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Abstract

Although previous RGB-D-based gesture recognition
methods have shown promising performance, researchers
often overlook the interference of task-irrelevant cues like
illumination and background. These unnecessary factors
are learned together with the predictive ones by the net-
work and hinder accurate recognition. In this paper, we
propose a convenient and analytical framework to learn a
robust feature representation that is impervious to gesture-
irrelevant factors. Based on the Information Bottleneck
theory, two rules of Sufficiency and Compactness are de-
rived to develop a new information-theoretic loss function,
which cultivates a more sufficient and compact represen-
tation from the feature encoding and mitigates the impact
of gesture-irrelevant information. To highlight the predic-
tive information, we further integrate a memory network.
Using our proposed content-based and contextual memory
addressing scheme, we weaken the nuisances while pre-
serving the task-relevant information, providing guidance
for refining the feature representation. Experiments con-
ducted on three public datasets demonstrate that our ap-
proach leads to a better feature representation and achieves
better performance than state-of-the-art methods. The code
of our method is available at: https://github.com/
Carpumpkin/InBoMem.

1. Introduction

Gesture recognition based on RGB-D video has raised
much attention of researchers since it has many applica-
tions, such as visual surveillance, intelligent transportation,
and particularly, human-computer interaction (HCI) [48].
The development of CNN family [35, 5, 26], RNN fam-
ily [27, 11], and Transformer-based methods [15, 57, 54]
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Figure 1. Diagram of our principle. The feature of a gesture
sample can be decomposed into the essential gesture feature and
gesture-irrelevant ones, such as the background, illumination, and
the performer’s appearance. The former provides predictive infor-
mation whereas the latter is superfluous. Based on the information
bottleneck theory, we can eliminate these disturbing nuisances by
minimizing the superfluous information. Meanwhile, as the pre-
dictive feature in different samples is all the same, we leverage the
memory network to store and “overlay” them, and then highlight
the gesture-relevant predictive feature as the guidance for learning
a robust feature representation.

promote the improvement of recognition performance sig-
nificantly.

Although great progress has been made in this field, the
attention has always been drawn to boost performance via
better network structure [50, 48, 55, 56] or by introduc-
ing extra modalities of data [6, 18, 23, 19]. The interfer-
ence of gesture-irrelevant factors is hardly noticed. In most
real-world gesture recognition scenarios, the dynamic vari-
ations are in two aspects. One is based on the motion of
the gesture itself like trajectories of hands/arms, and is cru-
cial to the recognition task. The other is related to environ-
mental influences like illumination, backgrounds, and the
performers’ appearances as depicted in Fig.1. The gesture
performing-related factors, such as the velocity, performer’s
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concentration, and understanding of the gesture can also
affect the quality of gesture presentation. When training
a network for gesture recognition, these gesture-irrelevant
factors may be learned as a kind of feature, and thus re-
sult in some inner-class differences hindering the recogni-
tion performance. Therefore, it is necessary to disentangle
the recognition-relevant and redundant information to refine
the feature representation.

In order to disentangle the recognition task-relevant in-
formation and the disturbing gesture-irrelevant factors, we
refer to the theory of Information Bottleneck (IB) [34],
which engages mutual information (MI) and provides an
information-theoretic objective for solving this problem.
The essential idea of IB is mapping the observation of an
input to a sophisticated representation, which retains the de-
sired characteristics with respect to the prediction of label
and simultaneously minimizes the redundant information.
Many methods leverage IB to learn robust representations
for downstream tasks like unsupervised multi-view learning
[8], Person Re-identification [33] and human pose estima-
tion [20]. In this process, the sophisticated representation
is critical since it ensures a compact feature encoding that
avoids the interference of task-irrelevant factors. However,
it is difficult to obtain such a representation directly with the
original IB theory. Approximating MI in high dimensions
is hard [25], and thus the task-irrelevant distractors may not
be removed. Even though some recent techniques ease the
constraint by transforming this issue to a network optimiza-
tion problem without explicitly estimating MI [33], the joint
optimization of feature encoding and such a representation
encoding blindly may fail to reach a satisfied representa-
tion since no explicit standard of “good representation” is
given. Therefore, to refine the feature representation, we
should explicitly highlight what the predictive information
is, and take it as guidance for the refinement of the feature
representation.

Combining these concerns, we propose an analytic
framework to learn a robust representation for RGB-D-
based gesture recognition. To address gesture-irrelevant
factors, we employ the Information Bottleneck (IB) princi-
ple to unify them as ”superfluous information”, in contrast
to predictive information like motion trajectories. Then we
derive a new objective that compresses the superfluous in-
formation in the encoding space and emphasizes the pre-
dictive one. To achieve a sufficient yet compact feature
representation required by IB, a memory network is incor-
porated for explicit guidance. We create a large external
memory bank, where the shared predictive information is
highlighted by overlaying the features in different memory
slots. This process is achieved through memory manipula-
tions of writing and reading. Then with the derived objec-
tive, the distribution of encoding features is pulled towards
that of the robust representation, resulting in improved ges-

ture recognition performance.
The contributions of our method can be summarized as

three-fold:

1. A framework to develop a robust feature representation
for gesture recognition, along with the theoretical anal-
ysis based on IB. We extend the existing theoretical
analysis and optimize the feature encoding to mitigate
the interference of gesture-irrelevant factors. To the
best of our knowledge, we are the first to provide in-
sights from an information-theoretic view in this field.

2. A scheme to explicitly distill the predictive informa-
tion. Utilizing the memory network, we learn the pre-
dictive information from various samples to derive a
sufficient and compact feature representation.

3. Experiments prove the effectiveness of our design and
demonstrate that the proposed method achieves the
state-of-the-art performance on three public RGB-D
gesture datasets of IsoGD [40, 38], EgoGesture [4, 52]
and THU-READ [31, 32].

2. Related work

Evolution of gesture recognition. Conventional meth-
ods [39, 37] always employ spatiotemporal handcrafted fea-
tures for gesture recognition. Recently, promotions of deep
learning also bring new developments in dynamic gesture
recognition. 3D CNNs [35] emerge for extracting spa-
tiotemporal features, and many gesture recognition meth-
ods [17, 41, 53, 18, 6, 23, 19] are developed based on them.
Meanwhile, RNN family [27, 11] that enables modeling se-
quence information also draws extensive attention in ges-
ture recognition [53, 50, 58]. With the success of Trans-
former in computer vision tasks, there are also some re-
searchers trying to improve the recognition performance by
introducing Transformer-based structures [15, 57, 54]. Be-
sides proposing new architectures, optimizing the network
connection and structure is another option. Zhou et al. [55]
and Yu et al. [48] notice the influence of network connection
on low-level and high-level features, and employ network
architecture search (NAS) for better architecture. Unlike
previous methods that focus on improving the structure or
connection of the network, we pay more attention to elim-
inating the disturbing gesture-irrelevant factors, which po-
tentially lead to inner-class differences influencing recogni-
tion performance. With the theoretical analysis based on IB,
we propose a new objective to achieve such an elimination.

Information bottleneck for representation learning.
Information bottleneck [34] is an information-theoretic
principle that has made great progress in representation
learning and theoretical understanding of Deep Neural Net-
works (DNNs) [28]. However, the difficulty of calculating
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Figure 2. Overview of the proposed framework. The encoding feature of a gesture video sample is first obtained as the observation v. Then
the predictive information is highlighted in the memory network via writing and reading, and the guidance of representation z is derived.
With LIB further refining the representation of z and pulling the distribution of v to z, a more robust representation for gesture recognition
is developed. (a) The pipeline of the framework. (b) Memory writing manipulation. (c) Memory reading manipulation. (Best viewed in
color.)

mutual information in high dimensions hinders its applica-
tions. To solve this problem, Alexenders et al. [2] demon-
strate a variational approximation to parameterize the IB
model. Peng et al. [24] propose a variational discrimina-
tor bottleneck for stable adversarial learning. Federici et al.
[8] extend the IB theory to multi-view unsupervised learn-
ing. Tian et al. [33] present an analytical solution to fit-
ting the mutual information via transferring the objective of
IB to a variational self-distillation loss, and they also ex-
tend it to multi-view tasks. In contrast to these methods,
our approach focuses on leveraging IB theory to disentan-
gle the gesture-irrelevant factors and the predictive factors
when encoding the features of a gesture sample. To fit
the condition of feature disentanglement, beyond the Suf-
ficiency constraint used in [33], we extend the IB theory by
adding a Compactness constraint and give a more theoret-
ically sound explanation of why they are both critical for
eliminating task-irrelevant factors.

Memory networks. Memory network [45, 10] is em-
ployed in both low-level and high-level vision tasks owing
to its good ability in modeling long-term information. Li et
al. [16] employ the memory networks to restore and calcu-
late the weights for different stages in image dehazing. Zhu
et al. [59] use dynamic memory to achieve text-to-image
synthesis. For high-level tasks, Yang and Chen [47] employ
a dynamic memory network for visual tracking. Cai et al.
[3] design a memory matching network for one-shot learn-
ing, which writes/reads for training and inference phases,
respectively. Zhang et al. [49] design a cross-modal mem-
ory structure to store multimodal information for a few-shot
recognition task. Eom et al. [7] design a spatial and tempo-
ral memory network (STMN) for video-based pedestrian re-
identification tasks. Compared with the above literature, the
role that the memory network plays in this study is quite dif-
ferent. We do not simply use it for a large external space, but
design different addressing strategies for writing and read-

ing according to their different goals.

3. Proposed Method
3.1. Refining Feature Representation with Informa-

tion Bottleneck

Gesture-irrelevant factors are non-negligible since they
cause significant divergence in even one class of gesture
videos. However, these factors are always intertwined with
predictive information like the hands/arms movement when
encoding. Even some approaches [43, 55] attempt to lever-
age the attention mechanism to focus on motion trajectories
of gestures, the nuisances are inevitably learned and impact
the recognition performance. The principle of information
bottleneck [34] is to build a robust feature representation by
discarding all information that is not useful for a given task
while retaining the predictive one. Based on it, we disentan-
gle the gesture-relevant and -irrelevant factors, and thereby
refine the feature representation.

3.1.1 Preliminaries

Suppose we have a set of input gesture videos, which are
marked as X = {x1, x2, . . . , xn}. These inputs fall into
Y = {y1, y2, ..., ym} classes. Obviously, the task of gesture
recognition is mapping arbitrary gesture sample x ∈ X into
the corresponding class y. Let v ∈ V be an observation of x,
where V is the set of features. In deep learning, v is usually
the feature of x extracted by an encoder parameterized by
θ, namely v = Eθ(x). In general, supervised learning pro-
motes v to involve more predictive information with respect
to y, but it inevitably contains some task-irrelevant factors.
As shown in Fig.3, imagining there is a good representation
z ∈ Z , which keeps sufficient predictive information but no
task-irrelevant information. Then pulling v to z can result
in a more robust feature representation. Theoretically, tak-
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Figure 3. The relations of the information entropy and mutual in-
formation among observation v, representation z and label y. The
predictive information is the mutual information between v or z
and y. The superfluous information is the conditional mutual in-
formation of v and z given y, namely I(v; z)− I(z; y).

ing v, z, and y as three random variables, the optimization
goal is to maximize the mutual information between z and
y while minimizing that of z and v, and that is the essential
principle of IB.

3.1.2 Information Bottleneck Objective

According to the definition of IB, a good representation
z should satisfy two rules: 1) keeping sufficient discrim-
inative information to identity y, and 2) avoiding encod-
ing task-irrelevant information, specifically, the gesture-
irrelevant appearance variations in this task. The first one
is defined as Sufficiency of z for y [1, 8, 33]. Ideally, the
Sufficiency rule is satisfied if and only if I(z; y) = I(v; y).
However, in general, I(z; y) is less than I(v; y) due to the
information loss during encoding. Therefore, we need to
minimize such a loss and derive an objective function as:

min[I(v; y)− I(z; y)]. (1)

The second one can be defined as Compactness. According
to [8], the mutual information I(v; z) between v and z can
be subdivided as:

I(v; z) = I(z; y)︸ ︷︷ ︸
predictive information

+ I(v; z|y)︸ ︷︷ ︸
superfluous information

, (2)

where the first term on the right side is the mutual informa-
tion between z and y, indicating the information contained
in z for label prediction. The second one is the conditional
mutual information of v and z given the value of y. In other
words, it is the task-irrelevant information in z. A com-
pact feature representation requires I(v; z|y) approaching
0. Therefore, we need to minimize I(v; z|y), and we have
the second objective function as:

min[I(v; z)− I(z; y)]. (3)

Combine Eq.(1) and Eq.(3), the entire objective can be writ-
ten as:

min[I(v; y)− I(z; y) + I(v; z)− I(z; y)], (4)

with which both the rules of Sufficiency and Compactness
can be satisfied. However, solving it by directly approxi-
mating MI is hard. According to the definition of mutual
information, we can use conditional entropy and joint en-
tropy to express Eq.(4) as:

min[H(y|z)−H(y|v) +H(z, y)], (5)

where H(y|z) is the conditional entropy of y with z given,
and H(z, y) is the joint entropy of z and y. Inspired by [33],
we can approximate Eq.(5) via a loss function as:

LIB = LKLD(Pv||Pz) + Lce(z, y), (6)

where LKLD(·||·) and Lce(·, ·) are KL-divergence and
cross-entropy loss, respectively. Pv = p(y|v) and Pz =
p(y|z) are the probability of v and z in predicting y, respec-
tively. The detailed derivation can be found in the supple-
mentary material.

3.2. Distilling Predictive Information with Memory
Network

Note that according to Sufficient and Compactness rules,
z is from v and is supposed to contain all the predictive
information with respect to y. Tian et al. [33] design a new
encoder Eϕ to derive z. However, optimizing Eθ(v|x) and
Eϕ(z|v) simultaneously can only ensure the consistency of
v and z. There is no guarantee that one more encoder can
lead to a more compact representation. As shown in Fig.1,
overlaying the samples can emphasize the shared predictive
information, i.e., motions of hands and arms related to the
gesture, and weaken the sample-specific gesture-irrelevant
factors. To this end, we achieve such an “overlay” process
in a differentiable way via memory network.

In our implementation, we construct a n × m memory
bank for each gesture class, where n is the number of mem-
ory slots, and m is the length of feature vector in each slot.
The explicit optimization on z is performed by two manip-
ulations of memory, writing and reading.

3.2.1 Memory Writing

Memory writing is a manipulation that writes the encoding
feature of observation v into the memory bank. In practice,
it is achieved in a two-stage process. In the first stage, if
there is an available memory slot, v can be directly written
to it. In the second stage, when all memory slots are full,
the process becomes more complicated and consists of two
steps as follows.
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Forget. In the early stage, Eθ(v|x) is not well trained,
and thus v inevitably contains some interference factors.
These features may contaminate the memories. Therefore,
we impose a forget vector e, a n × 1 vector that has n
components corresponding to n memory slots. It attenuates
along with the training epoch since the predictive informa-
tion dominates after times of training. The forget step can
be expressed as:

M̃t(i) = Mt−1(i)(1− et(i)), (7)

where M is the memory bank, and i ∈ {1, 2, . . . , n} indi-
cates the position of memory slot. t − 1 and t imply two
adjacent iterations of the optimization process. Updating
memory from iteration t − 1 to t is implemented by the
Hadamard product.

Gated writing. When writing the encoding feature of
vt into the memory, we utilize a gated writing strategy. We
calculate the correlation between the vt and features in each
slot and update the memory as:

Mt(i) = M̃t(i) + wt
o(i)v

t, (8)

where wt
o(i) is a gating weight at i-th slots of wt

o. It mea-
sures the correlation between vt 1 and M̃t(i). We have a
constraint on wo as:{ ∑

i

wo(i) = 1,

0 ≤ wo(i) ≤ 1.
(9)

With the gating strategy, we can write vt to different
memory slots adaptively.

3.2.2 Memory Reading

Memory reading is the key step for deriving z. It is defined
as a weighted sum of features in the memory slots:

zt =
∑
i

wt
r(i)M

t(i), (10)

where zt is the representation yielded from the memory at
iteration t with predictive information highlighted. Like
writing, the reading weight also obeys the constraints in
Eq.(9).

3.2.3 Memory Addressing

Although we have shown the way to access memories ac-
cording to Eq.(7)-(10), the weighting mechanism remains
unveiled. As shown in Fig.4, we design a two-level address-
ing scheme to ensure the addressing process can meet the
essential requirement of memory writing and reading.

1v and z are n× 1 feature vectors in the memory manipulations. Their
notations hereby are not changed for the consistency with the expressions
in information bottleneck theory in Sec.3.1.

Figure 4. Diagram of two memory addressing strategies. (The
length of the feature vector is omitted for simplicity. Best viewed
in color.)

Content-based addressing. The content-based address-
ing focuses on the correlation between v and features in
each slot. It can be expressed as:

wc(i) =
exp (ϕ [v,M(i)])∑
j exp (ϕ [v,M(j)])

, (11)

where ϕ[·, ·] is the correlation measurement function. Un-
like [10], our measurement for writing and reading is dif-
ferent. When writing into the memory, the process is anal-
ogous to clustering. Similar v should be put into one slot
to keep the variety of the memory bank. Memory read-
ing is the contrary. If we weigh the slots containing sim-
ilar features to v higher, the superfluous information cannot
be removed. Therefore, instead of simply calculating the
similarity, we add a gating parameter σ for the correlation
measurement ϕ. Taking the cosine similarity as the naive
similarity measurement, we define ϕ[·, ·] as:

ϕ[·, ·] = 1σ + (−1)σDcossim(·, ·), (12)

where Dcossim is the cosine similarity and the gating flag σ
is set to 1 for reading and 0 for writing.

Contextual addressing. Content-based addressing con-
siders from the view of relations between v itself and the
feature in each memory slot. Analyzing the relations be-
tween memory slots also benefits the learning of predictive
information. Therefore, we develop the contextual address-
ing scheme by imposing the influence of neighbor slots’
weights as:

wt(i) =
∑
i

wc(i)bΩ(di), (13)

where bΩ(di) = exp(d2i /2σ
2) is a bell-shaped balance

function, which gives slots in neighbor Ω decreasing
weights along with their distances di to slot i.

Like [46], we also introduce a temperature parameter
that controls the concentration level of the distribution.
Then we obtain the final weight as:

w(i) =
exp(wt(i)

τ )∑
j exp(wt(j)τ )

, (14)
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where τ is the temperature factor that can amplify the fo-
cusing degree on each memory slot by enlargement.

3.3. Training Scheme

The training process consists of two parts. One is re-
lated to the original gesture recognition task, and it can
be accomplished by using the cross-entropy loss function.
The other is focused on refining the feature representa-
tion, which is achieved by Eq.(6), namely our proposed loss
function based on IB. Then the overall loss is:

L = Lce + β(W · LIB), (15)

where Lce refers to cross-entropy loss, which is the only
task-relevant loss for the original gesture recognition, and β
is a balance parameter. Since the memory relies on a series
of v, it needs some time to optimize the encoder Eθ first.
Therefore, we add a warm-up coefficient W , which can be
expressed as:

W = max(0, (1− exp(−E + ε))), (16)

where E represents the current epoch and ε is a warm-up
hyper-parameter that determines when LIB starts to effect.

4. Experiment
4.1. Experimental Setups

The proposed method is implemented with PyTorch on a
NVIDIA RTX 3090 GPU. We choose Res3D-18 [36] as our
backbone. The input data is spatially resized to 256 × 256
first, and then randomly/center cropped into 224 × 224 in
the training/inference phase, respectively. In the tempo-
ral domain, it is randomly/uniformly sampled to 32-frame
videos in the training/inference phase, respectively. We use
the SGD optimizer with a weight decay of 0.0004 and mo-
mentum of 0.9. We fix the mini-batch size as 7. The initial
learning rate is set to 0.003 and then it decreases with a
scheme of noisy linear cosine decay. The training process
stops after 15 epochs for IsoGD and EgoGesture datasets
and 80 epochs for THU-READ dataset since the last one
has fewer samples. The temperature parameter τ for mem-
ory bank is set to 10, and the number of memory slots is 5.
The warm-up parameter ε is 3 for IsoGD and EgoGesture
datasets is 10 for THU-READ, respectively. The balance
parameter β is set to 10 due to the ratio of two losses.

4.2. Comparison with State-of-the-art Methods

The proposed method is compared with state-of-the-art
methods on three datasets of IsoGD [40, 38], EgoGesture
[4, 52], and THU-READ [31, 32]. Unlike recent SOTA
methods [48, 55, 57] that are first pre-trained on the 20BN-
Jester gesture dataset [21], our network does not need
any other extra pre-train models but employs the backbone

Res3D-18 model with its default settings in PyTorch. As
the proposed method does not focus on multimodal fusion,
we just employ a simple average fusion scheme to obtain
the RGB+D result.

4.2.1 Performance on IsoGD

Chalearn IsoGD dataset is a large-scale RGB-D dataset with
249 classes of gestures. It can be divided into three subsets:
training set (35,878 videos), validation set (5,784 videos),
and testing set (6,271 videos). This dataset is also used
from two rounds of Chalearn LAP large-scale isolated ges-
ture recognition challenge. Samples in Fig.1 are from this
dataset. The various appearances in this dataset make it
hard to achieve accurate recognition. Thus it can be a good
benchmark to verify whether our framework is effective to
eliminate the influence of gesture-irrelevant factors or not.

The comparison on the Chalearn IsoGD dataset is shown
in Table 1. Following the previous methods [50, 58, 55, 48,
57], we also report the performance on the validation subset
for a fair comparison. Without loss of generality, the per-
formance on the testing subset is also reported in the sup-
plementary material. As can be seen, employing CNNs can
bring a large improvement when compared with the hand-
icraft feature-based method [37]. Then improving the net-
work structure or altering the connection via NAS can also
promote performance to a varying extent. Compared with
these methods, our framework focuses on finding a better
feature representation to eliminate gesture-irrelevant factors
and achieves significant boosting. The proposed method
outperforms the previous SOTA, Zhou et al.’s [55] near 8%
and 4% on RGB and depth data, respectively. Besides the
good performance on single modality, the RGB-D result is
also better than Zhou et al.’s [57] at about 7%, even though
they design a new fusion module whereas ours is a simple
average fusion. It proves a good feature representation is
critical for improving recognition performance.

4.2.2 Performance on EgoGesture

EgoGesture dataset contains 24,161 egocentric hand ges-
ture clips of 83 classes from 50 distinct subjects. Videos in
this dataset focus on the interaction with wearable devices
from a first-person view across multiple indoor and outdoor
scenes. Compared with Chalearn IsoGD dataset, the num-
ber of classes of this dataset is fewer, but this first-person
dataset suffers more problems like blurring and various
viewpoints since the camera is on the performers’ heads.

As demonstrated in Table 2, the proposed method can
also achieve a remarkable performance on the EgoGesture
dataset. As the top accuracy on this dataset is very high
(mostly beyond 90%), it is not easy to make a significant
improvement. However, ours still outperforms the second
best one, Köpüklü et al.’s [14] over 1% on RGB data despite
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Modality Method Main model Accuary(%)

Wang [44] bi-direction
VDI 36.60

Li [18] 3D CNN 37.28
Hu [12] DNN 44.88

Miao [22] ResC3D 45.07
Duan [6] 2-stream CNN+C3D 46.08

Zhang [51] convLSTM+C3D 51.31

Zhang [50] ResC3D+convLSTM
+MobileNet 55.98

Zhu [58]
ResC3D+

GatedConvLSTM
+MobileNet+Pyramid

57.42

Yu [48] SlowFast+NAS2 58.88
Zhou [57] I3D+Transformer 60.87

RGB

Zhou [55] I3D+DI+NAS 62.66
Ours Res3D-18 70.88

Wang [44] bi-direction
DDI 40.08

Li [18] 3D CNN 40.49
Hu [12] DNN 48.96

Miao [22] ResC3D 48.44
Duan [6] 2-stream CNN+C3D 54.95

Zhang [51] convLSTM+C3D 49.81

Zhang [50] ResC3D+convLSTM
+MobileNet 53.28

Zhu [58]
ResC3D+

GatedConvLSTM
+MobileNet+Pyramid

54.18

Yu [48] SlowFast+NAS2 55.68
Zhou [57] I3D+Transformer 60.17

depth

Zhou [55] I3D+DI+NAS 60.66
Ours Res3D-18 64.38

Wan [37] MFSK+BoVW 18.65

Wang [44] bi-direction
VDI+DDI 44.80

Li [18] 3D CNN 52.04*
Hu [12] DNN 54.14

Zhang [51] convLSTM+C3D 55.29

Zhu [58]
ResC3D+

GatedConvLSTM+
+MobileNet+Pyramid

61.05

Miao [22] ResC3D 64.40**
Yu [48] SlowFast+NAS2 65.54

Zhou [55] I3D+DI+NAS 66.62

RGB+D

Zhou [57] I3D+Transformer 66.79
Ours Res3D-18 74.08

* Including saliency data as reported in [18].
** Including flow data as reported in [22].

Table 1. Comparison with SOTAs on Chalearn IsoGD Dataset.

just using a much simpler backbone of Res3D-18. The per-
formance on depth data is also competitive but 0.66% lower
than the best one of Köpüklü et al.’s. It implies our feature
representation refinement is more effective on RGB data.
The reason behind it may be that compared with RGB data,
the differences between depth samples are smaller (only the
grayscale value changes), which makes it hard to distin-
guish the predictive cue from the excess information with

Modality Method Main Model Accuary(%)

RGB

Graves [10] VGG16+LSTM 74.70

Cao [4] C3D+LSTM
+RLSTM 89.30

Carreira [5] I3D 90.33
Tang [30] SeST 93.20
Yu [48] SlowFast+NAS2 93.31

Köpüklü [14] ResNeXt-101 93.75
Ours Res3D-18 94.93

depth

Graves [10] VGG16+LSTM 77.70
Carreira [5] I3D 89.47

Cao [4] C3D+LSTM
+RLSTM 90.60

Tang [30] SeST 93.35
Köpüklü [14] ResNeXt-101 94.03

Yu [48] SlowFast+NAS2 94.13
Ours Res3D-18 93.47

RGB+D

Graves [10] VGG16+LSTM 81.40

Cao [4] C3D+LSTM
+RLSTM 92.20

Carreira[5] I3D 92.78
Joze[13] MMTM 93.87
Yu[48] SlowFast+NAS2 95.52
Ours Res3D-18 95.72

Table 2. Comparison with SOTAs on EgoGesture Dataset.

Modality Method Main Model Accuary(%)

RGB

Simonyan [29] VGG 41.90
Feichtenhofer [9] SlowFast 69.58

Yu [48] SlowFast+NAS2 71.25
Wang [42] ConvNet 73.85

Li [15] Transformer 80.42
Zhou [57] I3D+Transformer 81.25

Ours Res3D-18 88.33

depth

Simonyan [29] VGG 34.06
Wang [42] ConvNet 65.00

Feichtenhofer [9] SlowFast 68.75
Yu [48] SlowFast+NAS2 69.58
Li [15] Transformer 76.04

Zhou [57] I3D+Transformer 77.92
Ours Res3D-18 82.91

RGB+D

Feichtenhofer [9] SlowFast 76.25
Yu [48] SlowFast+NAS2 78.38
Li [15] Transformer 84.90

Zhou [57] I3D+Transformer 87.04
Ours Res3D-18 90.51

Table 3. Comparison with SOTAs on THU-READ Dataset.

the memory network.

4.2.3 Performance on THU-READ

THU-READ dataset has 1920 videos of 40 classes, which
are performed by 8 subjects. Although involving fewer
videos and fewer classes, it is yet challenging due to the
subtle intra-class differences and the background noise.
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Suff. Comp. memory network Acc(%)
RGB depth

× × × 78.33 69.58√
× × 82.29 73.43√ √

× 85.41 76.76√ √ √
88.33 82.91

* Suff.=Sufficiency, Comp.=Compactness
Table 4. Impacts of components of the proposed framework.

Table 3 reports the comparison on the THU-READ
dataset. The results are reported by averaging all 4 splits
under CS protocol as per [32]. The proposed method also
achieves the best performance on this dataset. Compared
with the second best one of Zhou et al. [57], which em-
ploys a combination of I3D and Transformer network, our
results are still 7% and 5% better than theirs on RGB and
depth data, respectively. For the RGB-D fusion result, the
performance of the proposed method reaches 90.51%, and
outperforms Zhou et al.’s at about 3%, even though we just
utilize a simple average fusion.

4.3. Ablation Study

The studies on the effectiveness of our designs, including
representation refinement with IB and predictive informa-
tion distillation with memory network, are first presented
in this section. In order to evaluate our scheme using a
memory network, we have also compared several differ-
ent addressing strategies, including using cosine similar-
ity only for addressing and using content-based address-
ing only. THU-READ dataset is employed for this ablation
study. Without specific saying, the experimental settings are
the same as mentioned in Section 4.1.

Impacts of components of the proposed framework.
In Table 4, we show how the proposed framework helps
to eliminate gesture-irrelevant factors and leads to a more
compact and robust feature representation. We compare
several strategies, including 1) the baseline of using Res3D-
18 only, 2) optimizing with the Sufficiency rule only, 3)
using both Sufficiency and Compactness rules, namely us-
ing the IB loss in Eq.(6), and 4) using IB loss and mem-
ory network. The performance is marked in rows with a
checkmark or a cross, denoting whether the corresponding
module is used or not. Compared with the baseline, opti-
mizing under the IB theory, even only considering the Suf-
ficiency rule can lead to a significant performance improve-
ment. This demonstrates the importance of a good repre-
sentation for recognition tasks. When extending the loss
to involve the Compactness rule, even better performance
can be achieved. Replacing the convolution-based IB mod-
ule with the memory network encourages the deposition
of predictive information and leads to another performance
gain. This suggests the effectiveness of memory network
for highlighting the predictive information explicitly.

addressing strategy Accuracy(%)
RGB depth

cosine similarity only 80.51 71.76
content-based only 84.57 75.62
proposed method 88.33 82.91

Table 5. Performance with different memory addressing strategies.

Effect of different addressing strategies. The effect of
different addressing strategies is shown in Table 5. When
only the cosine similarity is used for addressing, the perfor-
mance is poor. This implies that similar z and v weaken the
effectiveness of IB loss. After adding the gating flag σ, and
even just using content-based addressing, the performance
is improved significantly. When all the addressing strate-
gies are combined, the performance is further boosted. This
indicates that a combination of content-based and contex-
tual addressing can leverage both inter- and intra- memory
feature relations and achieve better performance.

Visualization. To better illustrate how the robust pre-
sentation derived from our proposed framework shrinks the
inner-class difference, which is mainly caused by gesture-
irrelevant variations, we present a visualization of a 2D pro-
jection of feature encoding by t-SNE. The visualization is
conducted on RGB data of the THU-READ dataset (CS3).

(a) (b) (c)

Figure 5. Visualizing the projection of feature distribution by t-
SNE associated with the class label. (a) Feature extracted by base-
line model. (b) Feature extracted by the network with proposed
IB loss only. (c) Feature extracted by the proposed model. (Best
viewed in color and zooming in.)

The visualization result is consistent with the perfor-
mance comparison in Table 4. As can be seen, the mixed
classes of the baseline model in Fig.5(a) are no longer in-
termingled in Fig.5(b). It means our framework with IB
loss can effectively improve the discriminative power of the
features. When adding the memory network, almost all the
clusters can concentrate on their centroids. It indicates that
with the memory network, the predictive information can be
clearer, and the inner-class differences become narrowed. It
allows the mixed classes to be more easily distinguished
from each other in the encoding space.

In addition to utilizing t-SNE visualizations, we give
some more examples to effectively illustrate how the pro-
posed network mitigates the impact of gesture-irrelevant
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Figure 6. An analysis of how the proposed network improves the
performance. (a) The confusion matrix of baseline. (b) The con-
fusion matrix of the proposed network. (c) Intuitive presentation
of the irrelevant factors affecting gesture recognition.

factors and ultimately enhances performance. In Fig.6(a)
and (b), we first visualize the confusion matrice of the base-
line and the proposed network. As can be seen, ours can
apparently avoid most of the wrong classifications. Then
let us consider some concrete instances of gestures that are
misclassified by the baseline model. As illustrated in the
confusion matrix of the baseline model, Class 5, namely cut
paper is wrongly categorized as Class 15 of open laptop.
This confusion is primarily attributed to the resemblance in
environmental conditions. As shown in Fig.6(c), both sce-
narios share a similar desk setup, and the overexposed lap-
top seems also like a white paper to some extent. Another
example is Class 2 of clean table being wrongly deemed as
Class 35 of wave hand. The similarities in hand movement
and positioning lead to the misguided classification of these
gestures. These examples prove that overfitting to these en-
vironmental cues rather than learning a robust feature rep-
resentation of gesture-relevant factors results in the wrong
predictions. By contrast, our method is designed to learn
the essential feature of one type of gesture. Therefore, it
avoids being influenced by extraneous contextual informa-
tion, leading to remarkable improvement in performance.

5. Conclusion
In this paper, we present a framework that aims to im-

prove the robustness of feature representation for RGB-
D gesture recognition based on the information bottleneck
theory. We analyze the factors that are relevant and irrele-
vant to gestures using mutual information and design a loss
function that disentangles the task-relevant predictive cues
from disturbing superfluous information. Additionally, we
use a memory network to overlay the encoding feature of
each sample by memory writing and reading. This process
attenuates nuisances and highlights task-relevant informa-

tion shared by all samples. Experiments on three public
datasets demonstrate that our approach produces a superior
feature representation and achieves better performance than
state-of-the-art methods.
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