a generalized distillation prob-
lem. They adopted the textual explanation in Wikipedia as
the privileged information for guiding the student network
to learn with unlabeled data. A recent work Noisy Student
[45] improved the idea of self-training (pseudo-labeling)
and knowledge distillation with the use of noise added to
the student networks. Inspired by these work, we propose
to formulate SSL as as a progressive knowledge distillation
(PKD) problem. Here we define PKD as a process that the
learning system can actively infer expanded knowledge by
utilizing previously acquired privileged knowledge. In this
work, the privileged knowledge indicates the spatial knowl-
edge (i.e., inter-action relation) learned by self-attention
on sparse labeled data, while the expanded knowledge is
the temporal knowledge (i.e., inter-frame relation) learned
on the combination of labeled and unlabeled data. This
seamless progressive knowledge distillation enhances per-
formance of dynamic semi-supervised learning. The pre-
sented dual-network exploits the gaps in their knowledge
granularity (i.e., privileged versus non-privileged knowl-
edge and expanded versus non-expanded knowledge) as a
unique perturbation for consistency regularization.

The overall pipeline of the proposed “Knowledge-

Spreader” (KS) is presented in Figure 1. In term of the
model designing, KS sparsely samples the annotations by
every k frames in the training data pool, and feeds these la-
beled key frames to branch A. As the limited key frames can
support fully-supervision, the Spatial Teacher in A utilizes
a standard transformer [41] to encode the spatial AU de-
pendencies as the initial privileged knowledge. At the same
time, KS randomly pick n−1 neighbours around key frames
as the unlabeled data. These neighbours, with the corre-
sponding key frame, form an n-frame sequence as the input
of B. KS sets several light-weighted Spatial Students to ac-
commodate every single frame of the input sequence. By
maximizing the representational similarity between the out-
puts from Spatial Teacher and Spatial Students, and shifting
the active knowledge distillation target (Spatial Student),
the privileged spatial knowledge can be gradually spread
to every Spatial Students. Thus, through the learned privi-
leged knowledge, the Spatial Students can infer more confi-
dent pseudo labels from unlabeled frames. The pseudo la-
bels complete the supervision information of an entire video
clip. Thus, another transformer-based Temporal Teacher in
B is capable of learning the temporal dependencies as the
expanded knowledge. We term the progressive knowledge
distillation as the “Knowledge Spreading” which is the core
component of KS. Intuitively, the basis behind this is sup-
ported by the two major aspects: (1) privileged knowledge
is a better heuristic for getting pseudo labels with high-
confidence; (2) integrating the sporadic power of students
can pursue expanded knowledge in a higher dimension, and
build a sound teacher network.

Our contribution lies in three-fold: (1) to the best of our
knowledge, the paper is the first work to formulate semi-
supervised learning as a Progressive Knowledge Distillation
(PKD) problem, which focuses on knowledge extensibility,
consistency of knowledge granularity, and model efficiency.
(2) this work explores a novel semi-supervised setting for
dynamic databases where the labeled data and unlabeled
data is not independent. (3) We have built a new sponta-
neous emotion database by capturing 3D geometric facial
sequences, 2D facial videos, thermal videos, and physiolog-
ical data sequences from 233 participants across two years
period. The new database will be released to the research
community along with the paper being published.

2. Methodology

2.1. Overview
Our goal is to detect facial action units using sparse

video clips that contains only single-frame labels. Specif-
ically, we assume the facial action labels are available by
every k frames in the training set. The ith video clip,
which comprises n continuous frames, is represented as a
set V i =

{
Zi
U,1, Z

i
U,2, · · ·, Zi

L,m, · · ·, Zi
U,n

}
where Zi

U de-
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Figure 2: Illustration of the detailed architecture for Knowledge-Spreader. In stage 1, the base model extracts a sequential
latent features. In stage 2, two group of the project heads are utilized to learn AU-specific features fu

s and initial frame-specific
features pna . In stage 3, The Spatial Teacher Sa dynamically distills (green arrow) the privileged AU dependency knowledge
to the Spatial Students Sb. The Temporal Teacher Tb completes the inter-frame relation knowledge, and distills (grey arrow)
the expanded knowledge to Sa for optimal fusion. In the example, the key-frame of V i is 1, and S1

b is the active student for
spatial knowledge distillation (SKD).

notes unlabeled frames and Zi
L,m denotes the labeled key

frame. Note that the location of the key frame m is not
fixed, and it cyclically switches from 1 to n during training.
We use the video clips and their key frames as the coupled
inputs of our framework. The network structure of KS is
depicted in Figure 2.

2.1.1 Latent Feature Learning

We first project the raw data into the latent space based on
several considerations: (1) capturing the underlying pat-
terns and achieving high-level semantics of deep features.
By doing so, it creates a compressed and more meaning-
ful representation that facilitates better understanding and
interpretation of the data; (2) compressing the data di-
mension for computational and memory efficiency, mak-
ing the network more scalable and practical for large-scale
datasets; and (3) disentangling latent representations that
correspond to specific attributes (e.g., facial action units)
for fine-grained feature learning.

As shown in the first stage of Figure 2 , the image-level
and video-level features are extracted by the base models
which share the same weights. We adopt ResNet-18 [8]
pre-trained on ImageNet [29] as the feature extractor, ob-
taining a sequential 512× 7× 7 feature maps from the last
convolutional layer.

In the second stage, KS aims to disentangle AU-specific

features and frame-specific features. To generate AU-
specific features fu

s , we employ global average pooling
(GAP) to flatten the extracted feature of key frames from
stage one, and project it into multiple linear heads. Each
head is supervised by a binary AU label independently for
activating the specific AU local region. The corresponding
loss function LAU can be found in Equation (3). Likewise,
we use GAP to achieve the initial frame-specific embed-
dings pna , where n is the length of input video clip. Each
feature corresponds to one frame in the video clips. Due to
the lack of supervision for unlabeled non-key frames, these
initial frame-specific features are considered to be less con-
fident, meaning that they cannot be directly forwarded to the
Temporal Teach Tb for learning temporal relation. As the
Spatial Teacher Sa is fully supervised with the key frames,
KS sets a group of student networks Sb for accepting priv-
ileged knowledge from the Spatial Teacher, and further in-
fers trustable pseudo labels to supervise the learning of un-
labeled frames. The loss function can be found in Equa-
tion (4) and Equation (5). Finally, the post frame-specific
embeddings pnb with higher confidence are obtained in the
third stage.

2.1.2 Spatial and Temporal Relation Learning

As shown in the third stage of Figure 2, we design a trans-
former [41] based module to learn both spatial AU de-
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pendencies by Sa and temporal inter-frame context by Tb.
In this work, the inter-AU and inter-frame correlation are
represented as the multi-head attention matrix. A self-
diversified attention design [18, 19] can be optionally ap-
plied to address the redundancy and over-parameterization
issues across multiple attention heads. First of all, We
generate u learnable positional embeddings (POS in Fig-
ure 2), and add them with high-level AU-specific features
fu
s . These features is concatenated and represented as
Di

s =
{
f1
s , f

2
s , · · ·, fu

s

}
, where u refers to the number of

AU classes. Then, Di
s is fed to a standard transformer en-

coder Sa. The Spatial Student Sa learns the AU relation as
privileged knowledge. The latent weight matrix for multi-
head attention is defined as: MultiHead(Q,K, V ) =
Concat(Head1, ...,Headh)W , where the ith attention ma-
trix is calculated as:

Headi(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi (1)

where Qi = Wq,iXi,Ki = Wk,iXi and Vi = Wv,iXi.
Qi, Ki, and Vi represent a set of query, key, and value
respectively. This module constructs a set of linear trans-
formations based on the normalized layer input Xi =
LayerNorm(Di

s). dk is the dimension of query and
key. Consequently, MultiHead(Q,K, V ) is applied to
value V . Along with the residual connection, the out-
put of attention module is calculated as OAttention =
MultiHead(Q,K, V )V + Di

s. The feed-forward layer
contains two linear transformation and a GELU non-
linearity. By adding its output with OAttention, the output
Oi

a in branch A is calculated. Similarly, The post frame-
specific features pnb are extracted by The Spatial Students
Sn
b . The module adds them with the corresponding frame-

positional embeddings (FRA in Figure 2). These features
is concatenated and represented as Di

b =
{
p1b , p

2
b , · · ·, pnb

}
,

and fed to the Temporal Teacher Tb for learning temporal
context information. Note that the frame-positional embed-
dings are utilized to address the order invariance issue for
standard Transformer, letting the model be aware of the im-
pact of temporal perturbations on predictions. Although KS
does not necessarily guarantee the perception of spatial ac-
tion order, we adopt the same design to maintain consis-
tency with the temporal branch, aligning high-frequency in-
formation.

2.1.3 Knowledge Spreading
Knowledge Spreading is the core module of the proposed
framework. As shown in the stage 3 of Figure 2, we conduct
five steps to (1) set n Spatial Students Sb; (2) process Spa-
tial Knowledge Distillation (SKD) from the Spatial Teacher
Sa to one active Spatial Student Sb. The active student is
determined by the key-frame’s location number m where m
equals B mod n, and B is the Bth batch of training samples,

n is the input clip length; (3) shift the location of key frame
to activate Spatial Students alternatively; (4) use the Spa-
tial Students to generate pseudo labels for non-key-frames,
and train the Spatial Students on the combination of labeled
images and pseudo labeled images; (5) process Temporal
Knowledge Distillation (TKD) from the Spatial Teacher Tb

to the Temporal Student Sa (former Spatial Teacher), and
ensemble the output Oi

a and Oi
b for prediction.

We adopt dual-level and progressive knowledge distilla-
tion in our model. Since obtaining fine-grained privileged
knowledge requires full supervision, a single network is in-
adequate for achieving semi-supervised learning directly.
Therefore, our approach employs a teacher network as the
proxy for gradually transferring learned knowledge to semi-
supervised student networks. In the initial level of Spatial
Knowledge Distillation, our framework forwards a single
labeled key-frame along two distinct branches, introducing
perturbations through data augmentations and adjustments
in knowledge granularity. This unique treatment leads to
disparate predictions from the same input, prompting KS to
seek maximally coherence between these predictions with
and without privileged knowledge. The manipulation of
knowledge granularity introduces an innovative perspective
on feature perturbation, central to consistency-driven learn-
ing. Spatial Teacher, fed with limited yet fully-supervised
data, becomes the repository of fine-grained spatial action
relationships as its privileged knowledge. Conversely, Spa-
tial Students, fueled by abundant yet less assured dense
samples, encompass broader spatial insights of a coarse-
grained nature. By enforcing knowledge consistency across
spatial Teacher-Students, a unified acquisition of privileged
knowledge transpires, subsequently applicable to unlabeled
data. Knowledge Distillation fully compresses the scale of
Spatial Students, following the design philosophy of Noisy
Student. These Students, denoted as Sb, comprise a set of
n mini MLP networks, each smaller in scale compared to
the Spatial Teacher. The integration of multiple Spatial Stu-
dents is applied for enhancing system robustness. Inspired
by recent work [7], we adopt an online distillation method
using KL divergence for collaborative learning. Here, the
KL divergence loss is used to minimize the probability dis-
tribution of teacher-student networks and their correspond-
ing ensembles. The KL loss function of Spatial Knowledge
Distillation is defined as:

Lskd =
1

b

(
n∑

i=1

T 2KL (pi, qi) +

n∑
i=1

T 2KL (wm
i , qi)

)
(2)

where b is the batch size, T is the temperature param-
eter. p and w denote the soften probability distribution
calculated by the Spatial Teacher Sa and the active Spa-
tial Student, respectively. The soft target q is expressed as
q = softmax(zs/T ), where zs is performed by the mean
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pooling of the outputs from both teacher and active student.
m is the key frame position used for determining the active
Spatial Student. m equals B mod n, where B indicates the
Bth batch of training samples, n is the clip length. This
setting ensures each Spatial Student has almost the same
chance to be selected as the active one. Here, the tempera-
ture parameter is set as 1. Due to the issue of data imbalance
which may cause the performance degradation, we choose
weighted BCE with logits as the multi-label classification
loss. The function is defined as:

LAU =

u∑
i=1

wi[yilogσi (x) + (1− yi) log (1− σi (x))]

(3)
where wi is calculated by the ith AU’s occurrence ratio
[30], and less likely occurred AUs have higher weights.
σ(x) is the corresponding predicted probability. yi is the
ground truth. We further employ the Pseudo-label [13] to
train the inactive Spatial Students, injecting learned knowl-
edge into unlabeled data. The loss function is defined as:

Lpd =

u∑
i=1

wi[ŷilogσi (x)+(1− ŷi) log (1− σi (x))] (4)

where x denotes pna , and ŷi denotes the learned pseudo
labels by picking up the class which has the maximum
predicted probability. The total loss function of semi-
supervised learning is denoted as:

Lsemi =

n−1∑
i=1

Li
pd (5)

In the subsequent phase of Temporal Knowledge Dis-
tillation, the enriched privileged knowledge within Spatial
Students facilitates the assimilation of finer-grained spatial-
temporal action relationships as expanded knowledge. Con-
sequently, a new disparity in knowledge granularity arises
between Branch A and B. Through the secondary-level
consistency, the Temporal Student is guided to incorporate
domain-expanded information (i.e., temporal knowledge),
even when only sparse labels are available. The KL loss
function of Temporal Knowledge Distillation is defined as

Ltkd =
1

b

(
n∑

i=1

T 2KL (pi, qi) +

n∑
i=1

T 2KL (wi, qi)

)
(6)

where p and w denote the soften probability distribution cal-
culated by the Temporal Teacher Tb and the Temporal Stu-
dent Sa, respectively. The loss functions of Spatial Knowl-
edge Distillation and Temporal Knowledge Distillation are
expressed as:

Ls =

z∑
i=1

Li
AU + αLskd, Lt =

z∑
i=1

Li
AU + αLtkd (7)
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Figure 3: Pipeline of perturbation-aware pseudo-labeling.
At the training stage, it feeds Di

b (without shuffling) and
Di

pb (randomly shuffling Di
b along the timeline of the fea-

tures) into the model. At the prediction stage, we let the fea-
ture Dm

b (without shuffling) as the input. If it is classified as
false, the corresponding pseudo labels will be discarded and
vice versa. The training stage starts from the first epoch. By
observation, we find the simple binary classifier takes only
one or two epochs to convergence. Thus, we set the third
epoch as the flag to start the prediction stage.

where α is the trade-off weight, z is the number of Teacher-
Student networks. Although branch B contains multiple
student networks

{
S1
b , S

2
b , ..., S

n
b

}
, only one of them is se-

lected as the active student for processing the loss function
within the same iteration. Here, z is 2, and α is 0.5.

2.1.4 Perturbation-aware Pseudo-labeling (PPL)

We exploit a simple yet effective self-supervised module to
determine confident pseudo labels by predicting if the fea-
tures contain any temporal perturbation. Since facial mus-
cles move gradually and smoothly over time, the pseudo la-
bels generated by incorrect features signify the anomalies in
the temporal domain. Inspired by the work [42], we use the
temporal feature shuffling to simulate the sequential pertur-
bation and generate negative feature samples. By applying
this module, KS does not need to set any hard threshold for
filtering low-confident pseudo labels. The auxiliary task is
designed with a binary classifier g(x). It is jointly trained
with the AU detection task. Specifically, We first label the
ith collection of sequential features Di

b as True. We dupli-
cate Di

b as Di
pb, and randomly shuffle it along the tempo-

ral axis. Di
pb is labeled as False. Afterward, Di

b and Di
pb

are fed into classifier g(x) for training. Lself denotes the
loss of the binary classification task. Figure 3 illustrates the
pipeline of the proposed module. As shown in Figure 4,
the negative samples show the irregular pattern of AU oc-
curance in a short period of time. By detecting the temporal
perturbation of the features, the proposed module is able to
filter low-quality pseudo labels from a global perspective.
Figure 4 illustrates how PPL senses and processes the in-
correct pseudo labels.
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Figure 4: Pseudo labels discarded by PPL. The circles on
the face indicate the occurrence of AU6 and AU23. “GT”
and “PL” indicate the ground-truth and the pseudo labels.
Red number means incorrectly generated pseudo labels.
The ground-truth labels usually present stable changing pat-
terns, while the low-quality pseudo labels with temporal
perturbation present the abnormal pattern where AU occurs
and disappears repeatedly in a short-term period.

2.1.5 Overall loss function and algorithm
The total loss function is expressed as follow:

Ltotal = LAU +Ls + λwramp (Lt + Lself + Lsemi) (8)

where λ is the trading-off hyper-parameter, and wramp is a
ramp-up function [12] to make sure the semi-supervised
modules and self-supervised module converge relatively
slow compared with the fully-supervised module. wramp

is a simple Gaussian curve function:

wramp = exp

(
−ω(1− (x− µ)2

σ2
)

)
(9)

where x is the epoch number, and ω indicates the height of
the Gaussion curve’s peak. In this paper, we set ω = 2,
µ = 0, and σ = 5. Here, the wramp increases to 1 after 5
epochs’ warming-up.

In this work, we adopts the inductive strategy for the
semi-supervised learning. At inference time, all modules
are used except the pseudo-labeling. The algorithm of KS
is shown in Algorithm 1. More details such as transformer
design, and feature dimension are included in the supple-
mentary material.

3. Experiments
3.1. Datasets

BP4D [47] and DISFA [23] are are widely used bench-
mark databases for dynamic AU detection. We followed the
experimental setting of the previous work [15] to evaluate
our approach for a fair comparison.

New MME: The existing facial action datasets are lim-
ited in terms of subjects number, diversity, and metadata.
Thanks to the existing available multi-modal datasets [47]
[49], we extend to develop a new larger-scale multi-modal
emotion (MME) database, which consists of 233 partici-
pants (132 females and 101 males). The data is significantly

Algorithm 1 Pseudocode of Knowledge-Spreader
Require: The input frame F i

l , the input clip V i and its frame number N , the po-
sition of key frame m. B means the Bth batch of training sample. Functions
of the models in branch A: base model bθ(x), Model Sa fθ(x). Functions of
the models in branch B: base model bσ(x), sub-networks in Sn

b with supervi-
sion lσ(x) and pseudo-labeling kσ(x), The AU detection classifier of Model
Tb fσ(x) and the binary classifier for self-supervised learning gσ(x).

1: for each epoch E do
2: for each mini-batch b do
3: Oi

abase ← bθ(F
i
l );O

(i,n)
bbase ← bσ(V

i)

4: Oi
a ← fθ(O

i
abase)

5: for q = 1,...,N do
6: if q == B mod N then
7: Oi

k ← lσ(O
(i,q)
bbase)

8: process spatial KD with Oi
a and Oi

k
9: else

10: process pseudo-labeling with O(i,n−1)
ps ← kσ(O

(i,q)
bbase)

11: end if
12: end for
13: Oi

bti ← Concatenate(O(i,n−1)
ps , Oi

k)

14: Oi
b ← fσ(O

i
bti)

15: Oi
pb ← fσ(Shuffle(Oi

bti))

16: Oi
ssl ← gσ(O

i
b = 0, Oi

pb = 1)

17: if E <= 2 or Oi
ssl == 1 then

18: Let the weight of Lsemi, λ4 = 0
19: end if
20: process temporal KD with Oi

b and Oi
a

21: Oi
output ← MeanValue(Oi

b, O
i
a)

22: Update θ and σ via SGD of equation 8
23: end for
24: end for

expanded in terms of participants number as compared to
the existing databases: DISFA (27 subjects) [23], MMI (44
subjects) [26], BP4D (41 subjects) [47], BP4D+ (140 sub-
jects) [49]. Following ethical principles, our data collec-
tion was approved by the institutional review board (IRB).
Each subject signed an informed consent form. A profes-
sional performer/interviewer applied a procedure contain-
ing 10 seamlessly-integrated tasks as [47, 49] that resulted
in effective elicitation of spontaneous emotions. The dataset
was well-synchronized and aligned with multi-modalities
including 3D geometric facial model, 2D facial videos, ther-
mal videos, and physiology data sequences (e.g. heart rate,
blood pressure, skin conductance (EDA), and respiration
rate). Around 94,000 frames were well-annotated by three
expert FACS coders for AU coding. More details are de-
scribed in the supplemental material. The new database is
ready for public and will be released to the research com-
munity by the time of the paper being published.

3.2. Implementation Details

We process the image by cropping off redundant area
which is not relevant to face recognition. Then the im-
ages are resized as 224 × 224 × 3 to fit the model. Each
of the training images is randomly rotated, flipped horizon-
tally, and with color jitters (saturation, contrast, and bright-
ness) for data augmentation. We choose SGD as the opti-
mizer with a learning rate of 0.01 for 50 epochs. The model
was implemented with Pytorch framework. The hyper-
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parameters in Equation (8) are set as λ = 0.5. Each video
clips contains 5 frames.

3.3. Model analysis

3.3.1 Comparison with semi-supervised methods

Figure 5 shows the performance compared with semi-
supervised methods from two areas (AU detection and gen-
eral action recognition). We carefully investigated the ex-
isting works that adopt limited labels for AU detection.
BGCS [44] and DAUR [38] are selected for compari-
son. Figure 5 (d), (e), and (f) shows the proposed model
achieves significant performance improvement. Consider-
ing our foundation model may have advantages in gener-
alization ability, we can compare the performance trend.
With the available labels decreasing (from 90% to 50%),
Knowledge-Spreader shows no obvious performance atten-
uation. It worth noting KS is trained from scratch. Thus,
some models from [28, 39, 25, 5, 1] are not considered for
comparison, as they use full annotation pools, extra data,
fine-tuning, or other jointly trained tasks. We further report
the comparison results with some semi-supervised methods
from general action recognition for a comprehensive eval-
uation, including Pseudo-label [13], FixMatch [34], and a
video-level TCL [33]. Compared with the conventional set-
ting of previous AU works [44, 38, 27, 28], the percent-
ages of available AU annotations are significantly reduced
(1%, 2%, 5%, 10%, 20%, 50%, 60%, 70%, 80%, 90%, and
100%) to explore where the limit of KS is. Figure 5 (a), (b),
and (c) shows prominent improvement of KS, especially
when extremely limited annotations are available (1%, 2%,
5% , 10%, 15% and 20% on BP4D; 1%, 2%, and 5% on
DISFA; 1%, 2%, 5% , 10%, 15% and 20% on MME). The
quantitative results with different label ratios are shown in
Table 1.

3.3.2 Comparison with supervised methods

We report the results under two training setups by fol-
lowing [43]: (1) Compare KS against the fully-supervised
state-of-the-art methods with 100% labeled data. (2) Com-
pare KS against a supervised counterpart under different
training label ratios. As shown in Table 2, a collec-
tion of recent and strong benchmark algorithms including
JAA [31], DSIN [4], LP [24], ARL [32], SRERL [16],
SRERL [16], UGN [37], SEV [46], HMP-PS [36], HMP-
PS [36], FAUDT [10], and EAC (1%) [17] are selected for
a comprehensive evaluation. Knowledge-Spreader outper-
forms all other advances using only 10% labels on BP4D
and 50% labels on DISFA. KS still performs competitively
using only 2% labels on BP4D and 5% labels on DISFA.
In addition, the experiments conducted with 100% labels
show the effeteness of Knowledge-Spreader in a supervised

Table 1: Quantitative comparison with semi-supervised
methods using F1 score. Underlines indicate the best re-
sults.

Model BP4D DISFA MME
Pseudo-label (1%) 54.3 40.4 45.8
Pseudo-label (2%) 57.8 50.8 47.5
Pseudo-label (5%) 59.7 51.5 52.1
Pseudo-label (10%) 60.7 56.8 54.2
Pseudo-label (15%) 61.2 57.1 54.9
Pseudo-label (20%) 62 58.5 55.2
Pseudo-label (50%) 63.6 57.9 55.3
Pseudo-label (60%) 62.7 56.7 55.3
Pseudo-label (70%) 63.3 57.9 55.3
Pseudo-label (80%) 62.4 58.3 56.6
Pseudo-label (90%) 62.3 57.5 55.5
Pseudo-label (100%) 62.7 58.8 56.9
FixMatch (1%) 49.9 35.6 41.6
FixMatch (2%) 55.1 46.2 46.5
FixMatch (5%) 59.2 52.7 52.6
FixMatch (10%) 60.5 55 55.4
FixMatch (15%) 62.1 57.7 55.6
FixMatch (20%) 62 58.4 56.4
FixMatch (50%) 62 57.9 58.3
FixMatch (60%) 62.1 56 56.4
FixMatch (70%) 61.9 57.8 57.2
FixMatch (80%) 62.2 56.9 55.5
FixMatch (90%) 61.9 57.5 55.3
FixMatch (100%) 62.7 58.8 56.9
TCL (1%) 55.6 42.3 43.3
TCL (2%) 58.9 51.2 48.2
TCL (5%) 60.5 53.6 53.4
TCL (10%) 61.7 55.8 55.7
TCL (15%) 62.3 56.7 56.2
TCL (20%) 62.7 57.9 55.6
TCL (50%) 63.2 59.2 57.6
TCL (60%) 62.8 60.1 57.9
TCL (70%) 63.0 59.6 57.9
TCL (80%) 62.9 60.4 58.3
TCL (90%) 62.7 58.3 57.8
TCL (100%) 63.1 59.7 58.1
Our KS (1%) 59.9 49.4 51.2
Our KS (2%) 62.5 52.8 54.8
Our KS (5%) 63.9 56.9 57.6
Our KS (10%) 64.4 58 58.4
Our KS (15%) 64.5 58.8 58.7
Our KS (20%) 64.4 59.5 58.9
Our KS (50%) 64.5 61.6 59.5
Our KS (60%) 64.4 62.9 59.4
Our KS (70%) 64.5 61.9 59.5
Our KS (80%) 64.4 62 59.4
Our KS (90%) 64.6 62.2 59.6
Our KS (100%) 64.7 62.8 59.7

manner, where the main contribution comes from Spatial-
Temporal relation learning module. Especially, it shows
that KS surpasses the best benchmark (FAUDT) by 1.3 f1-
score on DISFA. Table 3 further shows the comparison re-
sults in terms of individual AUs. The proposed method per-
forms best on 9 out of 12 AUs on BP4D and 3 out of 8 AUs
on DISFA.

3.4. Data Structure Analysis

Through a experiment, we find the non-overlapping AU
annotations (different AU combinations) account for only
a small proportion of the overall frames number (1693 out
of 140,000 frames on BP4D, 102 out of 130,000 frames on
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Figure 5: Comparison with other advanced semi-supervised algorithms using different percentages of labels on BP4D,
DISFA, and MME.

Table 2: Comparison with state-of-the-art methods using F1
score. The first table indicates the results of other methods
using 100% labeled data. The second table indicates the re-
sults of a baseline model (left) and the proposed KS (right)
using different percentages of labels. Underlines indicate
the best result of other methods. Bold numbers indicate KS
surpasses others’ best performance.

Model Reference BP4D DISFA
JAA ECCV’18 60.0 56.0
DSIN ECCV’18 58.9 53.6
LP CVPR’19 61.0 56.9
ARL AC’19 61.1 58.7
SRERL AAAI’19 62.1 55.9
UGN AAAI’21 63.3 60.0
SEV CVPR’21 63.9 58.8
HMP-PS CVPR’21 63.4 61.0
FAUDT CVPR’21 64.2 61.5
Model BP4D DISFA Model BP4D DISFA
EAC (1%) 43.8 31.8 KS (1%) 59.9 49.4
EAC (2%) 48.7 33.3 KS (2%) 62.5 52.8
EAC (5%) 52.2 39.4 KS (5%) 63.9 56.9
EAC (10%) 54.8 43.9 KS (10%) 64.4 58
EAC (50%) 55.6 48.0 KS (50%) 64.5 61.6
EAC (100%) 56.3 51.2 KS (100%) 64.7 62.8

DISFA, 748 out of 94,000 frames on MME). A large num-
ber of similar labels and data densely exist across adjacent
frames. It reveals that why using only a few sparsely sam-
pled clips and annotations can achieve competitive or even
better performance, which is consistent with the “less is bet-
ter” principle from [14]. Different from existing video-level
semi-supervised works [2, 42, 33, 11] that adopt continu-
ous annotations, we sparsely sample the annotations and
allocate only one annotation by every k frames. Figure 6
demonstrates that applying our method can keep more non-

Labeled frames(a) Our method

(b) Others’ method Unlabeled frames

Figure 6: Evaluation of the label sampling methods. It
shows the quantitative statistics of non-overlapping labels
and the performance comparison (F1 score) using different
methods on BP4D, DISFA, and MME. X-axis indicates the
percentage of used labels.

overlapping AU annotations than conventional approaches
using the same percentage of annotations.

3.5. Ablation Study

In this section, we justify the effectiveness of the key
components in our proposed Knowledge-Spreader under
the semi-supervised condition. All experiments are con-
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Table 3: Comparison with state-of-the-art methods using F1 score in terms of individual AUs. The upper part is the F1 score
on BP4D; The bottom part is the F1 score on DISFA. Bold numbers indicate the best performance.

Model Used labels AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
ARL 100% 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 55.4
SRERL 100% 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
UGN 100% 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
HMP-PS 100% 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
FAUDT 100% 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
Our KS 15% 58.7 50.3 62.0 79.5 75.4 84.9 87.1 65.9 45.5 62.9 48.3 53.3 64.5
Our KS 100% 55.3 48.6 57.1 77.5 81.8 83.3 86.4 62.8 52.3 61.3 51.6 58.3 64.7
Model Used labels AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
ARL 100% 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
SRERL 100% 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
UGN 100% 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
HMP-PS 100% 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
FAUDT 100% 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
Our KS 15% 41.7 53.5 69.7 41.3 46.2 72.0 92.3 54.0 58.8
Our KS 100% 53.8 59.9 69.2 54.2 50.8 75.8 92.2 46.8 62.8

ducted with using 50% labels.
Effect of the Relation Learning module: We replace

the Transformer-based relation encoders Sa and Tb with the
vanilla MLP to learn the spatial and temporal information.
The results shows that the F1 Score drops to 62.8% from
64.5% on BP4D and 60.2% from 61.6% on DISFA. Remov-
ing the two knowledge encoders separately results different
performance degradation. The F1 score decreases by a mar-
gin of 1.3% and 1.1% without Sa, while it decreases by a
margin of 0.9% and 1.2% without Tb. This demonstrates
that the impact of the two sub-modules is not uniform on
different databases.

Effect of the Knowledge Spreading: We perform an
experiment by removing the loss Ls and Lt for knowledge
distillation module. We observe that the F1 score decreases
by 2.0% and 1.5% on BP4D and DISFA. By removing SKD
individually, the result shows the performance degradation
by a margin of 1.3% and 1.1%. Without TKD, it decreases
by 0.9% and 1.2%. The strategy of combining them as an
integrated module can achieve the optimal effect.

Effect of the Perturbation-aware Pseudo-labeling The
module is consisted of two parts including Pseudo-labeling
and a self-supervised module with loss function Lself .
By removing the whole module, we observe the perfor-
mance degradation by a margin of 0.8% and 1.0% on BP4D
and DISFA. By only removing Pseudo-labeling, the F1
score decreases by 0.6% and 0.7%. By replacing the self-
supervised module with the hard threshold as the standard
of confirming high-confident pseudo labels, we observe a
performance drop by a margin of 0.3% and 0.4%. In addi-
tion, we compare the accuracy of pseudo labels generated
by PPL and naı̈ve pseudo-labeling [13] on BP4D using
10% labels. The result shows 76.35% accuracy on PPL and
73.36% on naı̈ve pseudo-labeling. That demonstrates the
performance of PPL improves by filtering the low quality
pseudo labels with temporal perturbation. Another interest-
ing finding is that if we only keep the loss Lself of PPL (not

for label selection), the experimental results are also be re-
duced. That shows the auxiliary task in PPL benefit KS to
learn better feature representation and inter-frame relation
by identifying temporal disturbances.

Complexity analysis The proposed model (15.6 million)
stands in stark contrast to the models with ResNet50 back-
bone (23 million) and ViT base (86.9 million) commonly
used in existing AUD works, resulting in a highly compact
architecture. To compare the training/testing speed, we run
the models (e.g., our model, ResNet50-based model, and
ViT-based model) using samples from the BP4D dataset
with image size 224x224. The training/testing speed in
terms of samples per second (S/s) is 156.3 (ours), 111.8
(ResNet50-based model), and 46.5 (ViT-based model).
More detailed ablation studies can be found in the supple-
mentary material.

4. Conclusion
In this paper, we have proposed a deep unified semi-

supervised framework “Knowledge-Spreader”. We formu-
late semi-supervised learning as a Progressive Knowledge
Distillation (PKD) problem, which aims to infer domain-
expanded information by consistency learning of knowl-
edge granularity. By spreading the knowledge from the
spatial domain to the temporal domain, KS can effectively
alleviate the demand of dense annotation for dynamic ac-
tion recognition. Results show that the proposed model us-
ing extremely limited annotations achieves superior perfor-
mance than existing methods. This work hopes to serve as
an inspiration for alleviating the intensive annotation of dy-
namic databases in the future. In addition, a large-scale 3D
dataset for spontaneous and dynamic facial action analysis
is introduced to alleviate the scarcity issue of subject sam-
ples. The material is based on the work supported in part
by the NSF under grant CNS-1629898 and the Center of
Imaging, Acoustics, and Perception Science (CIAPS) of the
Research Foundation of Binghamton University.
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