
MatrixCity: A Large-scale City Dataset
for City-scale Neural Rendering and Beyond

Yixuan Li1∗ , Lihan Jiang2∗ , Linning Xu1, Yuanbo Xiangli1

Zhenzhi Wang1 , Dahua Lin1,2, Bo Dai2�
1 The Chinese University of Hong Kong 2 Shanghai AI Laboratory

ly122@ie.cuhk.edu.hk jianglihan@pjlab.org.cn

{xl020,xy019,wz122,dhlin}@ie.cuhk.edu.hk daibo@pjlab.org.cn

(a)

(b)

Dynamic: Light, Weather and Human&Car Crowds

(c)

Multiple Properties: RGB, Depth, Normal, Diffuse, etc

Figure 1: An illustration of MatrixCity dataset’s small city. a) We collected high-quality large-scale city scene images for
a city-scale neural rendering benchmark from Unreal Engine 5, capturing various city environments from multiple viewing
angles. b) Our flexible environment control can collect data under dynamic environmental factors such as varying lighting
and weather conditions. c) Our developed platform also facilitates the extraction of additional properties, including depth
maps and normal maps. These features open a wide range of opportunities for future research in city-scale neural rendering.

Abstract

Neural radiance fields (NeRF) and its subsequent vari-
ants have led to remarkable progress in neural render-
ing. While most of recent neural rendering works focus
on objects and small-scale scenes, developing neural ren-
dering methods for city-scale scenes is of great potential
in many real-world applications. However, this line of re-
search is impeded by the absence of a comprehensive and
high-quality dataset, yet collecting such a dataset over real
city-scale scenes is costly, sensitive, and technically infeasi-
ble. To this end, we build a large-scale, comprehensive, and
high-quality synthetic dataset for city-scale neural render-
ing researches. Leveraging the Unreal Engine 5 City Sam-
ple project, we developed a pipeline to easily collect aerial

and street city views, accompanied by ground-truth camera
poses and a range of additional data modalities. Flexible
controls on environmental factors like light, weather, human
and car crowd are also available in our pipeline, support-
ing the need of various tasks covering city-scale neural ren-
dering and beyond. The resulting pilot dataset, MatrixCity,
contains 67k aerial images and 452k street images from two
city maps of total size 28km2. On top of MatrixCity, a thor-
ough benchmark is also conducted, which not only reveals
unique challenges of the task of city-scale neural render-
ing, but also highlights potential improvements for future
works. The dataset and code will be publicly available at
the project page: https://city-super.github.io/matrixcity/.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3205



1. Introduction
Realistic rendering of city-scale scenes is a crucial com-

ponent of many real-world applications, including aerial
surveying, virtual reality, film production, and gaming.
While NeRF [22] has made notable advancements in ren-
dering objects and small-scale scenes, only a few early at-
tempts [30, 33, 37] have sought to extend NeRF and its vari-
ants to larger city-scale scenes. Due to the paucity of bench-
mark dataset, the complexity and challenges of city-scale
neural rendering have not been thoroughly investigated.

Collecting a comprehensive and high-quality city-scale
dataset in real-world is time consuming and resource in-
tensive, and can be technically infeasible. Moreover, it is
also impossible to control environmental factors, such as
lighting conditions, weather patterns, and the presence of
transient objects like pedestrians and vehicles. Thus, exist-
ing urban datasets [17, 33, 8] are limited to a few indepen-
dent scenes rather than comprehensive city maps, failing to
capture the diversity of urban environments. Furthermore,
existing datasets often feature monotonous viewing angles,
such as street-level [30] or aerial imagery [17, 33, 8], lead-
ing to partial city modeling with incomplete building ge-
ometries and ground-level details. Even if sufficient real-
world city data is collected, legal or commercial issues
can limit its accessibility, e.g., Block-NeRF dataset [30]
only provides access to 1km street data, and UrbanScene3D
dataset [17] offers only two real-world scenarios. Such re-
strictions significantly hinder the ability of researchers to
advance the field of city-scale neural rendering.

This paper presents MatrixCity, a comprehensive and
high-quality synthetic dataset to support the research of
city-scale neural rendering as well as other extended tasks.
Specifically, MatrixCity has several distinguished features:
1) High Quality. It is built in the City Sample project 1

of Unreal Engine 5 2 with advanced graphic technologies
which allows for the public release of rendered images3.
As shown in Figure 1, this engine offers rich city details of
fine-grained textures and geometries from its photo-realistic
rendering quality with realistic lighting, shadow effects, and
accurate ground-truth camera poses. 2) Scale and Diversity.
To create the MatrixCity dataset, we developed a plugin that
can automatically capture data from the map of two cities
provided by Unreal Engine 5, resulting in 172k and 347k
images, respectively. These images cover areas equivalent
to 2.7km2 and 25.3km2 in the real-world. The captured re-
gions showcase a broad spectrum of urban landscapes, mir-
roring the complexity and heterogeneity of genuine cities.
3) Controllable Environments. Our developed plugin pro-
vides flexible control over a range of environmental factors

1https://www.unrealengine.com/marketplace/en-US/product/city-
sample

2https://www.unrealengine.com/
3https://www.unrealengine.com/en-US/eula/unreal

that are uncontrollable in the real world, including light-
ing, weather, and human and car crowds. By decoupling
these various factors, we are able to provide corresponding
data that can support in-depth research of city-scale neu-
ral rendering. 4) Multiple Properties. The plugin can also
customize data collection trajectories, and extract multiple
ground-truth components, including depth, normal and de-
composed components of reflectance (e.g. diffuse, specular,
metallic, etc.). Such advanced feature enables researchers
to not only perform a range of city-scale neural rendering
tasks under varying conditions but also supports other ex-
tended tasks, for example depth estimation and inverse ren-
dering.

Our benchmark study demonstrates the value of Matrix-
City in advancing city-scale neural rendering researches.
We experiment with several state-of-the-art neural render-
ing methods to conduct empirical analyses first on aerial
and street data respectively, then on the fused data from
both modes. Preliminary results indicate that even with
these advanced methods, city-scale neural rendering is still
a far-reaching goal. Specifically, we identified several chal-
lenges: 1) In aerial data, learning high-rise city regions
poses a greater challenge than low-rise/ground areas due to
complex building structures and occlusion; 2) Street data
contains significantly more details than aerial data, which
raises challenges for model capacity. Although block-size
aerial data modeling is feasible, modeling street data with
the same size may be more difficult; 3) The view direc-
tion and level of details varied significantly between the two
modes of data, making it difficult to train them together;
4) Current models generally performed poorly on smaller
objects with more details and reflective buildings in urban
scenes. These findings present significant opportunities to
advance research in city-scale neural rendering.

In summary, our contributions are as follows:

• We constructed a large-scale, high-quality dataset
for city-scale neural rendering, named MatrixCity.
This dataset emphasizes attributes pivotal to city-
scale scenes, encompassing elements like dynamic in-
teractions and lighting conditions. MatrixCity con-
tains both aerial and street-level images of complete
city maps with extra depth, normal, and decomposed
BRDF materials capable of supporting multiple tasks.

• We developed a plugin that leverages Unreal Engine 5
for automatic high-quality city data collection, allow-
ing researchers to flexibly control lighting, weather,
and transient objects. The plugin simplifies data col-
lection for different task settings, making it a valuable
tool for the community where users can build up ad-
vanced datasets as demanded.

• We conducted extensive studies on the MatrixCity
dataset, which revealed some key challenges of city-

3206



scale neural rendering, and hopefully facilitate future
research in this area.

2. Related work
2.1. 3D Neural Representation at City Scale

City-scale reconstruction has been studied for decades.
Previous methods for representing geometry of a city
mainly relied on raw point clouds acquired through either
structure-from-motion [1] or Lidar sensors [12]. Recently,
with the emergence of Neural Radiance Fields (NeRF) [22],
novel view synthesis has become more efficient and effec-
tive. Numerous methods in this direction have further im-
proved the speed [18, 28, 10, 23, 7] and accuracy [40, 3, 4]
of reconstruction. NeRF is also used in a wide range of ap-
plications beyond novel view synthesis, such as inverse ren-
dering [5, 27, 42, 26], surface reconstruction [34, 36, 2, 38]
or HDR synthesis [11, 14, 21]. Although these methods
demonstrate acceptable performance with small objects,
grappling with urban scenes remains a significant challenge
due to the limited representation capability of NeRF.

Based on these observations, recent methods were pro-
posed for reconstructing radiance fields in urban-scale
scenes. NeRF-W [20] captured per-image appearance vari-
ations and separated the entire scene into static and tran-
sient components, enabling the modeling of unstructured
collections of in-the-wild photographs. Block-NeRF [30]
extended NeRF-W [20] to model an neighborhood of San
Francisco by dividing up urban environments into individu-
ally small Block-NeRFs. Mega-NeRF [33] also adopted
the advantages of NeRF-W [20] and Block-NeRF [30]
by first decomposing large-scale fly-view scenes into small
spatial cells and then training these cells in parallel. Ur-
ban Radiance Fields [25] synthesized novel RGB images
and extracted 3D surfaces from a combination of panora-
mas and Lidar inputs in the urban environments. BungeeN-
eRF [37] introduced progressive modeling with multi-level
supervision to handle city-scale data with varying levels of
detail. Despite the progress made by the aforementioned
methods [20, 30, 33, 25, 37], there is no unified dataset
for evaluating these methods due to their varying settings.
Significant challenge still remains in the city reconstruction
problem, particularly in integrating aerial data and street-
level data with varying levels of detail.

2.2. NeRF-based Datasets and Benchmarks

Several benchmarks based on NeRF are proposed in the
recent two years, which focus on the effective and better re-
construction of single objects [22, 18, 13], indoor scenes
[9], or outdoor unbounded scenes [4, 15]. While there
have been some good attempts to collect high-quality large-
scale datasets using high-precision acquisition equipment
[8, 17, 30, 19] as shown in Table 1, the high acquisition

costs limit their size and scale. Some datasets are limited
to only a few independent scenes that are far from urban-
scale or are not fully open-source due to privacy and com-
mercial reasons. For instance, Mill 19 dataset [33] only
includes two suburban-like scenes, and the Quak 6D [8]
and OMMO [19] datasets focus on a limited number of in-
dependent scenes that are not city-scale. Waymo Block-
NeRF [30] dataset only grants access to 100 seconds of
driving data and Urban Scene3D dataset [17] only releases
two real-world scenarios. Additionally, existing real-world
datasets commonly provide only one type of image data,
such as street-level or aerial imagery, which makes model-
ing buildings incomplete [17, 19]. Collecting real data in
outdoor scenes poses significant challenges due to difficul-
ties in controlling environmental factors such as pedestrian
movement, weather, and lighting. As a result, a standard
and comprehensive benchmark for city-scale neural render-
ing has not yet been established. Existing outdoor NeRF-
based benchmarks like OMMO [19] are too trivial to ex-
plore and analyze the urban implicit scene representation.
To address these issues, we developed a plugin in Unreal
Engine 5 to easily collect aerial and street city data with
ground-truth camera poses. We built a city-scale and mul-
titasking dataset that includes both fly-view and street-view
images and propose a new city-scale benchmark for neural
rendering. We also provided a detailed analysis of the chal-
lenges and opportunities of NeRF in urban environments.

3. MatrixCity Dataset
The MatrixCity dataset aims to introduce a new chal-

lenging benchmark to the field of city-scale neural render-
ing by providing comprehensive city maps consisting of
both aerial and street-level data. In addition to RGB images,
we also offer normal, depth, and decomposed reflectance
properties to support other tasks. Moreover, we can flexi-
bly control environmental factors, including light direction
and intensity, fog density, and human or vehicle crowding,
to enable simulating real-world dynamic situations. Sec 3.1
describes our data construction procedure. Sec 3.2 and 3.3
provide detailed statistics and characteristics of this dataset.

3.1. Dataset Construction

City Data Collection. Densely captured 2D images with
sufficient multi-view supervision are required to learn a
faithful scene geometry, especially for large city scenes.
Collecting a sufficient amount of data in Unreal Engine 5
for city scenes is a complex process that requires adjust-
ing camera trajectories to capture specific viewpoints. Al-
though the Unreal Engine 5 offers a movie render queue
plugin for high-quality image rendering, it can be time-
consuming and inflexible to manually set up the position,
rotation, and frame number of key points. For urban set-
tings, it is not practical to manually set camera trajectories

3207



(a) Aerial block splits (b) Aerial trajectory in block 4 (c) Street trajectory in block 4

Figure 2: Illustration of data collection in the small city in Unreal Engine 5. (a) Aerial block split for the entire small city;
(b&c) Camera aerial and street trajectory of block 4 (visualized in bird-eye views) used in our plugin for data collection.

in a city-scale environment. To address this, we developed a
plugin that automatically generates camera trajectories, re-
ducing the need for manual annotation and increasing the
efficiency of data collection. Camera trajectories gener-
ated by our plugins can be rendered in any Unreal Engine 5
scenes.

For aerial-view collection, we divide the city map into
10 blocks based on building heights (Figure 2 (a)) to bet-
ter capture the building details. We provide the height of
every collected block in the supplementary material. Note
that current neural scene representations are generally suit-
able for bounded scenes, where scenes with large variation
in height may cast great difficulty for accurate ray sam-
pling. We then generate trajectories using the input of cam-
era height and the four vertices’ coordinates of the corre-
sponding block (Figure 2 (b)) Our plugin puts four cam-
eras at each capturing location, with each camera rotating
90◦ apart from each other in the yaw direction and identi-
cal pitch values. The pitch value for the floor area is −45◦,
while it is −60◦ for high-rise area as there are more occlu-
sions at higher levels.

For street-view data collection, we manually annotate
the start and end points of each road and use them as inputs
to generate straight-line trajectories with our plugin. We
position six perspective cameras at each capturing location
to render a cube map, providing a comprehensive view of
the surroundings. Note that the cube map can be naturally
transformed into panorama images, which are suitable for
capturing the street views as much as possible with limited
camera positions. Figure 2 (c) shows the resulting street-
level trajectories for a specific block. Our plugin saves the
generated camera trajectories as sequence assets of Unreal
Engine, which can be easily reused to render images with
different environmental settings. We will enhance our plu-
gin to support more complex camera trajectories in the fu-
ture, enabling us to generate even higher quality city-scale
data. Note that we adapt auto-exposure to collect data. If

we use the same fixed exposure for two types of data, the
street views will be under-exposured while the aerial views
will be over-exposured. HDR images will be included in
the future.

Quality Control. To build a high-quality dataset for city-
scale neural rendering, we utilize several mechanisms to en-
sure that the rendered images are of high quality and that the
camera poses are accurate. Rather than using the more ef-
ficient real-time rendering pipeline, which often produces
flickering images, we use the movie render queue plugin to
render images with movie-level standards. Additionally, we
set the Engine Scalability Settings to the best, turn off the
motion blur and use anti-aliasing during the rendering pro-
cess to achieve the highest possible image quality. We in-
spect the images thoroughly after rendering to remove any
aerial views that look outside the map boundaries and en-
sure that there are no object clippings. Unreal Engine 5
provides ground-truth camera poses, which we have further
verified through additional experiments to ensure their ac-
curacy. Even with a small set of street data, training the
MipNeRF-360 [4] model yields almost perfect novel view
synthesis results, as demonstrated in Figure 6. This con-
firms the accurate annotation of our camera poses. Overall,
by adopting these mechanisms, we ensure that the Matrix-
City dataset provides high-quality images with precise cam-
era poses, which is crucial for city-scale neural rendering re-
search. Without considering noises like inaccurate pose and
motion blur, we intend to gain more insights about the in-
trinsic challenges of city scenes since isolating these noises
from real data is generally infeasible.

Dynamic Environments. The City Sample project of Un-
real Engine 5 provides a plethora of powerful functions that
allow for the creation of dynamic city scenes. As shown in
Figure 1, we have the ability to control the presence of mov-
ing people and cars in the scene, adding to the realism of
the environment. Additionally, we can quantitatively adjust

3208



(a) Illumination changes smoothly

(b) Fog changes smoothly

(c) RGB/diffuse/specular/metallic/roughness

Figure 3: Illustration of controlling dynamic environment factors in Unreal Engine 5 such as illumination (a), fog density (b)
and decomposed reflectance (c).

the angle and intensity of the lighting to emulate the natural
changes in light throughout a day, as demonstrated in Fig-
ure 3(a). We can also control the amount of fog in a scene,
as shown in Figure 3(b), providing another quantitative tool
for enhancing realism. Taken together, these functions al-
low for the simulation of almost all basic dynamic situations
found in the real world. In addition, general camera noises
like motion blur and defocus blur shown in Figure 4 can be
simulated in Unreal Engine. Such varying lighting, weather
conditions, moving objects and camera noises will lead to
more realistic and accurate city-scale neural rendering.

Multiple Properties. Figure 1 (c) and Figure 3 (c) illus-
trates the various intermediate products generated by Unreal
Engine during the rendering process, including depth, nor-
mal, and decomposed components (diffuse, specular, metal-
lic, and roughness). These attributes are especially impor-
tant for studies on inverse rendering and semantic analysis,
which are popular for city scene analysis. Our plugin of-
fers the ability to extract these properties without incurring
any additional costs, which can be prohibitively expensive
to obtain in real-world scenarios.

3.2. Dataset Statistics

The MatrixCity dataset comprises two scenes from the
City Sample project: Small City covering an area of 2.7km2

and Big City spanning 25.3km2. In total, we collect 67k
aerial images and 452k street-level images to ensure com-
prehensive coverage. As shown in Table 1, many of current
datasets [17, 8, 19] do not offer the dense image captures
of the whole city but small-size independent scenes. Al-
though Waymo Block-NeRF [30] dataset densely collects
an area of approximately 960m × 570m, it only contains
street data and results in the reconstructed buildings incom-

plete. All the existing datasets do not have quantitatively
controllable environments including light, weather and hu-
man and car crowds, nor multiple properties like normal,
depth, the decomposed reflectance components, etc, which
restricts the in-depth study of city-scale neural rendering in
dynamic scenes and other extension tasks. KITTI-360 [16],
NuScenes [6], Waymo Open [29] are not designed for neu-
ral rendering purposes and only provide limited camera
viewpoints.

origin motion blur defocus blur

Figure 4: Examples of camera motion blur and defocus blur.

3.3. Dataset Characteristics

High Quality. For constructing MatrixCity dataset, we use
the City Sample project and the movie-level plugin named
movie render queue of the Unreal Engine 5 which is demon-
strated to reproduce The Matrix Awakens. Unlike games,
the rendering process is not real-time and costs huge com-
putations with pre-defined camera poses. Such movie-level
rendering quality enables the collection of realistic city-
scale data similar to the real world with fully dynamic en-
vironment factors. Vigorous quality control is performed
during its collection phase.
Large-scale and Diversity. The City Sample project of Un-

3209



Dataset #Images Level Types Source Lighting Human/Car Weather D-Reflectance

UrbanScene3D [17] 128K Scene Aerial Synthetic & Real ✗ ✗ ✗ ✗

Quad 6K [8] 5.1K Scene Aerial Real ✗ ✗ ✗ ✗

Mill 19 [33] 3.6K Scene Aerial Real ✗ ✗ ✗ ✗

Waymo Block-NeRF [30] 12K City Street Real ✓ ✗ ✗ ✗

OMMO [19] 14.7K Scene Aerial Real ✓ ✗ ✗ ✗

KITTI-360 [16] 300K City Street Real ✗ ✓ ✗ ✗

NuScenes [6] 1.4M City Street Real ✓ ✓ ✓ ✗

Waymo Open [29] 1M City Street Real ✓ ✓ ✓ ✗

Ours 519k City Aerial+Street Synthetic ✓ ✓ ✓ ✓

Table 1: Comparison of statistics and properties between our MatrixCity dataset with previous datasets.

NeRF [22] DVGO [28] TensoRF [7] Instant-NGP [23] MipNeRF-360 [4]Block PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Average
Height

Block A 23.15 0.561 0.649 25.04 0.677 0.520 25.96 0.720 0.462 27.21 0.793 0.376 26.64 0.772 0.406 150
Block B 22.94 0.613 0.485 22.72 0.649 0.463 24.95 0.776 0.326 25.45 0.826 0.271 24.80 0.765 0.352 432
Block C 22.15 0.590 0.527 21.39 0.649 0.475 24.11 0.754 0.370 23.21 0.788 0.311 24.20 0.759 0.365 419
Block D 23.09 0.570 0.548 24.14 0.656 0.486 24.99 0.712 0.416 26.24 0.785 0.338 26.45 0.790 0.338 250
Block E 23.53 0.612 0.534 24.74 0.704 0.467 25.66 0.749 0.408 26.36 0.807 0.335 26.54 0.811 0.338 200
Overall 22.97 0.589 0.548 23.61 0.667 0.482 25.13 0.762 0.396 25.69 0.800 0.326 25.73 0.779 0.360 279

Table 2: Performance comparison of representative neural rendering methods on the aerial data of our MatrixCity benchmark.

real Engine 5 includes two cities with a large-scale cover-
age, which captures varying buildings, pedestrians, signs,
vehicles, and lighting conditions, resulting in more diverse
and realistic outdoor scenes that are representative of real-
world cities. This ensures that researchers have access to a
broad range of data to train their models on, leading to more
accurate and effective city-scale neural rendering.

Controllable Environments. Unlike the real world data,
we could control the lighting angle and intensity, the den-
sity and height of fog, and the density of flow of pedestrians
and vehicles in a fine-grained manner. This flexibility en-
ables us to generate dynamic scenarios of city scenes that
would be difficult to capture in real-world data. This level
of control over the environment allows for more detailed
exploration of how different factors influence the training
process of city-scale neural rendering.

Multiple Properties. Our developed plugin is able to ex-
tract additional information such as depth, normal and the
decomposed reflectance components with minimum extra
cost in Unreal Engine 5. This information supports ad-
ditional tasks such as depth estimation, inverse rendering,
which cannot be supported by real-world data without ex-
cessive labor.

Applications. By exploring neural rendering models on
MatrixCity, we can transfer the algorithms to real-world ur-
ban scenes, which can generate scene for games, virtual re-
ality, automatic driving, and so on. The rendered scenes can
also makes the interactions with digital humans possible in
the metaverse.

4. Experiments

In this section, we mainly investigate the quality of re-
construction and novel view rendering, and reveal the chal-
lenges of adapting existing SOTA methods on this task.
Additional studies (e.g., dynamics scenes, lighting control,
etc.) are provided in the supplementary material.

4.1. Datasets and Metrics.

MatrixCity benchmark. The MatrixCity dataset contains
two city maps: Small City and Big City. According to the
common practice in surveying and mapping that adjacent
images should have an overlap of 70%-80%, we set a cam-
era capture location every 40 m for aerial data collection
and 5 m for street data collection. Small City includes 6k
aerial images and 30k street-level images, while Big City
has 60 k aerial images and 286 k street-level images. Note
that we remove the aerial images that look outside the map
boundary manually. Also, we remove the street images that
look straight down following nerfstudio [31], which crops
the bottom 20% of the 360 images to reduce useless in-
formation. The ratio of training set to testing set is 8:1.
To ensure both completeness of training perspectives and
generalization ability in testing, test set is collected sepa-
rately with no location overlap with the training set. For
aerial data, the yaw direction randoms from 0◦ to 360◦ and
the pitch direction randoms from −60◦ to −45◦, and ev-
ery camera location captures 1 image. For street data, the
yaw direction randoms from 0◦ to 90◦ and every camera
location captures 5 images, whose pitch and roll direction
keep the same with the training set. Since the street data

3210



(e)(d)(c)(b)(a)

NeRF

DVGO

Instant-NGP

MipNeRF-360

TensoRF

GT

Figure 5: Visualization of novel view synthesis results of previous representative large-scale neural rendering methods on the
aerial data of our MatrixCity dataset.

contains more details, we also ablate the street data collec-
tion density in Table 4, which demonstrates that grid-based
method is more sensitive to data density than MLP-based
NeRF method. Additionally, we provide a super dense ver-
sion street data with 135k for Small City with 1 m interval.
For demonstrative purpose, we conducted experiments on
the Small City in this stage, where the interval between ad-
jacent frames is 5 m for street data. We will release the data
splits of the following sections.

Evaluation metric. We evaluate the rendering performance
of each baseline method based on PSNR(Peak Signal-
to-Noise Ratio), SSIM(Structural Similarity) [35] and the
VGG implementation of LPIPS [41]. And we also use mean
angular error (MAE) and mean squared error (MSE) to eval-
uate estimated normal vectors and depth map, respectively.

4.2. Baselines.

We aim to test the performance of current neural ren-
dering methods on the MatrixCity dataset to explore the
challenges for city-scale neural rendering. To achieve this,
we choose five widely recognized methods: NeRF [22],
DVGO [28], Instant-NGP [23], TensoRF [7] and MipNeRF-
360 [4]. Note that we all use the official implementation of

these baselines except NeRF and Instant-NGP. For NeRF
we use the widely recognized Pytorch version [39]. And
for Instant-NGP, we use the open-source version [24]. We
find that ngp-pl [24] generally performs better than torch-
ngp [32]. To address the challenge of increasingly intri-
cate urban content, we recognized the limited capacity of
the original baseline models. So we increased the number
of parameters to handle more complex urban environments.
Specific details regarding these parameter increases can be
found in the supplementary material.

4.3. Neural Rendering on Aerial Data

Due to the limitations of current methods and models, it
is impractical to use a single model to represent an entire
map. Therefore, we divided the map into five blocks based
on building height and coverage area. Each block covers
a roughly homogeneous area, where buildings within each
block have similar heights. Our results, shown in Table 2,
indicate that MipNeRF-360 [4] and Instant-NGP [23] per-
form better, while NeRF [22] performs the worst. This indi-
cate that grid-based methods and MLP-based NeRF meth-
ods both can model the block-size aerial data modeling
well. Despite scaling up the NeRF model significantly, its
ability to model large-scale scenes remains limited, as illus-

3211



NeRF DVGO TensoRF Instant-NGP MipNeRF-360 GT
(a)

(b)

Figure 6: Visualization of novel view synthesis of city-scale neural rendering methods on (a) Block Small and (b) Block A
of street-view data. MLP-based NeRF methods suffer from capacity issues while grid-based baselines shows severe artifacts.

NeRF [22] DVGO [28] TensoRF [7] Instant-NGP [23] MipNeRF-360 [4]Block PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Block A 20.12 0.601 0.626 20.47 0.617 0.604 20.93 0.643 0.577 21.96 0.712 0.493 22.00 0.717 0.488

Block Small 22.15 0.678 0.511 22.10 0.711 0.454 22.95 0.741 0.445 22.84 0.745 0.408 24.47 0.827 0.297
Overall 21.14 0.640 0.569 21.29 0.664 0.529 21.94 0.692 0.511 22.40 0.729 0.451 23.24 0.772 0.393

Table 3: Performance comparison of representative neural rendering methods on the street data of our MatrixCity benchmark.

trated in Figure 5. Additionally, we found that the high-rise
area is more challenging to model than the floor area. In
the high-rise area, there are numerous occlusions between
the buildings, which is a significant challenge for aerial data
modeling. From Figure 5, we can observe that current meth-
ods still struggle to accurately model small objects and re-
flective buildings.

4.4. Neural Rendering on Street Data

We first run all these baselines on the street data of
Block A and find that all the methods perform much worse
than the results of the aerial data, especially for the grid-
based methods, as shown in Table 3. Street data con-
tains much more details than aerial data, and it is harder
to achieve high-quality results on street data than on aerial
data, which is also demonstrated in Figure 7. Thus we

Instant-NGP [23] MipNeRF-360 [4]Density PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
5.0 m 21.436 0.733 0.402 27.75 0.866 0.2956
3.6 m 24.978 0.803 0.350 29.366 0.884 0.280
2.0 m 30.025 0.885 0.235 31.420 0.901 0.265
1.0 m 32.444 0.912 0.211 31.858 0.905 0.263
0.5 m 32.999 0.921 0.202 32.210 0.907 0.261

Table 4: Ablation on the density of street data collection on
our MatrixCity benchmark.

conclude that modeling the street data of a block-size area
in a single model is not reasonable and filter a crossroad
data to test current methods, called Block Small. Analyzed
the results on Block Small, we find that the MLP-based
NeRF methods perform better than the grid-based methods,

3212



3.84 cm / 44.15°MSE ↓ / MAE ↓

Aerial Street

9.30 cm / 57.51°

Figure 7: Visualization of the depth and normal results of MipNeRF-360 on aerial and street views.

Before Fusion After Fusion

Ground truth TensoRF MipNeRF-360 TensoRF MipNeRF-360

Figure 8: Visualization of neural rendered results on aerial
and street views before and after fusion of two types of
views. Streets views are generally harder than aerial views
to deliver high-quality rendering results, with notable float-
ing artifacts, where the model get easily overfitting to the
training views with cheated geometry. The naive joint train-
ing on the fused data downgrades the quality.

TensoRF [7] MipNeRF-360 [4]Data Type PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Aerial 27.26 0.829 0.231 28.37 0.855 0.197
Streat 22.10 0.727 0.449 23.05 0.805 0.312
Fusion 21.44 0.656 0.504 17.07 0.470 0.600

Table 5: Ablation on the fusion of aerial and street data on
our MatrixCity benchmark.

which is also demonstrated in Figure 6. The Block Small
can also be seen as a 360 unbounded scenes with a distant
background. Figure 6 shows that MipNeRF-360 can alle-
viate this problem to some extent. However, the reflective
parts and fine-grained architectures are still not well recon-
structed.

4.5. Neural Rendering on Joint Types of Data

The major motivation to fuse data from both aerial and
street view is to provide content information at different
granularity. While aerial views are generally easier to train
with less geometry ambiguities, it lacks many details on the
near-ground, which are critical to deliver immersive expe-
rience for exploring a city. On the other hand, street-view
images often only offer partial information about the scene

revealing the local contents, which are sensitive to overfit
to training views. We therefore explore to train the aerial
and street data together, which cover the same area, aiming
the leverage the advantage of two sources of data to ensure
wide coverage as well as fine details. However, according
to Table 5, we find that the performance of TensoRF [7]
and MipNeRF-360 [4] both got worse after simply fusing
the aerial and street data to train together. As shown in
the Figure 8, the ground part of the aerial view becomes
dirty after training with the street data for both methods.
For the street view, the foreground of MipNeRF-360 be-
comes worse. We analyze that due to the significant differ-
ence in the level of details between street-level and aerial
imagery, as well as the large disparity in distance from the
foreground, it is challenging to train models simply by uti-
lizing both types of data. We need to further investigate
how algorithms can effectively utilize both the geometric
information from aerial imagery and the detailed informa-
tion from street-level imagery, such as finetuning, progres-
sive training, separate group of hyperparamters, etc.

5. Conclusion
In this paper, we proposed MatrixCity, a high-quality and

city-scale benchmark with diverse, controllable and realis-
tic data collected from the powerful Unreal Engine 5. Addi-
tional information like depth and normal are also collected
with minimum extra cost in our MatrixCity dataset, enables
other potential tasks and applications like depth estimation
and inverse rendering. On top of MatrixCity, we have em-
pirically investigated representative methods on two types
of data independently and the fusion of both aerial-view and
street-view data. We hope these efforts could facilitate new
advances in the field of city-scale neural rendering.
Acknowledgment This project is funded in part by
Shanghai AI Laboratory (P23KS00020, 2022ZD0160201),
CUHK Interdisciplinary AI Research Institute, and the Cen-
tre for Perceptual and Interactive Intelligence (CPIl) Ltd un-
der the Innovation and Technology Commission (ITC)’s In-
noHK. We would like to thank Haiyi Mei and Lei Yang for
their invaluable help and discussions for the plug-in devel-
opment.

3213



References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M. Seitz, and Richard Szeliski.
Building rome in a day. Commun. ACM, 54(10):105–112,
2011.

[2] Dejan Azinovic, Ricardo Martin-Brualla, Dan B. Goldman,
Matthias Nießner, and Justus Thies. Neural RGB-D surface
reconstruction. In CVPR, pages 6280–6291. IEEE, 2022.

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, pages 5835–5844. IEEE, 2021.

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, pages 5460–
5469. IEEE, 2022.

[5] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P. A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In ICCV,
pages 12664–12674. IEEE, 2021.

[6] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020.

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV (32),
volume 13692 of Lecture Notes in Computer Science, pages
333–350. Springer, 2022.

[8] David J. Crandall, Andrew Owens, Noah Snavely, and
Daniel P. Huttenlocher. Sfm with mrfs: Discrete-continuous
optimization for large-scale structure from motion. IEEE
Trans. Pattern Anal. Mach. Intell., 35(12):2841–2853, 2013.

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas A. Funkhouser, and Matthias Nießner. Scan-
net: Richly-annotated 3d reconstructions of indoor scenes.
In CVPR, pages 2432–2443. IEEE Computer Society, 2017.

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, pages
5491–5500. IEEE, 2022.

[11] Xin Huang, Qi Zhang, Ying Feng, Hongdong Li, Xuan
Wang, and Qing Wang. Hdr-nerf: High dynamic range neu-
ral radiance fields. In CVPR, pages 18377–18387. IEEE,
2022.

[12] Veli Ilçi and Charles K. Toth. High definition 3d map cre-
ation using gnss/imu/lidar sensor integration to support au-
tonomous vehicle navigation. Sensors, 20(3):899, 2020.

[13] Rasmus Ramsbøl Jensen, Anders Lindbjerg Dahl, George
Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In CVPR, pages 406–413. IEEE
Computer Society, 2014.

[14] Kim Jun-Seong, Kim Yu-Ji, Moon Ye-Bin, and Tae-Hyun
Oh. Hdr-plenoxels: Self-calibrating high dynamic range ra-
diance fields. In ECCV (32), volume 13692 of Lecture Notes
in Computer Science, pages 384–401. Springer, 2022.

[15] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: benchmarking large-scale scene
reconstruction. ACM Trans. Graph., 36(4):78:1–78:13,
2017.

[16] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(3):3292–3310, 2022.

[17] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie,
and Hui Huang. Capturing, reconstructing, and simulating:
The urbanscene3d dataset. In ECCV (8), volume 13668 of
Lecture Notes in Computer Science, pages 93–109. Springer,
2022.

[18] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020.

[19] Chongshan Lu, Fukun Yin, Xin Chen, Tao Chen, Gang Yu,
and Jiayuan Fan. A large-scale outdoor multi-modal dataset
and benchmark for novel view synthesis and implicit scene
reconstruction. CoRR, abs/2301.06782, 2023.

[20] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. Nerf in the wild: Neural radiance fields for un-
constrained photo collections. In CVPR, pages 7210–7219.
IEEE, 2021.

[21] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P. Srinivasan, and Jonathan T. Barron. Nerf in the
dark: High dynamic range view synthesis from noisy raw
images. In CVPR, pages 16169–16178. IEEE, 2022.

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV (1), volume 12346 of Lecture Notes in Com-
puter Science, pages 405–421. Springer, 2020.

[23] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022.

[24] Chen Quei-An. ngp pl: a pytorch-lightning implementation
of instant-ngp, 2022. https://github.com/kwea123/ngp pl.

[25] Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan,
Jonathan T. Barron, Andrea Tagliasacchi, Thomas A.
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
CVPR, pages 12922–12932. IEEE, 2022.

[26] Viktor Rudnev, Mohamed Elgharib, William A. P. Smith,
Lingjie Liu, Vladislav Golyanik, and Christian Theobalt.
Nerf for outdoor scene relighting. In ECCV (16), volume
13676 of Lecture Notes in Computer Science, pages 615–
631. Springer, 2022.

[27] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, pages 7495–7504. IEEE, 2021.

[28] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, pages 5449–5459. IEEE, 2022.

[29] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

3214



Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020.

[30] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben P. Mildenhall, Pratul P. Srinivasan, Jonathan T. Bar-
ron, and Henrik Kretzschmar. Block-nerf: Scalable large
scene neural view synthesis. In CVPR, pages 8238–8248.
IEEE, 2022.

[31] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, SIGGRAPH
’23, 2023.

[32] Jiaxiang Tang. Torch-ngp: a pytorch implementation of
instant-ngp, 2022. https://github.com/ashawkey/torch-ngp.

[33] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-scale
nerfs for virtual fly- throughs. In CVPR, pages 12912–12921.
IEEE, 2022.

[34] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, pages 27171–27183, 2021.

[35] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004.

[36] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian
Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-based
efficient and accurate neural surface reconstruction. CoRR,
abs/2208.12697, 2022.

[37] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In ECCV (32), volume 13692
of Lecture Notes in Computer Science, pages 106–122.
Springer, 2022.

[38] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, pages
4805–4815, 2021.

[39] Lin Yen-Chen. Nerf-pytorch. https://github.com/
yenchenlin/nerf-pytorch/, 2020.

[40] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. CoRR, abs/2010.07492, 2020.

[41] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, pages 586–
595. IEEE, 2018.

[42] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E.
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: neural factorization of shape and reflectance under
an unknown illumination. ACM Trans. Graph., 40(6):237:1–
237:18, 2021.

3215


