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Abstract

Semantic segmentation of LiDAR point clouds has been
widely studied in recent years, with most existing methods
focusing on tackling this task using a single scan of the en-
vironment. However, leveraging the temporal stream of ob-
servations can provide very rich contextual information on
regions of the scene with poor visibility (e.g., occlusions)
or sparse observations (e.g., at long range), and can help
reduce redundant computation frame after frame. In this
paper, we tackle the challenge of exploiting the informa-
tion from the past frames to improve the predictions of the
current frame in an online fashion. To address this chal-
lenge, we propose a novel framework for semantic segmen-
tation of a temporal sequence of LiDAR point clouds that
utilizes a memory network to store, update and retrieve past
information. Our framework also includes a novel regu-
larizer that penalizes prediction variations in the neigh-
borhood of the point cloud. Prior works have attempted
to incorporate memory in range view representations for
semantic segmentation, but these methods fail to handle
occlusions and the range view representation of the scene
changes drastically as agents nearby move. Our proposed
framework overcomes these limitations by building a sparse
3D latent representation of the surroundings. We eval-
uate our method on SemanticKITTI, nuScenes, and Pan-
daSet. Our experiments demonstrate the effectiveness of
the proposed framework compared to the state-of-the-art.
For more information, visit the project website: https:
//waabi.ai/research/memoryseg.

1. Introduction
Semantic segmentation of LiDAR point clouds is a key

component for the safe deployment of self-driving vehi-
cles (SDV). It enables SDVs to enhance their understand-
ing of the surrounding environment by categorizing every
3D point into specific classes of interest, such as vehicles,
pedestrians, traffic signs, buildings, roadways, etc. This rich
and precise 3D representation of the environment can then
be used for various applications such as generating online or

Single Frame LiDAR Point Cloud Learned 3D Sparse Latent Memory

Figure 1. Objects could be partially occluded in single frame
LiDAR point cloud. Our approach learns a 3D latent memory rep-
resentation for better contextualizing the online observations. We
apply PCA [14] to reduce the latent dimension to 3 and plot as
RGB. (Best viewed in color and zoomed-in.)

offline semantic maps, building localization priors, or mak-
ing the shapes of an object tracker more precise.

LiDAR data is typically captured as a continuous stream
of data, where every fraction of a second (typically 100ms)
a new point cloud is available. Despite this fact, most Li-
DAR segmentation approaches process each frame indepen-
dently [15, 32, 28, 22, 34, 5, 29] due to the computational
and memory complexity associated with processing large
amounts of 3D point cloud data. However, reasoning about
a single frame suffers from the sparsity of the observations,
particularly at range, and has difficulty handling occluded
objects. Furthermore, the absence of motion information
can make categorizing certain objects difficult.

Several approaches [20, 19] utilize a sliding window ap-
proach, where a small set of past frames is processed inde-
pendently at every time step. The main shortcoming of this
approach is its limited temporal context (typically under 1
second) due to resource constraints, as processing multiple
LiDAR scans at once is expensive. TemporalLidarSeg [8]
proposed to utilize a latent spatial memory to retain infor-
mation about the past while avoiding redundant computa-
tion every time a new scan is available, in a range view (RV)
representation. However, the RV of the scene changes dras-
tically as the SDV or the other actors move due to changes
in perspective. As a result, the memory can be dominated
by nearby objects, which appear larger in the RV represen-
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tation, making it challenging to be updated from frame to
frame. Occlusion can be particularly challenging as the oc-
cluder now occupies the same spatial region that was pre-
viously describing the occluded object. This limits the use-
fulness of the memory. In contrast to RV, 3D is a metric
space where the distances between points are preserved re-
gardless of the viewpoint or relative distance to the SDV.
Thus, representing the memory in 3D enables learning size
priors for different classes. It allocates equal representa-
tion power to them regardless of the distance to the SDV,
and enables easy understanding of motion. Moreover, pre-
viously observed regions that are currently occluded can be
remembered in the memory as the occluder and occluded
objects occupy different 3D regions, even though they share
the same space in RV. Despite these advantages, 3D mem-
ory has been overlooked in LiDAR semantic segmentation.

In this paper we propose MEMORYSEG, a novel on-
line LiDAR segmentation model that recurrently updates a
sparse 3D latent memory as new observations are received,
efficiently and effectively accumulating evidence from past
observations. Fig. 1 illustrates the expressive power of such
memory. In a single scan, objects are hard to identify due
to sparsity (particularly at range) and lack of semantics, and
occluded areas have no observations. In contrast, our latent
memory is much denser, providing a rich context to separate
different classes, especially in currently occluded regions.

To achieve an effective memory update that takes into
account both the past and the present for accurate decoding,
our method addresses several challenges. First, we align the
previous memory with the current observation in the latest
ego frame, to compensate for the SDV motion. Second, the
sparsity level of the memory and the observation embed-
dings are different, making fusion non-trivial. The latent
memory is denser, and thus some currently unobserved lo-
cations may be present in the memory. Complementarily,
some regions in the current scan have not been observed
before, such as new observations appearing as the SDV
drives further. For this reason, we propose a mechanism
to fill in missing regions in the current observations and add
new observations to the memory during the update. Third,
other objects are also moving (potentially in opposite direc-
tion), thus fusing the memory and observation embeddings
requires a large receptive field. We address this via a care-
fully designed architecture that achieves a large receptive
field yet preserves sparsity for efficiency. Aditionally, we
introduce a novel point-level neighbourhood variation reg-
ularizer which penalizes significant differences in semantic
predictions within local 3D neighborhoods.

Extensive experiments in SemanticKITTI [2], nuScenes
[4] and PandaSet [27] demonstrate that MEMORYSEG
outperforms current state-of-the-art semantic segmentation
methods that rely purely on LiDAR on multiple bench-
marks.

2. Related Work

In this section, we start by reviewing LiDAR semantic
segmentation approaches in the literature and then focus on
methods proposed for temporal LiDAR reasoning.

2.1. LiDAR Semantic Segmentation

LiDAR-based semantic segmentation methods can be
classified into four categories based on the type of data
being processed: point-based [16, 17, 13, 24], projection-
based [28, 7, 32], voxel-based [5, 34, 12], or a combintation
of the data representations [22, 29].

Point-based approaches [16, 17, 13, 24] operate directly
on the point cloud, but most [17, 13, 24] rely on down-
sampling to accommodate limited computational resources.
KPConv [24] introduces customized spatial kernel-based
point convolution which yields the most favorable out-
comes compared to other point-based methods. However,
it require a significant amount of computational resources,
which can limit its practicality in certain applications.

Projection-based methods [28, 7, 32] involve projecting
a 3D point cloud onto a 2D image plane, which can be
done using either in spherical Range-View [28, 7], Bird-
Eye-View [32], or multi-view representations [11]. These
approaches usually operate in real-time, benefiting from ef-
ficient 2D CNN inference on GPUs. However, they suffer
from significant information loss due to projection, which
can prevent them from being on par with state-of-the-art
methods.

The emergence of 3D voxel-based approaches [5, 34, 12]
can be attributed to recent advancements in sparse 3D con-
volutions [6, 21]. Typically, LiDAR point clouds are con-
verted into Cartesian [5] or Cylindrical [34] voxels and then
processed using sparse convolutions. They have demon-
strated state-of-the-art performance, but reducing voxel res-
olution can result in significant loss of information.

Recently, researchers have explored the potential of
leveraging multiple data representations [22, 30, 29, 31] to
benefit from the information acquired by each representa-
tion. For instance, SPVNAS [22] incorporates both point-
wise features and 3D-voxel features in their network while
learning to segment. Similarly, RPVNet [29] utilizes a tri-
lateral structure in their network, where each branch adopts
a distinct data representation mentioned earlier.

Our method takes a similar approach to incorporate both
point and voxel representations in the network. Voxel repre-
sentations are utilized for contextual information learning,
while point representations are employed to preserve fine-
grained details, such as object boundaries and curvatures.

2.2. Temporal LiDAR Reasoning

Previous methods [20, 19, 26] have attempted to inte-
grate a small number of past frames to facilitate temporal
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reasoning. For instance, SpSequenceNet [20] introduces
cross-frame global attention, which uses information from
the previous frame to emphasize features in the current
frame. Additionally, it utilizes cross-frame local interpo-
lation to combine local features from both the previous and
current frame. Further, MetaRangeSeg [26] includes infor-
mation from past frames by having the residual depth map
as an additional feature to the input. However, these meth-
ods are not well-suited for continuous application to a tem-
poral sequence of LiDAR point clouds. Firstly, they are in-
efficient as they discard previous observations and require
the model to start from scratch each time a new point cloud
is received. Secondly, they only aggregate temporal infor-
mation within a short horizon, failing to capture the poten-
tial of temporal reasoning over a longer duration.

Several works [8, 9] have attempted to incorporate tem-
poral reasoning through a recurrent framework. Specifi-
cally, Duerr et al. [8] presents a recurrent segmentation ar-
chitecture in RV, which uses previous observations as mem-
ory and aligns them temporally in the range image space.
However, RV memory has limitations, such as prioritizing
nearby objects, and suffering from contention of memory
resources during occlusions (since information from behind
the occluder and the occluder itself are now sharing the
same memory entries). Further, StrObe [9] implemented a
multi-scale 2D BEV memory for object detection enabling
the network to take advantage of previous computations and
process new LiDAR data incrementally. However, com-
pared to object detection, semantic segmentation requires a
more fine-grained and nuanced understanding of the scene
and therefore a 3D memory is more suitable than 2D BEV.

Our approach is distinct from previous methods as we
propose an online LiDAR semantic segmentation frame-
work utilizing a sparse 3D memory. By representing the
memory in 3D, we preserve the distance between points re-
gardless of viewpoint or distance from the SDV, allowing
for size priors of different classes to be learned. Addition-
ally, the memory also retains previously observed regions
even when currently occluded, as occluders and occluded
objects occupy different 3D regions, despite being in the
same space in RV. Furthermore, we preserve fine-grained
height details that are lost in the BEV memory.

3. 3D Memory-based LiDAR Segmentation

In this section we introduce MEMORYSEG, an online se-
mantic segmentation framework for streaming LiDAR point
clouds that leverages a 3D latent memory to remember the
past and better handle occlusions and sparse observations.
In the remainder of this section, we first describe our model
formulation, then present the network architecture and fi-
nally explain the learning process.

3.1. Model Formulation

Let P = {Pt}Lt=1 be a sequence of LiDAR sweeps
where L ∈ N+ is the sequence length and t ∈ [1, L] is
the time index. Each LiDAR sweep Pt = (Gt,Ft) is
a 360◦ scan of the surrounding with Nt unordered points.
Gt ∈ RNt×3 contains the Cartesian coordinates in the ego
vehicle frame and Ft ∈ RNt is the LiDAR intensity of the
point. Let Tt−1→t ∈ SE(3) be the pose transformation
from the vehicle frame at time t− 1 to t.

To make informed semantic predictions, in this paper we
maintain a latent (or hidden) memory in 3D. This memory is
sparse in nature since the majority of the 3D space is unoc-
cupied. To represent this sparsity, we parametrize the mem-
ory at time t using a sparse set of voxels containing the co-
ordinates HG,t ∈ RMt×3 and their corresponding learned
embeddings HF,t ∈ RMt×dm . Mt is the number of voxel
entries in the latent memory at time t and dm is the embed-
ding dimension. Preserving the voxel coordinates is impor-
tant to perform alignment as the reference changes when the
SDV moves. We utilize a voxel-based sparse representation
as it provides notable computational benefits with respect to
dense tensors as well as sparse representations at the point
level without sacrificing performance.

Inference follows a three-step process that is repeated ev-
ery time a new LiDAR sweep is available: (i) the encoder
takes in the most recent LiDAR point cloud at current time t
and extracts point-level and voxel-level observation embed-
dings, (ii) the latent memory is updated taking into account
the voxel-level embeddings from the new observations, and
(iii) the semantic predictions are decoded by combining the
point-level embeddings from the encoder and voxel-level
embeddings from the updated memory. We refer the reader
to Fig. 2 for an illustration of our method.

The memory update stage faces challenges due to the
changing reference frame as the SDV moves, different spar-
sity levels of memory and current LiDAR sweep, as well as
the motion of other actors. To address these challenges, a
Feature Alignment Module (FAM) is introduced to align the
previous memory state with the current observation embed-
dings. Subsequently, an Adaptive Padding Module (APM)
is utilized to fill in missing observations in the current data
and add new observations to the memory. Then, a Memory
Refinement Module (MRM) is employed to update the la-
tent memory using padded observations. Next, we explain
each component in more detail.
Encoder: Following [22], our encoder is composed of
a point-branch that computes point-level embeddings pre-
serving the fine details and a voxel-branch that performs
contextual reasoning through 3D sparse convolutional
blocks [21]. The point-branch receives a 7-dimensional fea-
ture vector per point, with the xyz coordinates, intensity,
and relative offsets to the nearest voxel center as features. It
comprises two shared MLPs that output point embeddings,

747



Input LiDAR @ t Semantic Prediction @ t

MLP

Update

MLP MLP+ +

Encoder Decoder

Header

Memory @ t-1

Memory @ t

Figure 2. An overview of our model, MEMORYSEG. After the encoder processes the LiDAR point cloud at time t, the resulting feature
map is utilized to update the latent memory (see Fig. 3 for more details about the memory update). Then, the decoder combines the refined
memory with the point embeddings from the encoder to obtain semantic predictions.

MRM

FAM
APM

Figure 3. Overview of the latent memory update process. The
latent memory embeddings (HG,t−1, HF,t−1) are transformed to
the ego frame at t with the Feature Alignment Module (FAM).
Next, the Adaptive Padding Module (APM) is utilized to learn the
padding of both memory and observation embeddings. The Mem-
ory Refinement Module (MRM) updates the latent memory by
incorporating the padded observation embeddings. The updated
memory is then passed to the decoder for generating semantic pre-
dictions. (Best viewed in color and zoomed-in.)

as illustrated in Fig. 2. We average point embeddings be-
longing to the same voxel from the first shared MLP over
voxels of size vb to obtain voxel features. These features are
then processed through four residual blocks with 3D sparse
convolutions, each downsampling the feature map by a fac-
tor of 2. Two additional residual blocks with 3D sparse con-
volutions are applied to upsample the sparse feature maps.
Unlike a full U-Net [18] that recovers features at the orig-
inal resolution, we only upsample to 1

4 of the original size
for computational efficiency reasons, and use the coarser
features to update the latent memory before decoding finer
details to output our semantic predictions.

Feature Alignment: The reference frame changes as the
SDV moves. We propose the Feature Alignment Module
(FAM) to transform the latent memory from the ego frame
at t − 1 to t and align with the current observation embed-
dings. Specifically, we take the memory voxel coordinates
HG,t−1 and use the pose information Tt−1→t to project
from the ego frame at t − 1 to t. We then re-voxelize us-
ing the projected coordinates with a voxel size of vm. If
multiple entries are inside the same memory voxel, we take
the average of them to be the voxel feature. The resulting
warped coordinates and embeddings of the memory in the

ego frame t are denoted as H̃G,t and H̃F,t, respectively.
Adaptive Padding: To handle the different sparsity of the
latent memory and the voxel-level observation embeddings,
we propose the Adaptive Padding Module (APM). We refer
the readers to Fig. 3 for an illustration. First, we re-voxelize
the encoder features with the same voxel size vm where en-
tries within the same voxel are averaged. We denote the
resulting coordinates and embeddings asXG andXF . Note
that we omit t in this section for brevity. Let xG ⊆ XG

and xF ⊆ XF be the coordinates and embeddings of the
new observations at time t that are not present in the mem-
ory. To obtain an initial guess of the memory embedding
for a new entry, we utilize a weighted aggregation approach
within its surrounding neighbourhood. This involves taking
into account the coordinate offsets relative to the existing
neighbouring voxels in the memory, which provides insight
into their importance for aggregation, similar to Continuous
Conv [25]. In addition to this, we incorporate the feature
similarities and feature distances as additional cues for the
aggregation process. Encoding feature similarities is partic-
ularly useful for assigning weights to the neighborhood. In
a dynamic scene with moving actors, the closest voxel may
not always be the most important voxel. By providing fea-
ture similarities, the network can make more informed deci-
sions. The goal of such completion is to make a hypothesis
of the embedding at the previously unobserved location us-
ing the available information. More precisely, we add those
entries in the memory where their coordinates are h′G = xG
and the embedding of each voxel j are initialized as follows,

h′F,j =
∑

i∈ΩH̃(j)

wjiH̃F,i, (1)

wji = ψ(H̃G,i−xG,j , ∥H̃F,i−xF,j∥,
H̃F,i · xF,j

∥H̃F,i∥∥xF,j∥
), (2)

where i and j are voxel indices, ΩH̃(j) is the k-nearest-
neighbourhood of voxel j in H̃G, and ψ is a shared MLP
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followed by a softmax layer on the dimension of neighbour-
hood to ensure

∑
i wji = 1.

Second, we identify the regions in the memory that are
unseen in the current observation and denote their coordi-
nates and embeddings as h̃G ⊆ H̃G and h̃F ⊆ H̃F . We add
entries x′G and x′F to complete the current observation in a
similar manner.
Memory Refinement: We design a sparse version of a
ConvGRU [1] to update the latent memoryH ′

F,t−1 using the
current padded observation embeddings X ′

F,t as follows:

rt = sigmoid[Ψr(X
′
F,t, H

′
F,t−1)],

zt = sigmoid[Ψz(X
′
F,t, H

′
F,t−1)],

ĤF,t = tanh[Ψu(X
′
F,t, rt ·H ′

F,t−1)],

HF,t = ĤF,t · zt +H ′
F,t−1 · (1− zt),

(3)

where Ψr,Ψz,Ψu are sparse 3D convolutional blocks with
downsampling layers that aim to expand the receptive field
and upsampling layers that restore the embeddings to their
original size. rt and zt are learned signals to reset or update
the memory, respectively. We refer the readers to the sup-
plementary material about the detailed architecture of the
sparse convolutional blocks.
Decoder: Our decoder consists of an MLP, two residual
blocks with sparse 3D convolutions, and a linear semantic
header. Specifically, we first take the corresponding mem-
ory embeddings at coordinates Gt and add with the point
embeddings from the encoder. The resulting combined em-
beddings are then voxelized with voxel size of vb

4 and fur-
ther processed by two residual blocks that upsample the fea-
ture maps back to the original resolution. In parallel, an
MLP takes the point embeddings before voxelization to re-
tain the fine-grained details. Finally, the semantic header
takes the combination of voxel and point embeddings to ob-
tain per-point semantic predictions.
Memory Initialization: At the start of the sequence (t =
0), the first observation is used to initialize memory, with
HG,0 = XG,0 and HF,0 = XF,0.

3.2. Learning

We learn our segmentation model by minimizing a lin-
ear combination of conventional segmentation loss func-
tions [13, 34, 22] and a novel point-wise regularizer to better
supervise the network training.

J = βwceJwce + βlsJls + βregJreg. (4)

Here, Jwce denotes cross-entropy loss, weighted by the in-
verse frequency of classes, to address class imbalance in
the dataset. The Lovasz Softmax Loss (Jls) [3] is used to
train the network, as it is a differentiable surrogate for the
non-convex intersection over union (IoU) metric, which is

a commonly used evaluation metric for semantic segmenta-
tion. Additionally, Jreg corresponds to our proposed point-
wise regularizer. βreg , βwce and βls are hyperparameters.
Point-wise Smoothness: Our regularizer is designed to
limit significant variations in semantic predictions within
the 3D neighborhood of each point, except when these vari-
ations occur at the class boundary. Formally,

Jreg =
1

Nt

Nt∑
i=1

|∆(Y, i)−∆(Ŷ , i)|,

∆(Y, i) =
∣∣∣ 1

|ΩPt
(i)|

∑
j∈ΩPt (i)

|yi − yj |
∣∣∣. (5)

Here, ∆(Y, i) represents the ground truth semantic variation
around point i, while ∆(Ŷ , i) corresponds to the predicted
semantic variation around point i. We use Ŷ ∈ RNt×C to
denote the predicted semantic distribution over C classes,
and Y ∈ RNt×C to denote the ground truth semantic one-
hot label. The variable yi represents the i-th element of
Y . ΩPt(i) denotes the neighborhood of point i in Pt, and
|ΩPt

(i)| represents the number of points in the neighbor-
hood. The inspiration for this regularizer comes from a
study by [11] that penalizes adjacent pixel prediction varia-
tions with the ground truth.

4. Experiments

In this section, we thoroughly analyze the performance
of our method on three different datasets: SemanticKITTI
[2], nuScenes [4], and PandaSet [27]. These datasets were
collected using different LiDAR sensors and in diverse ge-
ographical regions. Our results demonstrate that MEMORY-
SEG outperforms the current state of the art in all bench-
marks. Additionally, we conduct ablation studies to under-
stand the impact of our contributions. We demonstrate that
incorporating a 3D sparse latent memory improves semantic
predictions, with a very significant gain in long-range areas
as these are sparser and more often partially obstructed than
short-range regions.
Datasets: We benchmark our approach on three large-
scale autonomous driving datasets: SemanticKITTI [2]
consists of 22 sequences from the KITTI Odometry Dataset
[10], which was collected in Germany using a Velodyne
HDL-64E LiDAR. We use the standard split where se-
quences 0 to 10 are used for training (with sequence 8
for validation), and sequences 11 to 21 are held for test-
ing. We follow the standard setting where semantic la-
bels are mapped to 19 classes for the single-scan bench-
mark and 25 for the multi-scan benchmark. In the latter, all
movable classes are further divided into moving and non-
moving classes. Given that prior research on temporal ag-
gregation for semantic segmentation is more prevalent in
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TangentConv [23] 34.1 84.9 2.0 18.2 21.1 18.5 1.6 0.0 0.0 83.9 38.3 64.0 15.3 85.8 49.1 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 1.9 30.1 42.2
DarkNet53Seg [2] 41.6 84.1 30.4 32.9 20.2 20.7 7.5 0.0 0.0 91.6 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8
KPConv [24] 51.2 93.7 44.9 47.2 42.5 38.6 21.6 0.0 0.0 86.5 58.4 70.5 26.7 90.8 64.5 84.6 70.3 66.0 57.0 53.9 69.4 67.4 67.5 47.2 4.7 5.8
Cylinder3D [34] 52.5 94.6 67.6 63.8 41.3 38.8 12.5 1.7 0.2 90.7 65.0 74.5 32.3 92.6 66.0 85.8 72.0 68.9 63.1 61.4 74.9 68.3 65.7 11.9 0.1 0.0
SpSequenceNet [20] 43.1 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1
TemporalLidarSeg [8] 47.0 92.1 47.7 40.9 39.2 35.0 14.4 0.0 0.0 91.8 59.6 75.8 23.2 89.8 63.8 82.3 62.5 64.7 52.6 60.4 68.2 42.8 40.4 12.9 12.4 2.1
TemporalLatticeNet [19] 47.1 91.6 35.4 36.1 26.9 23.0 9.4 0.0 0.0 91.5 59.3 75.3 27.5 89.6 65.3 84.6 66.7 70.4 57.2 60.4 59.7 41.7 51.0 48.8 5.9 0.0
Meta-RangeSeg [26] 49.7 90.8 50.0 49.5 29.5 34.8 16.6 0.0 0.0 90.8 62.9 74.8 26.5 89.8 62.1 82.8 65.7 66.5 56.2 64.5 69.0 60.4 57.9 22.0 16.6 2.6
MEMORYSEG [ours] 58.3 94.0 68.3 68.8 51.3 40.9 27.0 0.3 2.8 89.9 64.3 74.8 29.2 92.2 69.3 84.8 75.1 70.1 65.5 68.5 71.7 74.4 71.7 73.9 15.1 13.6

Table 1. Comparison to the state-of-the-art methods on the test set of SemanticKITTI [2] multi-scan benchmark. (m) indicates moving. We
include LiDAR-only published approaches at the time of submission. These approaches are categorized into two groups: the first group
includes methods that aim for single-scan segmentation but use multiple aggregated frames as input; the second group consists of methods
that introduce temporal aggregation modules explicitly tailored for handling multiple scans. Metrics are provided in [%].

the multi-scan benchmark, we consider it more appropri-
ate for evaluating our proposed method. Single-scan bench-
mark results are also provided in the supplementary mate-
rial. nuScenes [4] was collected in Boston and Singapore
using a Velodyne HDL-32E LiDAR sensor, which captures
sparser point clouds that pose extra challenges for semantic
reasoning. The dataset contains a total of 1000 scenes, with
700 scenes used for training, 150 for validation, and the re-
maining 150 held out for testing. Each scene contains about
40 labeled frames recorded at 2 Hz. We follow the standard
setting which maps 31 fine-grained classes to 16 classes for
training and evaluation. PandaSet [27] provides short se-
quences of temporal data but with a large number of moving
actors in Silicon Valley. This dataset was collected using
a Hesai-Pandar64 LiDAR and consists of 103 sequences,
each with a length of 8 seconds. Following [8], we grouped
the original fine-grained semantic classes into 14 for train-
ing and testing, trying to match the classes in other popular
segmentation benchmarks [2, 4]. We also used the same
train/validation/test split as in the reference paper.
Implementation details: For all datasets, we first train
the network without the memory update for single-scan seg-
mentation for 50 epochs. Then, we freeze the encoder and
train the memory update block and decoder in a recurrent
fashion for an additional 20 epochs. During each training
iteration, we use the first 10 consecutive sweeps as warmup
memory, and then train the network with backpropagation
through time (BPTT) on the next 3 frames. The memory
voxel size vm is 0.5 m, and the embedding dimension dm is
128. We use the AdamW optimizer with a starting learning
rate of 0.003 and a decay factor of 0.9. During training, we
use data augmentation including global scaling sampled at
random from [0.80, 1.20], translation sampled from [0, 0.2]
m on all three axes, and global rotation around the Z axis
with a random angle sampled from [−π, π]. We set the loss
weights βwce to 1, βls to 2, and βreg to 500. We set the
regularizer neighborhood ΩPt(i) to be the closest 32 points
around point i, and use a padding neighbourhood ΩH̃(j) to
be the closest 5 voxels of voxel j. All experiments are con-
ducted using 4 NVIDIA T4 GPUs with a batch size of 1 per
GPU. During evaluation, we unroll each sequence from the

first frame to the end and follow [34, 12] to apply test-time-
augmentation, i.e. averaging prediction scores of 10 forward
passes with augmented input from a single model.

To adapt to the uniqueness of each dataset, we con-
sider the following per-dataset settings. To train on the
SemanticKITTI dataset, we set the voxel size vb to 0.05
m. Due to the limited quantities of movable actors in this
dataset, following [33] we generate a library of instances
from the training sequences and randomly inject 5 objects
over the ground classes at each frame during training. To
improve the ability to separate classes into moving and non-
moving actors, we add another linear header to classify
points as moving or static and fuse the results from the se-
mantic header. More implementation details are provided
in the supplementary material. For nuScenes, the voxel size
is set to 0.1 m, and 0.125 m for PandaSet.
Metrics: We follow existing works [34, 5, 29] and use the
intersection over union (IoU) averaged over all classes as
the main metric (mIoU). Class-wise IoUs are also reported.
Comparison against state-of-the-art: Our results are
compared with other state-of-the-art approaches on the test
set of three datasets in Tab. 1 to 3. We include approaches
that use LiDAR only for fair comparison. Notably, our
proposed method outperforms all prior works on all three
datasets, demonstrating its generalizability across various
LiDAR sensors and different geographical regions.

Tab. 1 presents a comparison of our approach on the Se-
manticKITTI multi-scan benchmark, which is designed to
evaluate methods that focus on temporal aggregation for se-
mantic segmentation. The other methods in the table are
divided into two groups. The first group consists of base-
lines that are designed for single-scan segmentation but ag-
gregate multiple consecutive frames as input at the cost of
higher memory consumption and longer runtime. In con-
trast, the second group proposes temporal aggregation mod-
ules specifically to handle multiple scans. It is worth noting
that our proposed method performs significantly better than
all of these approaches. MEMORYSEG demonstrates ex-
ceptional performance in segmenting dynamic actors, such
as moving bicyclist, motorcyclist, and person. These sub-
stantial improvements can be attributed to the proposed re-
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PolarNet [32] 69.4 87.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
Cylinder3D [34] 77.2 89.9 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
SPVCNN [22] 77.4 89.7 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
(AF)2-S3Net [5] 78.3 88.5 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
MEMORYSEG [ours] 80.6 91.4 84.9 40.2 91.2 92.4 71.2 73.5 85.9 77.8 88.0 76.4 97.9 69.0 81.2 77.6 92.6 89.7

Table 2. Comparison to the state-of-the-art methods on the test set of nuScenes [4] LiDAR semantic segmentation benchmark. We include
LiDAR-only published approaches at the time of submission. Metrics are provided in [%]
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SqueezeSegv3 [28] 55.7 92.8 24.1 18.0 36.5 54.3 63.0 91.1 11.9 71.3 86.2 85.0 61.3 63.2 20.6
SalsaNext [7] 57.8 92.1 40.7 31.7 28.7 56.2 69.0 90.0 22.6 67.1 85.6 83.4 58.5 63.3 20.6
TemporalLidarSeg [8] 60.0 93.7 33.6 38.0 37.1 59.9 72.0 91.1 14.6 70.6 88.2 88.4 63.8 68.4 20.7
SPVCNN [22] 64.7 95.8 38.1 46.3 44.0 74.1 78.6 91.2 28.3 70.3 87.2 87.5 61.5 67.5 35.6
MEMORYSEG [ours] 70.3 97.2 60.2 58.4 62.9 74.3 82.6 92.1 27.7 74.1 89.4 90.7 64.9 72.8 36.4

Table 3. Comparison to the state-of-the-art methods on the test set of PandaSet [27]. Metrics are provided in [%].

current framework, which implicitly encode the motion of
moving actors in the 3D latent memory. Furthermore, we
also demonstrate the effectiveness of our approach on the
single-scan benchmark of the same dataset. We refer the
readers to the supplementary material for the detailed re-
sults. This is a more competitive benchmark focusing on
single-scan semantic segmentation where previous research
has focused on proposing various architectures [5, 29, 34]
or knowledge distillation techniques [12]. Our results show
that MEMORYSEG can outperform these methods, which
are highly optimized for this benchmark.

Results on nuScenes [4] benchmark are presented in
Tab. 2. MEMORYSEG outperforms the previous state-of-
the-art. Our method is particularly effective in smaller
classes such as barriers, pedestrians, and traffic cones,
which present challenges for semantic segmentation net-
works due to the sparser point clouds available in this
dataset. However, our approach overcomes this limitation
by using a 3D latent memory to improve semantic reasoning
of the sparse points. Additionally, we observe significant
gains in the background classes, such as sidewalk, terrain,
and manmade, which often rely on understanding of the sur-
rounding to be segmented correctly. Our method improves
the contextual reasoning by accumulating past observations
using a latent memory representation.

Finally, we compare our results with the state-of-the-art
methods on PandaSet [27] and report the test set IoUs in
Tab. 3. Our proposed method also achieves state-of-the-art
performance in this dataset. Notably, our approach outper-
forms others by a large margin in almost all classes. We
highlight that MEMORYSEG consistently outperforms Tem-
poralLidarSeg [8] across multiple benchmarks, a method
that also proposes a latent memory but in RV instead of
3D. These findings confirm our hypothesis that the 3D la-
tent memory approach is more effective than using RV in

accurately segmenting objects in 3D point clouds.

Importance of the memory: Fig. 4 highlights the sig-
nificance of incorporating memory, particularly in longer
range regions where point clouds are much sparser. To as-
sess the effectiveness of the learned latent memory, we com-
pare against our encoder and decoder without the memory
update module as the single frame baseline (SFB). Our pro-
posed network consistently outperforms the SFB in all re-
gions, with the most significant improvement observed in
the long-range region of nuScenes, where points are sparser
and more difficult to contextualize. Thanks to the 3D sparse
latent memory that accumulates semantic embeddings of
past frames, our proposed approach performs much bet-
ter than the SFB, particularly in those challenging regions.
Fig. 5 provides similar insights. In the top-left of the figure,
the SFB fails to segment a partially occluded vehicle located
behind a fence. In contrast, our proposed approach initially
segments the vehicle as other vehicle class, but as the ego
vehicle advances, the 3D latent memory accumulates and
refines through new observations, enabling the network to
correctly identify the vehicle as a car after two sweeps.
This illustration further confirms that the proposed 3D latent
memory provides better contextualization of sparse objects
that are partially occluded. Additional qualitative results
are provided in the supplementary materials. We also quan-
titatively demonstrate the importance of memory in Tab. 4.
M1 builds on SFB and incorporates FAM and MRM. Note
that both FAM and MRM are essential for updating the la-
tent memory continuously. FAM aligns the sparse 3D latent
memory in the traveling ego frame, while MRM helps in
learning to reset and update the memory recurrently. APM
is replaced with zero-padding in M1 to highlight the signif-
icance of memory. M1 shows a 2.3% improvement in the
mIoU metric compared to SFB, attributed to the ability of
the sparse 3D latent memory to aggregate information in the
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Figure 4. Comparison of MEMORYSEG with single frame base-
line (SFB) on the validation set with different distance-range.

Figure 5. Predictions of MEMORYSEG over time are illustrated in
the bottom row. We include the prediction from the single frame
baseline (SFB) and ground truth with color code at the top.

temporal dimension as the ego moves through the scene.

Influence of adaptive padding: In this section, we com-
pare our proposed APM with zero padding and Continuous
Conv [25]. The results are presented in Tab. 4. M2 is an ex-
tension of M1 that introduces adaptive padding on both ob-
servation and memory embeddings when they are aligned.
However, the padded entries are only processed using the
relative coordinates in the neighborhood, similar to Con-
tinuous Conv [25] with the attention mechanism. A slight
improvement of 0.2% is observed when new observations
in the latent memory are initialized with a learned guess in-
stead of all zeros. To further improve the performance of
the network, M4 exploits feature similarities and distances
in APM. When assigning an initial embedding to a new en-
try, both the relative position and the similarity to neighbors
are considered. This is particularly useful for moving actors
in the scene, where the network should learn to start with a
guess with a similar embedding in the neighborhood, rather
than the closest entry. By comparing M0 with M3 further
confirms the usefulness of the proposed APM.

Influence of memory refinement: In M3 of Tab. 4, we
replace our proposed MRM with a vanilla sparse ConvGRU
[1], which has a limited receptive field due to the convolu-
tion kernel size, making it challenging for fast-moving ac-
tors. However, MRM overcomes this limitation by down-
sampling features to increase the receptive field. This im-
proves the learning of meaningful reset and update gates for
refining the latent memory.

FAM APM MRM mIoU

CC Ours SCG Ours

SFB 67.2
M0 68.9
M1 69.5
M2 69.7
M3 69.7
M4 70.8

Table 4. Ablation on the proposed components in the network.
Metrics are mIoU on the validation set of SemanticKITTI [2] pro-
vided in [%]. FAM: Feature Alignment Module, APM: Adaptive
Padding Module, CC: padding using Continuous Conv [25], SCG:
Sparse ConvGRU [1]. MRM: Memory Refinement Module.

Regularizer SemanticKITTI nuScenes PandaSet
66.4 72.9 64.7
67.2 76.7 66.6

Table 5. Ablation on the model performance with and without the
proposed regularizer. Metrics are mIoU on the validation set pro-
vided in [%].

Influence of the regularizer: To demonstrate the effec-
tiveness of our regularizer to train semantic segmentation
networks on point clouds with different characteristics, we
ablate this loss on the three datasets and summarize the re-
sults in Tab. 5. The results consistently show that incorpo-
rating the regularizer leads to performance improvements.
The regularizer provides additional supervision on varia-
tions and boundaries, which is particularly beneficial for
nuScenes. We note once again that this dataset has sparser
point clouds than the other two.
Parameter count and runtime comparison: MEMORY-
SEG incurs only a relatively small computational overhead
of 23% more parameters and 20% runtime than SFB. On the
other hand, when naively concatenating the past five frames
as the input to the model, despite having the same number of
parameters as SFB, it takes 1.58 times longer (32% slower
than our method) while only exploiting a limited 0.5-second
window from the past.

5. Conclusion

In this paper, we have proposed a novel online LiDAR
segmentation model named MEMORYSEG, which utilizes a
sparse 3D latent memory to recurrently accumulate learned
semantic embeddings from past observations. We also pre-
sented a novel variation regularizer to supervise the learn-
ing of 3D semantic segmentation on point clouds. Our re-
sults demonstrate that our approach achieve state-of-the-art
performance on three large-scale datasets. This improved
performance can be attributed to the ability of the latent
memory to better contextualize objects in the scene. Look-
ing ahead, our future work will focus on integrating in-
stance segmentation and tracking to develop an end-to-end
memory-augmented panoptic segmentation framework.
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