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Abstract

Video analysis tasks rely heavily on identifying the pix-
els from different frames that correspond to the same visual
target. To tackle this problem, recent studies have advo-
cated feature learning methods that aim to learn distinc-
tive representations to match the pixels, especially in a self-
supervised fashion. Unfortunately, these methods have dif-
ficulties for tiny or even single-pixel visual targets. Pixel-
wise video correspondences were traditionally related to
optical flows, which however lead to deterministic corre-
spondences and lack robustness on real-world videos. We
address the problem of learning features for establishing
pixel-wise correspondences. Motivated by optical flows as
well as the self-supervised feature learning, we propose to
use not only labeled synthetic videos but also unlabeled
real-world videos for learning fine-grained representations
in a holistic framework. We adopt an adversarial learning
scheme to enhance the generalization ability of the learned
features. Moreover, we design a coarse-to-fine framework
to pursue high computational efficiency. Our experimental
results on a series of correspondence-based tasks demon-
strate that the proposed method outperforms state-of-the-
art rivals in both accuracy and efficiency.

1. Introduction

One of the most fundamental problems in computer vi-

sion is learning visual correspondences across space and

time, which has many applications such as 3D reconstruc-

tion, physical understanding, and dynamic object model-

ing. Due to the factors such as viewpoint change, distrac-

tors, and deformations, this task is extremely challenging

and can be roughly divided into three categories accord-
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Figure 1: We illustrate video correspondences with different

granularities, including object-wise, group-wise, and pixel-wise.

In this paper, we concentrate on learning fine-grained features to

address the pixel-wise video correspondences.

ing to the granularity: the first one is object-wise corre-

spondences that exist between coarsely localized bounding

boxes [36, 39] along the video; the second one is group-

wise correspondences, indicating the mapping at group-

level, and usually applied to downstream tasks like video

object segmentation [5, 25]; the third one is pixel-wise cor-

respondences, which describe the pixel-level relation be-

tween video frames with the finest granularity.

Learning dense representations from videos is one ap-

proach to finding the correspondences. Researchers have

been exploring different self-supervised methods for learn-

ing generalizable representations using unlabeled videos

collected in the real world [16,20,23,24,41,45]. For exam-

ple, Wang et al. [41] propose using an object-level cycle-

consistency across time (i.e., forward-backward tracking)

as a supervision signal. Jabri et al. [16] further enhance it

by combining cycles of time with the similarities between

path-level representations. Inspired by contrastive learning,

Xu et al. [45] try to learn spatial and temporal represen-

tation through a frame-wise contrastive loss, while Li et

al. [23] propose a spatial-then-temporal pretext task to learn

better spatiotemporal features. Despite obtaining promising

outcomes, current research has predominantly emphasized

performing object-level or patch-level similarity learning,

making it difficult to accurately recognize pixel-wise differ-

ences with the learned features. As a result, there is an in-
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creasing necessity for learning fine-grained representations

in order to tackle this problem.

At the same time, there is another line of work approach-

ing video correspondences by deterministically predicting

the displacement of each pixel, which is known as optical

flow estimation. Early studies used optimization methods

to estimate the motion between two frames [4]. In recent

years, approaches use synthetic data with supervised learn-

ing for flow estimation [8, 26], using a coarse-to-fine pyra-

mid framework to improve the accuracy [33]. RAFT [34]

further devises an iterative optimization algorithm to come

up with the result of high-resolution flow fields through it-

erative updates, which show a superior ability to find fine-

grained correspondences. However, in real scenarios, there

are often appearance variants, illumination changes, and de-

formations between video frames, which leads to the lack of

robustness on real-world videos for the optical flow model

supervised by labeled synthetic videos.

In this paper, we explore how to learn fine-grained repre-

sentations to meet the needs of pixel-wise video correspon-

dences. To this end, we first investigate how to leverage syn-

thetic data for fine-grained feature learning. Specifically,

given a query pixel, the supervision in synthetic videos only

supplies the one-to-one mapping, i.e., a motion vector, rep-

resenting the deterministic correspondence of the pixel to

another pixel in the next frame. Nevertheless, the pixel-wise

features evolve slowly over space and time, which indicates

a soft distribution of the correspondences. We find directly

utilizing the synthetic supervision as hard labels results in

inferior representations, and the learned features are unable

to recognize the pixel-wise differences across different spa-

tial locations and periods of time. To address the issue, we

propose to use an external pre-trained 2D encoder to derive

soft supervision for optimization based on the flow.

Furthermore, we incorporate self-supervised feature

learning on unlabeled real data in the overall training to alle-

viate the generalization issues in real scenes, which consists

of two carefully designed components. Firstly, inspired by

the temporal consistency assumption [3], we learn temporal

persistent features via self-supervised reconstructive learn-

ing, where each query pixel can be reconstructed by lever-

aging the information in adjacent frames. Besides, given

the synthetic and real data, we perform adversarial training

by introducing Gradient Reverse Layer [9] with a discrim-

inator for the learned correspondences. We observe such

designs can further enhance learned fine-grained features.

Though already getting impressive results, we find it

takes more time to get the results of the dense matching be-

tween fine-grained features. Thus, we make another step to

devise a coarse-to-fine framework to address the problem.

We put the complex feature matching on the coarse-grained

feature map and then get the fine-grained results through

a learnable up-sampling layer. As a result, we achieve a

good balance of performance and efficiency. In summary,

the main contribution of this work lies in:

• We address the problem of establishing pixel-wise video

correspondences via a feature learning approach.

• We propose an effective method of learning fine-grained

features from both synthetic and unlabeled videos, fol-

lowed by a carefully designed framework to address the

issue of efficiency.

• We validate our method in a series of correspondence-

based tasks. Experiment results indicate consistent im-

provement over state-of-the-art methods.

2. Related work
Representation learning for video correspondences.

Recent researches center around learning dense repre-

sentations without labels in a self-supervised way for

video correspondences, which occurs in two distinct di-

rections: reconstruct-based [20, 21, 23, 24, 38, 40] and

cycle-consistency-based techniques [16, 41, 49]. In the

works of the first type, the query pixel is reconstructed

from the adjacent frames based on the temporal consis-

tency assumption, while the works of the second type ex-

ecute forward-backward tracking to reduce cycle inconsis-

tency. Furthermore, VFS [45] proposes to learn represen-

tations through frame-wise contrastive loss. SFC [13] pro-

poses a two-stream architecture to learn semantic and fine-

grained features through two different models. Despite the

progress made in learning representations for video corre-

spondences, accurately recognizing pixel-wise distinctions

over space and time remains challenging.

Optical flow estimation for video correspondences.
Recently, the classic optical flow estimation problem of pre-

dicting per-pixel motion between two frames has been ex-

plored using synthetic graphics data for supervised train-

ing [8, 26]. FlowNet [8] was one of the first deep

learning methods to tackle end-to-end optical flow learn-

ing. This research inspired a multitude of other meth-

ods, such as FlowNet2.0 [15], DCFlow [44], SpyNet [30],

PWC-Net [33], and LiteFlowNet3 [14]. Most of these

methods employ cost volumes for finding pixel matching.

RAFT [34] stands out from the rest due to its multi-scale

correlation volumes and iterative flow refinements, whilst

achieving superior performance, and is also a precursor to

many successive works. However, learning a deterministic

model with synthetic computer graphics data limits gener-

alization ability and robustness on real videos.

Unsupervised domain adaptation with self-
supervised learning. Recently, there has been a surge in

approaches to reduce the distribution discrepancy between

real and synthetic data by leveraging unsupervised domain

adaptation [9, 19, 28, 35, 42, 48]. An effective way to
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Figure 2: Overview of the framework for fine-grained feature learning. We facilitate fine-grained feature learning by integrating self-

supervised learning on unlabeled videos into supervised learning with labeled synthetic videos. For learning with synthetic data DS , we

devise a soft labeling module to convert the hard labels indicated by the motion vectors to soft labels. To learn more generalizable features,

we leverage free supervision from unlabeled videos DT with the objective of frame reconstruction. Furthermore, an adversarial loss (along

with Gradient Reverse Layer and a discriminator) is proposed to encourage domain invariant representations. The whole framework is

jointly optimized in an end-to-end manner with the proposed objective functions.

realize it is through adversarial training. Recent studies

execute adversarial training by learning a domain classifier

(the discriminator) to distinguish the learned features

from different distributions, utilizing adversarial loss to

increase domain confusion. Meanwhile, self-supervised

learning obtains impressive performance and shows

good generalizing ability by designing different pretext

tasks [11, 41, 43, 45] with unlabeled data, which motivates

us to combine supervised learning and self-supervised

learning to encourage consistent representations for both

domains as well as improved results for downstream tasks.

3. Approach
We address the problem of estimating the pixel-wise cor-

respondences between a pair of video frames, which can be

realized by learning fine-grained features for matching. Our

goal is to learn a fine-grained feature space φ with the en-

coder θ by designing different learning objective functions

for the probabilistic mapping.

Probabilistic mapping. Given a pair of video

frames I1, I2 ∈ R
h×w×3, for all pixels in I1, we aim to

predict the probabilistic mapping P1→2 ∈ R
H×W×(2r+1)2 ,

and P1→2(·|i) ∈ R
(2r+1)2 gives the probability that i is

mapped to j in frame I2 within a limited range r, consider-

ing the nature of temporal coherence in the video. The i, j ∈
R

2 indicate the 2D pixel location. P1→2(·|i) ∈ R
(2r+1)2

thus encodes the entire discrete conditional probability dis-

tribution of where i is mapped in frame I2. The proba-

bilistic mapping can be achieved by calculating the feature

similarities using the learned fine-grained features. More

specifically, we first extract the dense features F1, F2 ∈

R
H×W×C . Then the discrete probabilistic map can be ob-

tained by computing the local correlation w.r.t. each key j
in I2 within a local window for each query i,

P1→2(j|i) = exp (F1(i) · F2(j)/τ)∑
n exp (F1(i) · F2(n)/τ)

, i ∈ {1, ., HW}, j, n ∈ K(i),

(1)

where K(i) is the index set in the local window with a lim-

ited range of r centered at i, and τ is the temperature. The

result of the probabilistic mapping is further post-processed

and directly applied to various downstream tasks.

3.1. Fine-Grained Feature Learning

We design the learning objective functions for proba-

bilistic mapping with both synthetic and real-world videos.

The overview of the framework is shown in Figure 2.

Learning with synthetic videos. Labeled synthetic

videos are often used as supervision for learning the opti-

cal flows in recent studies [8, 34]. Given a pair of rendered

video frames Is1 , I
s
2 , the synthetic data DS provides pixel-

wise motion vector, i.e., optical flow G1→2. A valid ques-

tion then emerges as how to learn features using such de-

terministic correspondences? Indeed, we believe the deter-

ministic correspondences are hard to obtain for real-world

videos, thus we argue the necessity to convert them into soft

(probabilistic) ones. We devise the following variants:

(i) Dirac distribution: As shown in Figure 3 (a), we can di-

rectly convert the motion vector to a dirac distribution δ(·|i)
in order to describe the ground truth mapping. Then, the

learning objective function defined as Kullback-Leibler di-

vergence between P s
1→2(·|i) and δ(·|i). The P s

1−>2 stands
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Figure 3: Illustration of the probabilistic map. For i in Is1 ,

we visualize the probability value of the mapping from i to the

locations in Is2 within a limited range.

for the correlation calculated by Eq. (1) with synthetic data:

LKL-v1 =
∑

i

DKL(δ(·|i) ‖ P s
1→2(·|i)). (2)

(ii) Gaussian distribution: However, the feature of the query

pixel i varies smoothly over space and time, which indicates

a soft distribution of the potential location in the next frame.

As shown in Figure 3 (a), the dirac distribution does not

provide the feature learning with any knowledge of relative

probability in the background, making it hard to learn the

features with the ability to tell the fine-grained differences

with synthetic videos. Thus, we devise to generate the prob-

abilistic map with gaussian distribution, which introduces a

soft distribution centered at the ground truth coordinate:

N (
j|i, μ, σ2) =

1√
2πσu

e
− (uj−μu

i )
2

2σ2
u · 1√

2πσv

e
− (vj−μv

i )
2

2σ2
v ,

(3)

where μ = (μu
i , μ

v
i ) represents the 2D coordinate of ground

truth in the Is2 for pixel i, and (uj , vj) indicates the 2D co-

ordinate of j. Then the loss can be devised as:

LKL-v2 =
∑

i

DKL(N (·|i, μ, σ2) ‖ P s
1→2(·|i)). (4)

(iii) Soft-labeling: The gaussian prior only considers the eu-

clidean distance of coordinates, which shows limited capa-

bility of modeling the complicated distributions. We believe

the synthetic supervision already provides valuable tempo-

ral cues (i in Is1 move to j in Is2 ), and the soft distribu-

tion over space can be approached by computing the self-

similarities for j using the pre-trained 2D visual encoder

θself which can produce spatially-discriminative features.

As shown in Figure 3 (c), for the i in Is1 that moves to j, we

get the feature of the query i (denoted as F q) at the location

j in F 2 (F 2 is the feature map of Is2 computed by θself ).

Then we can compute the feature similarities S1→2(·|i) be-

tween F q and {F 2(k)|k ∈ K(i)}, where K(i) is the index

set in the local window centered at i. The S1→2(·|i) are

further normalized (by softmax) to obtain the discrete prob-

ability distribution P1→2(·|i):

LKL-v3 =
∑

i

DKL(P1→2(·|i) ‖ P s
1→2(·|i)). (5)

In Table 4, we find soft labeling works well when only

pre-training θself on synthetic data DS with Lrec (Eq. (8)),

and leveraging more strong 2D encoder would contribute

to better performance. The comparisons between different

loss functions will be discussed in the experiments, and the

LKL-v3 is used as the default loss.

Learning with unlabeled videos. Meanwhile, we

observe in real scenarios, there are apparent differences

with synthetic videos in appearance variants, illumination

changes and deformations, leading to notable changes in the

distribution, where the learned features on synthetic videos

show unsatisfied generalization ability. Inspired by recent

studies [16, 41], we try to improve the learned fine-grained

features by introducing self-supervised feature learning into

the framework. As observed in the bottom of Figure 1, the

pixel repetition encourages us to learn the fine-grained fea-

tures by reconstructive learning, where each pixel in the It1
can be reconstructed by leveraging the information of It2
with a limited range. To achieve this, the video frames It1, I

t
2

are firstly projected into pixel embeddings F t
1 , F

t
2 by the en-

coder θ. For each query i in It1, we calculate the probabilis-

tic map P t
1→2 with Eq. (1). Then the query i in It1 can be

reconstructed by a weighted sum of pixels in K(i):

Irec1 (i) =
∑

j∈K(i)

P t
1→2(j|i)It2(j). (6)

Then the reconstruction loss for self-supervised training is

defined as L1 distance between Irec1 and It1. Training with

such self-supervision leads to temporal persistent features

that generalize well in real scenarios.

However, the pixel repetition does not hold for pixels that

become occluded, Thus, we exclude occluded pixels from

the reconstruction loss to avoid learning incorrect features.

We follow the forward-backward consistency assumption to

detect the occluded pixels. which is defined in Eq. (7) as

the occlusion flag O1→2 to be 1 whenever the constraint is

violated, and 0 otherwise:

O1→2(i) = 1

(
argmax

i
P t
2→1

(
i | argmax

j
P t
1→2(j | i)

)
= i

)
.

(7)

The loss for reconstructive learning is defined as follows:

Lrec =
∑

i

O1→2(i) ·
∥∥Irec1 (i)− It1(i)

∥∥
1 . (8)

Adversarial training. We further improve the fine-

grained features by leveraging the technique in recent works

of unsupervised domain adaptation, which aims to bridge

the gap caused by the domain shift between the synthetic

videos DS and real videos DT via adversarial training. An

effective way to approach this problem consists in introduc-

ing the network a Gradient Reversal Layer (GRL). We ad-

ditionally train a discriminator θD to identify whether the
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Figure 4: Illustration of the coarse-to-fine framework for ef-
ficient probabilistic mapping. We first obtain coarse-grained

matching and then upsample it to get the fine-grained result.

probabilistic map comes from synthetic or real videos:

Ladv = EP t∈PT

[
log

(
D(P t)

)]
+ EPs∈PS [log (1−D(P s))] ,

(9)

and then we reverse the gradient direction during the back-

ward pass in back-propagation when updating the parame-

ters of the encoder θ with Ladv:

θ ←− θ + λ
∂Ladv

∂θ
. (10)

The GRL allows to train the discriminator and the en-

coder at the same time, and the adversarial training helps to

learn domain invariant patterns.

Overall training objective. The overall training objec-

tive for learning fine-grained features is formulated as a

multi-task loss, which is written as L = LKL +Lrec +Ladv,

where we empirically treat each loss equally.

3.2. Efficient Fine-grained Probabilistic Mapping

To get the fine-grained probabilistic map, i.e., P1→2 ∈
R

H×W×(2r+1)2 , we need to compute the similarities w.r.t.

all key pixels in the local window centered at every query

pixel, which is computationally costly. In this section, we

devise a coarse-to-fine framework. The overview of the

framework can be found in Figure 4, where we first com-

pute the correlation at coarse-grained features and then up-

sample it to get fine-grained probabilistic maps.

Self-attention and Cross-attention Layers. More

specifically, we first extract the coarse feature maps

F ↓
1 , F

↓
2 ∈ R

H/4×W/4×C , and we further enhance the

coarse features by introducing the self-attention and cross-

attention layers with positional encoding. Then, we

obtain the coarse-grained probabilistic map P1→2↓ ∈
R

H/4×W/4×(2r↓+1)2 by Eq (1).

Up-sampling. We devise an up-sampling layer to obtain

fine-grained probabilistic map P1→2 ∈ R
H×W×(2r+1)2 ,

which can be simply done by leveraging pixel-shuffle or

convolution layer with bilinear interpolation.

More details of the architecture are included in the sup-

plementary material. We train the coarse-to-fine framework

in a distillation manner on DT , with the same objective

function as LKL. The supervisions for P1→2 are obtained

by computing the probabilistic map using pre-trained en-

coder in Sec. 3.1. Without losing much performance, we

find such a design helps to get rid of the complicated fine-

grained feature matching and exhibit higher efficiency.

4. Experiments

We verify the effectiveness of our method in a series

of correspondence-based tasks. We will first introduce im-

plementation and evaluation details, and report the perfor-

mance comparison with baselines. Finally, we perform de-

tailed ablation studies for each component of our method.

4.1. Implementation Details

Backbone. We exploit the encoder θ with ResNet-

18 [12]. We reduce the stride up to layer res4 to get fea-

tures at 1/2 of the original image dimension for training. In

our coarse-to-fine framework, we increase the stride of the

encoder to 8 for coarse-grained feature matching.

Training details. The training is conducted on

the train set of synthetic dataset FlyingThings [26]

and YouTube-VOS [46] collected in real-world. The

FlyingThings/YouTube-VOS contains 40k/3.5k videos for

training. For both datasets, we sample pair of frames

which are resized into 256×256 and converted to Lab color

space with channel-wise dropout as the information bottle-

neck [20]. The local range r in the probabilistic map is set

to 24/6 for the fine-grained features (h2 × w
2 (stride=2)) or

coarse-grained features (h8 × w
8 (stride=8)). We first train an

encoder using reconstruction loss (Eq. (8)) with a batchsize

of 32 for 30 epochs on FlyingThings [26], which is further

utilized as θself in soft labeling. Then the final model θ
is jointly trained for 30 epochs with proposed three losses,

with a batchsize of 16 for each dataset. When training with

synthetic optical flow, we filter out the points that are out

of the local range or occluded by forward-backward check-

ing. The τ is set to 1. We use Adam as the optimizer, and

the initial learning rate is set to 1e-3 with a cosine (half-

period) learning rate schedule for each stage. We include

more training details in the supplementary.

Evaluation. An important problem is how to eval-

uate the quality of the learned fine-grained features for

pixel-wise video correspondences. Following the previ-

ous works [16, 41, 45], without any fine-tuning, we directly

leverage the pre-trained encoder θ to extract features Fi, Fj

with a spatial resolution of h
s × w

s (the s represents the

stride of the encoder) for the pair of frames Ii, Ij , which

are later used to compute the probabilistic map Pi→j by

Eq (1). Based on the probabilistic map Pi→j , we follow

the recurrent inference strategy inference strategies of re-

cent studies [16,41,45] to propagate the target points or se-

mantical labels of the first frame, as well as previous predic-

tions, to the current frame It. We evaluate the point track-

ing on three popular benchmarks including BADJA [2], JH-

MDB [18], TAP-Vid-DAVIS [7] and TAP-Vid-Kinetics [7],

and the evaluation of video object segmentation is con-

ducted on the widely used dataset DAVIS-2017 [29].
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Table 1: Quantitative results for point tracking on different datasets. The frame per second (FPS) results of getting pixel-

wise correspondences between a pair of video frames are measured on a single GTX-3090 at the resolution of 480×640. The
∗ indicates our coarse-to-fine framework. The - indicates the unavailable result due to the unavailable pre-trained model.

BADJA JHMDB TAP-DAVIS TAP-Kinetics
Method Backbone Stride FPS

PCK@0.1↑ PCK@0.1↑ < δxavg−p ↑ < δxavg−p ↑
TimeCycle [41] ResNet-50 8 28 41.1 57.3 27.1 28.6

UVC [24] ResNet-18 8 142 48.2 58.6 29.0 25.2

CRW [16] ResNet-18 8 142 50.9 59.3 32.5 25.4

VFS [45] ResNet-18 8 142 51.9 60.5 31.9 28.8

CLSC [31] ResNet-18 8 142 - 61.7 - -

SFC [13] ResNet-18 + ResNet-50 8 27 53.8 61.9 37.2 31.1

MAST [20] ResNet-18 4 33 55.7 62.4 42.5 33.2

LIIR [22] ResNet-18 4 33 - 60.7 - -

Ours∗ ResNet-18 8 34 56.8 64.6 48.0 43.8
ImageNet Pre. [12] ResNet-18 2 8 57.5 61.5 51.3 44.5

UVC [24] ResNet-18 2 8 56.7 65.1 52.7 41.8

CRW [16] ResNet-18 2 8 55.9 61.4 43.2 37.1

VFS [45] ResNet-18 2 8 58.1 61.0 51.4 44.9

SFC [13] ResNet-18 2 8 61.5 65.9 53.9 43.6

MAST [20] ResNet-18 2 8 63.0 63.1 53.8 42.7

Ours ResNet-18 2 8 67.2 66.8 59.8 48.8

4.2. Results for Point Tracking

We firstly make comparisons for point tracking since it

requires the finest granularity of the learned features. The

main comparators of our method are the works aim to learn

good representations for matching, e.g., TimeCycle [41],

UVC [24], CRW [16], VFS [45], SFC [13], and MAST [20].

We also include the model pre-trained on ImageNet [6] with

human annotations. These works share a similar evaluation

protocol as we mentioned in 4.1.

While previous works test the pixel-wise correspon-

dences on JHMDB [18] that only provides the human key-

point annotations. We additionally include BADJA [2],

TAP-Vid-DAVIS [7] and TAP-Vid-Kinetics [7]. We prop-

agate the points of the first frame to other frames and evalu-

ate the results using the annotations of each dataset. We no-

tice some works are trained and evaluated with the coarse-

grained features (e.g., the features at 1/8 of the original

image dimension). For these methods, we use our coarse-

to-fine framework that also executes coarse-grained feature

matching for comparisons. Meanwhile, for better compar-

isons, we follow the studies in [16,45] to further reduce the

stride s of the encoder to 2, in order to get more fine-grained

results for CRW, VFS, SFC and MAST. We also provide the

FPS of computing the pixel-wise correspondences between

two frames for feature-matching-based methods, which can

be done by first taking the index of the maximum value in

P1→2(·|i) for each i and then applying up-sampling to get

full-resolution results. More details about the evaluation are

included in the supplementary material.

Results on BADJA/JHMDB. We adopt the standard

PCK [47] of all visible points (not compute PCK for each

video then take average) as the evaluation metric. Each

point is considered correct if it is within a distance of

0.1
√
A from the ground truth, where A is the distance be-

tween keypoints (for JHMDB) or the area of the ground-

truth segmentation mask on the frame (for BADJA). In Ta-

ble 1, our method achieves 67.2%/66.8%, surpassing all

state-of-the-art methods. Besides, our method with the

coarse-to-fine design still makes the absolute improvements

by 1.1% and 2.2% compared with MAST, and shows better

efficiency compared with SFC [13] that uses the two-stream

network to find the correspondences. More remarkably, our

efficient framework even surpasses part of the methods us-

ing more fine-grained features for inference.

Results on TAP-Vid. TAP-Vid is a newly developed

benchmark composed of long-term videos in real-world

with accurate human annotations of point tracks. We test

on the whole set of TAP-Vid-DAVIS and the test set of

TAP-Vid-Kinetics. We adopt the setting of “first fash-

ion” in [7], which tracks only into the future. The aver-

age position accuracy over all visible points (< δxavg−p) is

adopted as the metric. The learned fine-grained features ob-

tain 59.8%/48.8% on TAP-Vid-DAVIS/TAP-Vid-Kinetics,

leading apparent improvements over state-of-the-arts by

5.9%/3.9%. Moreover, the proposed coarse-to-fine frame-

work gets 48.0%/43.8%, surpassing MAST by 5.5%/10.6%.

Comparisons with task-specific methods. Besides, we

notice there are some recent methods specifically designed

for point tracking, like RAFT [34], PIPs [10], TAPNet [7],

and Thin-Slicing Net [32] even trained with human annota-

tions. Here we also present the performance comparisons

with them in Table 2. It’s worth noting that, to align the

evaluation with these methods, except JHMDB, we first

compute the < δxavg−p or PCK for each video to obtain

video-level results, and the final results are obtained by tak-

ing the average over all videos. Without any specific de-

signs, our performance even surpasses these methods by

7.4%/7.5%/0.2% on BADJA/TAP-DAVIS/TAP-Kinetics.
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Figure 5: Qualitative results for point tracking. Given the target pixel in the first frame, we visualize the estimated trajectory with a

pink-to-yellow colormap (pink/yellow indicates the start/end of the video clip). We visualize sparse ground-truth labels with cyan cross

marks. Please refer to the video in the supplementary for better animations. (Zoom in for best view)

Table 2: Comparisons with methods specifically de-
signed for point tracking. “‡” means we align the eval-

uation protocol with each method for fair comparisons.

BADJA JHMDB TAP-DAVIS TAP-Kinetics
Method

PCK@0.2 ↑ PCK@0.1 ↑ < δxavg ↑ < δxavg ↑
RAFT [34] 45.6 66.4 42.1 44.3

PIPs [10] 62.3 - 55.3 48.2

TAPNet [7] - 62.3 48.6 54.4

Thin-Slicing Net [32] - 68.7 - -

Ours‡ 69.7 66.8 62.8 54.6

Figure 5 shows some visualization results of the point

tracking on TAP-Vid-DAVIS. Given the target in the first

frame, we visualize the estimated trajectory with a pink-to-

yellow map. Compared with VFS, MAST and RAFT, our

approach can output more smooth and accurate trajectories

close to the sparse visualized ground truth, even facing dra-

matic appearance changes and deformation.

4.3. Results for Video Object Segmentation

Next, we evaluate methods with semi-supervised video

object segmentation. We use the mean of region similar-

ity Jm, mean of contour accuracy Fm and their average

J&Fm as the evaluation metrics. In Table 3, our method

still leads the performance. More remarkably, our method

even outperforms some task-specific fully-supervised algo-

Table 3: Quantitative results for video object segmenta-
tion on DAVIS17 [29]. “Sup.” means using human annota-

tions for training.

DAVIS17
Method Sup. Backbone J&Fm ↑ Jm ↑ Fm ↑
TimeCycle [41] ResNet-50 40.7 41.9 39.4

UVC [24] ResNet-18 59.5 57.7 61.3

MAST [20] ResNet-18 65.5 63.3 67.6

CRW [16] ResNet-18 67.6 64.8 70.2

JSTG [49] ResNet-18 68.7 65.8 71.6

VFS [45] ResNet-50 68.9 66.5 71.3

DUL [1] ResNet-18 69.3 67.1 71.6

MAMP [27] ResNet-18 69.7 68.3 71.2

CLTC [17] ResNet-18 70.3 67.9 72.6

CLSC [31] ResNet-18 70.5 67.4 73.6

SFC [13] ResNet-18 + ResNet-50 71.2 68.3 74.0

LIIR [22] ResNet-18 72.1 69.7 74.5

Ours ResNet-18 72.4 70.5 74.4
OSVOS-S [25] � VGG-16 68.0 64.7 71.3

FEELVOS [37] � Xception-65 71.5 69.1 74.0

rithms [25,37]. Here we select several representative videos

for inference, and give the visualization results in Figure 6,

our method produces tight boundaries around the object ar-

eas, and obtains more fine-grained results, especially for

small objects. For example, in the first column of Fig-

ure 6, the tiny arm of the human can still be segmented,

which further demonstrates the advantages of learning fine-

grained features for video correspondences. However, we
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Figure 6: Qualitative results for video object segmentation.
Given the semantic mask in the first frame, we show the propaga-

tion results on the target frame. (Zoom in for best view)

find that fine-grained features may hinder object-centric fea-

ture learning since it may rely more on low-level patterns

(e.g., texture, color, etc), which degrades the performance

in video object segmentation to some extent. We regard it

as our future work.

4.4. Ablation Study

We perform ablation study with point tracking on the

TAP-Vid-DAVIS [7] dataset.

Learning with synthetic videos. We study the effect

of three different ways as defined in Eq. (2), Eq. (4) and

Eq. (5) for learning the fine-grained features with synthetic

videos. Table 4 shows the performance comparisons across

the three kinds of objective functions. As indicated by

the results, the loss LKL-v1 using dirac distribution to gen-

erate the labels performs badly. We think the determin-

istic labels were given on synthetic videos, resulting in

the learned features not being robust enough on real-world

videos. Besides, we find introducing the gaussian distri-

bution in LKL-v2 results in performance degradation. The

performance drops a lot when progressively increasing the

variance, which may be attributed to the inability of gaus-

sian distribution to approach the real probabilistic distribu-

tion since it is extremely complicated. Expectedly, the pro-

posed soft labeling boosts up the performance from 42.6%

to 55.8% when only pre-training the θself with Eq. (8).

Moreover, we also try another 2D encoder pre-trained with

the contrastive loss Lnce [11] on ImageNet [6], which has

a stronger ability to capture the spatially discriminative fea-

tures. The results are further improved to 57.5%, which mo-

tivates us to leverage a more powerful 2D feature extractor

Table 4: Ablation study for LKL. The σ / θself represents the

variance / encoder used in LKL-v2 / LKL-v3.

Obj. Function
Hyper-param. TAP-Vid-DAVIS

(σu, σv) θself < δxavg ↑
LKL-v1 - - 42.6

LKL-v2

(1,1) - 41.9

(3,3) - 33.8

(6,6) - 29.7

LKL-v3
- w. Lrec 55.8

- w. Lnce [11] 57.5

Table 5: Ablation study for training objective functions. FT:

FlyingThings [26]. YTV: YouTube-VOS [46].

LKL Lrec Ladv Training Data
TAP-Vid-DAVIS

< δxavg ↑
� FT 55.8

� YTV 56.4

� FT + YTV 56.7

� � FT + YTV 59.2

� � � FT + YTV 59.8

for obtaining the soft labels. We regard it as future work.

Different training objective functions. We examine

how different objective functions impact the overall perfor-

mance, which is shown in Table 5. The LKL, Lrec and Ladv

denotes the losses defined in Eq. (5), Eq. (8) and Eq. (9).

Surprisingly, we find the model trained on unlabeled real-

world videos with Lrec obtains a better result, which indi-

cates better generalization of self-supervised feature learn-

ing. By leveraging both LKL and Lrec with synthetic and

real-world videos, the performance is further improved to

59.2%. As expected, executing Ladv to address the domain

mismatch improves performance by 0.6%. By fusing three

losses, the performance reaches 59.8%. The results consis-

tently indicate that incorporating self-supervised and adver-

sarial training with unlabeled data exhibits a performance

boost against the model only trained with synthetic data.

5. Conclusions

In this paper, we address pixel-wise video correspon-

dences by learning fine-grained features. We propose to use

not only labeled synthetic videos but also unlabeled real-

world videos for feature learning. We first study how to

take advantage of synthetic supervision for feature learn-

ing, and we find directly utilizing the motion vector results

in degradation for the learned features. Thus, we propose

soft labeling to address the issue. To improve the general-

ization, we introduce self-supervised reconstructive learn-

ing into the overall training and further enhance the features

by leveraging adversarial training. Moreover, we propose a

coarse-to-fine framework to alleviate the problem of com-

putational efficiency. Extensive experiments on the down-

stream tasks validate the effectiveness of the proposed fea-

ture learning method and our efficient design.
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Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. Video

object segmentation without temporal information. IEEE
transactions on PAMI, 41(6):1515–1530, 2018.

[26] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In CVPR, pages

4040–4048, 2016.

[27] Bo Miao, Mohammed Bennamoun, Yongsheng Gao, and Aj-

mal Mian. Self-supervised video object segmentation by

motion-aware mask propagation. In ICME, pages 1–6, 2022.

[28] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah

Ngo, and Tao Mei. Transferrable prototypical networks for

unsupervised domain adaptation. In CVPR, pages 2239–

2247, 2019.

[29] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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