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Abstract

Single-frame infrared small target (SIRST) detection

aims at separating small targets from clutter backgrounds

on infrared images. Recently, deep learning based meth-

ods have achieved promising performance on SIRST de-

tection, but at the cost of a large amount of training data

with expensive pixel-level annotations. To reduce the an-

notation burden, we propose the first method to achieve

SIRST detection with single-point supervision. The core

idea of this work is to recover the per-pixel mask of each

target from the given single point label by using clustering

approaches, which looks simple but is indeed challenging

since targets are always insalient and accompanied with

background clutters. To handle this issue, we introduce ran-

domness to the clustering process by adding noise to the

input images, and then obtain much more reliable pseudo

masks by averaging the clustered results. Thanks to this

“Monte Carlo” clustering approach, our method can ac-

curately recover pseudo masks and thus turn arbitrary ful-

ly supervised SIRST detection networks into weakly super-

vised ones with only single point annotation. Experiments

on four datasets demonstrate that our method can be ap-

plied to existing SIRST detection networks to achieve com-

parable performance with their fully-supervised counter-

parts, which reveals that single-point supervision is strong

enough for SIRST detection. Our code will be avail-

able at: https://github.com/YeRen123455/

SIRST-Single-Point-Supervision.

1. Introduction

Single-frame infrared small target (SIRST) detection

has been widely used in many applications such as ma-

rine resource utilization [23, 45], high-precision naviga-

tion [34, 13], and ecological environment monitoring [35].
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Figure 1. Pipeline of our method. The proposed Monte Carlo

linear clustering along with single-point annotation can produce

high-quality pseudo mask (i.e., target probability map (TPM)).

However, existing SIRST detection methods mainly rely on

segmentation pipeline with pixel-level supervision. Pixel-

level annotating is time-consuming and thus hinders the

quick deployment of those large scale data-dependent sce-

narios. Therefore, it is in urgent need to alleviate the annota-

tion burden while maintaining state-of-the-art performance

in SIRST detection.

Point-level supervision, as an annotation-friendly for-

m of supervision, can provide both category and localiza-

tion information for each target. Previous works in gen-

eral object segmentation utilized rich semantic informa-

tion to design various training loss [4] and network mod-

ules [29, 27], and continuously expand the single-point an-

notation to a pixel-level pseudo mask. Although having

achieved promising performance, these methods heavily re-

ly on prior semantic information (e.g., objectness prior in

[4, 50], shape prior in [29, 27, 49]), and generally need

more than one point as supervision. However, infrared s-

mall targets generally occupy no more than 0.15% area of

the whole image [47] and lack texture, shape and color in-

formation. Consequently, previous semantic information-

dependent methods cannot well adopt to this task.

1

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1009



Figure 2. Some inherent characteristics of SIRST observed from

the small local regions (i.e., salient in local region, similar shape,

texture, and energy distribution).

We notice that although infrared small targets lack se-

mantic information from the perspective of whole image,

they are quite salient in the local small region. Specifically,

as shown in Fig. 2, small targets in infrared images gener-

ally have high energy concentricity and exhibit significant

gradient difference in their local regions. Moreover, limited

semantic information (e.g., weak texture, shape, and col-

or distribution) makes most point-like and spot-like targets

exhibit similar energy distribution (e.g., Gaussian distribu-

tion). Consequently, it is straightforward to use a simple

linear clustering approach (LCA) to separate the salient re-

gions by measuring their color and spatial distances with

adjacent backgrounds.

However, LCA easily falls into local optimum and pro-

duces inaccurate segmentation results due to their fixed

hyper-parameters. To handle this problem, we propose a

Monte Carlo linear clustering (MCLC) method to regular-

ize the clustering process and recover the reliable clustering

result by repetitive random experiments. Specifically, we

introduce randomness to the clustering process by adding

noise to the input images. With the help of random noise,

the distance between unexpected background region and

target region can be significantly enlarged. The misclus-

tered target regions can be pushed away from the false clus-

tering center and thus return back the true clustering center.

In this way, the single-point annotation can be gradually re-

covered as a much more reliable pixel-level target probabil-

ity map (TPM) by averaging the clustered results. Pixels

with larger values in TPM represent a higher probability of

belonging to the target. Finally, we use the refined TPM

to turn arbitrary fully supervised SIRST detection networks

into weakly supervised ones with only single point annota-

tion. Fig. 1 shows the overall pipeline of our method, and

the main contributions are summarized as follows:

• To the best of our knowledge, this is the first single-

point supervised method to achieve SIRST detection.

A Monte Carlo linear clustering-based pipeline is pro-

posed to achieve comparable performance with the ful-

ly supervised counterpart by using single-point anno-

taion.

• Inspired by the inherent characteristic of SIRST, a sim-

ple yet effective linear clustering approach with ran-

dom noise-guided Monte Carlo regularization is pro-

posed to coarsely extract and further refine the candi-

date target region.

• Experiments on four public SIRST datasets demon-

strate the effectiveness of our method. Ablation s-

tudy reveals that pixel-level labels are not necessary

for SIRST detection while single-point supervision is

strong enough.

2. Related Work

2.1. Infrared Small Target Detection

SIRST detection has been extensively investigated for

decades. Early traditional paradigm achieves SIRST de-

tection by measuring the discontinuity between targets

and backgrounds. Typical methods include filtering-based

methods [31, 14], local contrast measure-based method-

s [6, 18, 19, 20, 22, 36], and low rank-based methods

[16, 43, 9, 44, 51, 10]. Since real scenes are much more

complex with dramatic changes in target size, shape, and

clutter background, it is difficult to use handcrafted features

and fixed hyper-parameters to handle such variations. To

address this problem, recent deep learning-based method-

s learn trainable features in a data-driven manner and thus

achieve better performance than traditional ones.

Existing deep learning-based methods can be divided in-

to detection based methods and segmentation based meth-

ods. Since the pixel-level classification result is essential

for the subsequent recognition task in SIRST, segmentation-

based methods have attracted increasing attention recently.

Dai et al. [11] proposed the first segmentation-based net-

work (i.e., ACM). They designed an asymmetric contextual

module to aggregate features from shallow layers and deep

layers. Then, Dai et al. [12] improved ACM by introduc-

ing a dilated local contrast measure. Specifically, a feature

cyclic shift scheme was designed to achieve a trainable lo-

cal contrast measure. After that, Zhang et al. [45] modeled

SIRST detection as a shape detection task. A taylor finite

difference (TFD)-inspired edge block and a two-orientation

attention aggregation (TOAA) block were proposed to cap-

ture precise shape of infrared targets. Recentlly, Li et al.

[23] proposed a dense nested attention network (DNANet).

A specifically-designed dense nested interactive module (D-

NIM) was proposed to both extract high-level information

and maintain the response of small targets in deep layers.

Although the performance has been continuously im-

proved by recent networks, existing deep learning-based

methods rely on the fully-supervised training scheme with
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Figure 3. Sample of input images, four common weakly super-

vised annotations (i.e., single-point, multi-point, scribble, bound-

ing box), and one fully supervised pixel-level annotation.

pixel-level annotations. Expensive labor cost makes ex-

isting methods hard to be deployed to large scale data-

dependent tasks.

2.2. Point­based Segmentation

Point-level supervision has been widely used in many

high-level tasks (e.g., object detection [7, 46], object local-

ization [41], and semantic segmentation [4, 29, 27, 24, 49])

and yield promising performance. For semantic segmenta-

tion task, Bearman et al. [4] proposed the first single-point

supervised semantic segmentation method. They incorpo-

rated the single-point supervision along with an objectness

prior as the loss function to infer the extent of the object.

Then, Papadopoulos et al. [29] and Maninis et al. [27] uti-

lized four extreme points (i.e., left-most, right-most, top,

and bottom pixels) as supervision to further improve the

quality of the pseudo mask. After that, Austin et al. [28]

followed the class activation maps (CAM) [50] pipeline and

used the point annotation to refine the quality of pseudo la-

bels. More recently, Li et al. [24] utilized the semantical

consistency property of general objects with 20 randomly

annotated points to achieve comparable segmentation re-

sults with fully-supervised counterpart. Moreover, in the

field of cell segmentation, Zhao et al. [49] proposed the first

single-point supervised segmentation method, in which two

semantic prior-based training losses (i.e., divergence loss

and consistency loss) were proposed to achieve high-quality

cell segmentation.

Although promising performance has been achieved, ex-

isting works rely on rich semantic information (e.g., object-

ness prior in [4, 50], shape prior in [29, 27, 49]) and most

of them need multi-point annotation. Infrared small target-

s generally occupy no more than 0.15% area of the whole

image [47] and lack texture, shape and color information.

Previous semantic information-dependent methods cannot

be directly used for SIRST detection.

3. Methodology

In this section, we first introduce the motivation. Then,

a detailed illustration of the proposed linear clustering ap-

proach with Monte Carlo regularization is provided. Over-

all architecture of proposed method is shown in Fig. 4.

3.1. Motivation

We investigate the annotation cost of four common

weakly-supervised annotations (i.e., single point [5], mul-

tiple points[5, 29, 27], scribbles [25], bounding boxes[21])

by re-labelling the NUDT-SIRST [23] and NUAA-SIRST

[11] datasets. Fig. 3 shows the average annotation time of

four weakly-supervised and one fully-supervised approach-

es. Note that, single-point supervision can reduce about

87% annotation time as compared to the pixel-level anno-

tation approach, which motivates us to apply single-point

annotation to SIRST detection. Please refer to the supple-

mentary material for more detailed analysis.

However, existing point-level supervised methods [5, 29,

27] are designed for general objects with rich semantic in-

formation (e.g., shape, texture, and color). As shown in

Fig. 2, the characteristics of infrared small targets make

the aforementioned semantic-based pipeline unsuitable for

SIRST detection. Considering that infrared small targets are

quite salient in their local regions and share similar shape,

texture, and energy distribution. Intuitively, we can use sim-

ple linear clustering approaches (e.g., Super-pixel [1], K-

Means [26]) to separate the salient regions by comparing

their color and spatial distances among these clusters.

3.2. Linear Clustering Approach

Without loss of generality, we take the quick linear clus-

tering method SuperPixel [1] as an example to introduce

how to use LCA to coarsely separate the target region. It

should be noted that other linear clustering approaches such

as KMeans [26] can be also used in our method, as demon-

strated in Fig. 5. The pipeline of our LCA is shown in Fig. 4

(Step I ∼ Step III), in which the clustering center of the im-

age is first initialized, and then adjusted according to a color

and spatial distance based measurement. Finally, the clus-

tering center is continuously updated until the pre-defined

convergence requirements are met.

1) Clustering Center Initialization: We initialize the

clustering center based on the pre-defined number of clus-

ters N. Given an input image I ∈ R
H×W , we first divide

it into N regions with equal areas and fixed grid interval

S =
√

H×W
N ( as shown in Fig. 4-Step I). After that, the

clustering center is first initialized as the centroid of each

region, and then moved to the lowest gradient position of its

3×3 neighborhood. The clustering center of the nth clus-

tering region Cn can be represented as a vector as:

Cn = [cn, sn]
T
, (1)

where [cn]
T

represents the CIELAB color [32] of Cn, [sn]
T

denotes the spatial position in image coordinate of Cn.
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Figure 4. Illustration of our method. StepI ∼ StepIII: LCA can coarsely separate target from clutter background, but easily falls

into local optimum and produce incomplete pseudo mask. StepIV ∼ StepV : Monte Carlo regularization can increase the color distance

between background and target region and thus enforce the misclustered target region away from the false clustering center. After repetitive

random experiments, the accumulated clustering results are finally shown as a target probability map (TPM), where pixels with larger values

represent a higher probability of belonging to the target.

2) Distance Measurement: After clustering center ini-

tialization, we adopt a color and spatial distance based mea-

surement to determine the clustering center of each pixel.

As shown in Fig. 4-Step II, for each clustering center Cn,

we use L2 distance to measure its distance with each pixel

pi = [ci, si]
T

in its adjacent 2S × 2S regions. Consider-

ing that the ranges of color value and spatial position value

are inconsistent, we normalize the both distance values with

normalization coefficient µs and µc. D(Cn, pi) is written as:

D(Cn, pi) =
√

(Dc)2 + (Ds)2

=

√

(cpi
− cCn

)
2

µ2
c

+
(spi

− sCn
)
2

µ2
s

.
(2)

Then, the clustering label l for each pixel pi can be de-

termined as:

l(pi) = argminn∈{1,2,3,...,N} [D(Cn, pi)] . (3)

3) Updating and Convergence: After determining the

clustering center of each pixel at the current iteration, we

repetitively update the position of each clustering center un-

til convergence, as shown in Fig. 4-Step III. Specifically, we

first calculate the clustering centers to be the mean vector

[cm, sm]
T

of all the pixels P = {p1, p2, ...pm} with the

same clustering label l(C
′

n). The new clustering center C
′

n

can be formulated as:

Kmeans

(28.8% IoU)

SuperPixel

(47.1% IoU)

Kmeans+MC Regu.

(58.3% IoU)

SuperPixel+MC Regu.

(69.2% IoU)

(a) (b) (c) (d)

Iter = 1

Iter = 2

Iter = 1

Iter = 2

Iter = 1 Iter = 1

Iter = 2 Iter = 2

Iter = 100 Iter = 100 Iter = 100 Iter = 100

Figure 5. Visualization results achieved by (a) Kmeans, (b) K-

means with Monte Carlo Regularization, (c) Super pixel, (d) Super

pixel with Monte Carlo Regularization. Our proposed Monte Car-

lo regularization helps to expand informative target region.

C
′

n(cn, xn, yn) =
1

|P |

∑

pm∈P

(cpm
, spm

). (4)

After that, we adopt L2 norm to compute a distance E
between new clustering center locations C

′

n and previous

clustering center locations Cn. The updating steps can be

repeated iteratively until the error is smaller than the pre-

defined threshold T. That is ‖C
′

n − Cn‖2 < T, where ‖ · ‖2
denote the L2 norm. Finally, we assign the single-point an-

notation pAnno located at the nth clustering region as the

clustering result Mpred.
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Figure 6. Quantitative analysis on (a) Sensitivity of target

and non-target regions to additional noise, and (b) Color dis-

tance of target edge region with true foreground region cen-

troid ∆(Dc(C
T ,Mpred)) and false background region centroid

∆(Dc(C
F ,Mpred)). Average results from 10 trails are reported.

Readers can refer to the supplementary material for more detailed

illustration.

3.3. Monte Carlo Regularization

Although LCA can coarsely separate local salient re-

gions from the backgrounds, as shown in Fig. 5 (a) and (c),

a linear clustering method easily falls into local optimum

and generates incomplete or oversized results. In this sub-

section, we first analyze the reason of this issue, and then

propose a Monte Carlo regularization to alleviate this issue,

as shown in Fig. 4 (StepIV ∼ StepV).

1) Inaccurate Result within a Single Clustering: Due

to the varied size of small targets, LCA with fixed num-

ber of clustering centers cannot produce ideal results for

all kinds of targets. That is because, both color Dc and

spatial distance Ds determine the output of linear clus-

tering model in Equation 2. Since edge areas M
Edge
pred =

{m
Edge(1)
pred ,m

Edge(2)
pred , ...,m

Edge(Z)
pred } of the spot and extend-

ed target (i.e., big target) are generally far from the true

clustering center CT (shown as the left-most green point

in Fig. 4-Step III). The spatial distance Dc(C
T ,M

Edge
pred ) be-

tween the true clustering center CT and edge areas M
Edge
pred

is usually father than that of the false clustering center CF .

That is:

Ds(C
T ,m

Edge(z)
pred ) > Ds(C

F ,m
Edge(z)
pred ). (5)

Moreover, the color value of big target generally exhibits

Gaussian distribution. Those edge areas often exhibit rela-

tively high color difference with the true clustering center,

and are close to the adjacent false clustering center (shown

as the right-most green point in Fig. 4 Step III). That is:

Dc(C
T ,m

Edge(z)
pred ) > Dc(C

F ,m
Edge(z)
pred ). (6)

As a result, the label of edge areas l
Edge
pred may be falsely

included into the adjacent false clustering center CF , result-

ing in incomplete clustering result.

2) Random Noise Guided Regularization: Spatial dis-

tance Ds is generally fixed and hard to change in the im-

age. As shown in Fig. 6 (a), when adding random noise,

target and non-target regions exhibit different sensitivity to

the noise. Target regions with higher color vaule are more

robust to the additional noise than the non-target regions.

Based on this finding, we are motivated to introduce random

noise to enlarge the color distance Dc(C
F ,M

Edge
pred ) between

edge areas and false clustering center (as shown in Fig. 4-

Step III), and thus make the edge areas be clustered to the

true clustering center. Random noise-regularized clustering

result can be formulated as follows:

MNoise
pred = LCA(clip(I +N )), (7)

where clip(·) operation represents that color values larger

than 255 will be fixed at 255. N is the additional random

noise. The color value change caused by random noise can

be formulated as:

∆(Dc(C,Mpred)) = DNoise
c −DClean

c . (8)

Since background region has relatively low color value

than foreground region. Additional noise will greatly in-

crease the color value of adjacent false clustering centers,

and thus enlarges their color distance with the edge area of

target region. On the contrary, when comparing Fig. 4-Step

IV with Fig. 4-Step V, we observe that foreground regions

have high energy concentricity and are usually close to satu-

ration. Additional noise cannot bring so much color change

to target regions as the background regions. Benefited by

the additional noise, as shown in Fig. 6 (b), the change

of color distance between edge areas and false clustering

center (i.e., ∆(Dc(C
F ,Mpred))) will be significantly larger

than that between edge areas and true clustering center (i.e.,

∆(Dc(C
T ,Mpred))), making the misclustered target region

be more closed to the true clustering center.

3) Monte Carlo Process: As aforementioned, random

noise can enforce the misclustered region to be gradually

close to the true clustering center. Considering the random-

ness of noise, additional noise does not always bring such

positive effect. We are motivated to adopt the Monte Car-

lo method to accumulate the clustering result from repeti-

tive random experiments and gradually recover the reliable

clustering result. To this end, we perform K independent

clustering and formulate this process as follows:

MFull
Pred =

1

K

K
∑

k=1

(

LCA(clip(I +N (k)))
)

, (9)

where MFull
Pred is the accumulated clustering results after K

independent clustering by LCA, and finally shown as a tar-

get probability map (TPM), where pixels with larger values

represent a higher probability of belonging to the target.

The optimization process finally stops when the distance

between the new clustering center locations C
′

and previous
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Figure 7. IoU scores achieved by our method with (a) different

types and intensity of additional noise and (b) different number

of clustering center on the NUAA-SIRST dataset. Average results

from 5 trails are reported. Readers can refer to the supplementary

material for additional experiments on the other datasets.

Table 1. IoU(10−2) value achieved by the different variants of

our method on the training set of four representative datasets (i.e.,

NUAA, IRSTD, NUDT, NUDT-sea). MC Regu. refers to Monte

Carlo regularization.
Point Label LCA MC Regu. dCRF IoU (%)

X X 2.53 / 1.62 / 2.28 / 1.82

X X 51.8 / 55.5 / 51.2 / 38.1

X X X 70.4 / 66.2 / 52.5 / 43.9

X X X X 76.3 / 68.8 / 60.2 / 47.1

clustering center locations C is smaller than the pre-defined

threshold TF , i.e., ‖C
′

n − Cn‖2 < TF .

4. Experiments

In this section, we first introduce our evaluation metrics

and implementation details. Then, we compare our MCLC

to several state-of-the-art unsupervised, point-level super-

vised, and fully-supervised SIRST detection methods. Fi-

nally, we present ablation studies to investigate the effec-

tiveness of our method. Note that, we search for optimal

parameters of MCLC in the training set of NUAA-SIRST

[11] and directly adopt them as default parameters to gen-

erate pseudo masks on the other three datasets[45, 23, 39].

4.1. Evaluation Metrics

Considering that both the quality of pseudo labels and

the final detection results are crucial to SIRST detection,

we followed previous works [37, 42, 3, 2] and propose a

two-stage pipeline (i.e., pseudo mask and final detection re-

sult evaluation) to comprehensively evaluate the effective-

ness of the proposed method. Firstly, we followed the same

metrics in weakly-supervised general object segmentation

[3, 2] and adopted intersection of union (IoU ) to evaluate

the quality of generated pseudo labels on the training set.

For the final detection results evaluation, we followed previ-

ous works [11, 12, 23] and adopted probability of detection

(Pd), and false-alarm rate Fa to evaluate the localization

precision, and used IoU to evaluate the shape description

ability on the test set.
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Figure 8. (a) Labelling deviation examples of small target from

four datasets. (b) Label deviation distribution map generated from

105 manually re-labelled targets. Real world labelling deviation

of small target is generally less than 3 pixels.

4.2. Implementation Details

1) Datasets: We evaluated our method on the NUAA-

SIRST [11], IRSTD-1k [45], NUDT-SIRST [23], and

NUDT-SIRST-sea [39] datasets. Without specification, for

the NUAA-SIRST and NUDT-SIRST datasets, we used the

same division as in [23] and set the ratio of train-val set to

test set as 1. For the IRSTD-1k dataset, we followed [45]

and used 80% data for training and validation, and the re-

maining 20% data for test. The division setting in [39] was

adopted for the NUDT-SIRST-sea dataset, i.e., 41 images

were used for training and validation, and the remaining 7

images were used for test. Note that, only single point-level

annotation with category information (i.e., point, spot, and

extend categories) are available during network training.

2) Training Details: In our experiments, all input im-

ages were first normalized before training. Then, these nor-

malized images were sequentially processed by random flip,

and random crop for data augmentation. Next, these images

were resized to a fixed resolution. Specifically, 1024 ×1024

and 256 × 256 spatial resolutions were used for the NUDT-

SIRST-sea and the remaining three datasets, respectively.

Finally, we fed these resized datasets into network for both

training and evaluation. Without specification, we adopt-

ed the centroid of ground truth mask as the single-point la-

bel. The influence of label position deviation is discussed in

the following ablation. Moreover, all networks were trained

with the Soft-IoU loss function and optimized by the Ada-

grad method [15] with the CosineAnnealingLR scheduler.

The Xavier method [17] was used for all weights and bias

parameters initialization. We set the learning rate and epoch

number to 0.05 and 1500, respectively. The batch size was

set to 16 for the NUAA-SIRST, IRSTD-1k, NUDT-SIRST

datasets but set to 4 for the NUDT-SIRST-sea dataset due to

its large image size. All models were implemented in Py-

Torch [30] on a computer with an AMD Ryzen 9 3950X @

2.20 GHz CPU and an Nvidia GeForce 3090 GPU.

4.3. Ablation Study

1) Effectiveness of Proposed Components: Table 1

shows the contribution of our proposed components on four
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Table 2. IoU(10−2) values and corresponding labelling cost with

stronger supervision on the train set of four datasets.

Annotation
Dataset

NUAA IRSTD NUDT NUDT-sea

Single-Point 76.3 68.8 60.2 47.1

Multi-Point 76.6 69.1 62.6 53.7

Scribble 78.5 70.5 63.2 55.2

Bounding-Box 78.9 71.8 64.8 54.5

datasets. Compared to the initial single-point label, lin-

ear clustering approach (LCA) introduces 49.3%, 53.9%,

48.9%, 36.3% improvements for the NUAA, IRSTD-1k,

NUDT, NUDT-sea datasets, respectively. That is because,

LCA utilizes the inherent characteristics of infrared small

targets and thus coarsely separates the targets from cluster-

ing background. By introducing random salt noise to reg-

ularize the linear clustering process, we obtain much more

reliable results and achieve additional 18.6%, 10.7%, 1.3%,

5.8% improvements on the above four datasets. After that,

denseCRF [8] was used as a post-processing module to re-

fine the target probability map (TPM) generated by MCLC.

It further introduces 5.9%, 2.6%, 7.7%, 3.2% improvements

for the above four datasets, respectively. We visualize the

Monte Carlo linear clustering process in Fig. 9. Although

easily producing inaccurate results at the beginning of clus-

tering (e.g., iteration number less than 20), MCLC can grad-

ually recover a reliable clustering result. More visualization

samples are shown in supplementary material.

2) Type and Intensity of Noise: Fig. 7 (a) shows the

change trend of IoU with respect to different noise intensi-

ty under three types of common noise (i.e., salt, pepper, and

Gaussian). With the increase of noise intensity, the IoU of

MCLC with denseCRF under salt noise and pepper noise

increases rapidly at the beginning, and reaches their peak

scores of 76% and 71% at 0.05 intensity1. After that, ex-

cessive intensity value reduces the saliency of target region

and thus results in the decrease of IoU . Moreover, Gaussian

noise causes huge performance decrease under any intensi-

ty. That is because, Gaussian noise randomly changes the

values of all pixels in the image, which is similar to the salt

and pepper with high intensity. Since all pixels in the image

are influenced by the random noise, the saliency of target is

greatly decreased, resulting in dramatic performance drop.

3) Number of Clustering Center: The number of clus-

tering center determines the initial area of each clustering

region. Fig. 7 (b) reports the IoU of the results generated

by MCLC with denseCRF, MCLC with fixed threshold, and

LCA under different number of clustering center. It shows

that the IoU firstly shows a rapid increasing trend with the

increase number of clustering center, and then reaches the

peak score of 76% with 9 clustering centers. Afterward-

1The intensity value for salt and pepper noise is defined as the area ratio

of noise region and image region. Higher values denote that more pixels

are replaced by salt or pepper pixels.

Table 3. IoU(10−2) values achieved with single point supervision

under ideal and real scene.
Pseudo Mask

(Ideal / Real)

Final Results

(Ideal / Real)

Pseudo Mask

(Ideal / Real)

Final Results

(Ideal / Real)

ResUnet (76.3 / 73.7) (71.6 / 71.2) (60.2 / 58.8) (68.0 / 66.5)

DNANet NUAA (72.9 / 72.0) NUDT (70.5 / 69.1)

ResUnet (68.8 / 66.7) (64.6 / 63.8) (47.1 / 45.7) (39.1 / 38.2)

DNANet IRSTD (62.2 / 60.9) NUDT-Sea (40.2 / 38.8)

Table 4. IoU(10−2) values under fixed labelling time. 5.2× (with

search) and 8.0× (w/o search) more point-level (P.) labels help to

generate better results under fixed labelling time.

Sup.

NUAA-SIRST IRSTD-1k

Time Budget: 920s Time Budget: 1400s

(427×P.) vs (82×F.) (1000×P.) vs (125×F.)

(5.2× P. labels) (8.0× P. labels)

ResUnet Full 56.8 43.8

ResUnet+MCLC P. 71.6 ↑ 14.8 64.6 ↑ 20.8
DNANet Full 58.7 46.1

DNANet+MCLC P. 72.1 ↑ 13.4 62.2 ↑ 16.1

s, the quality of TPM gradually decreases when the num-

ber of clustering center further increases. The above results

demonstrate that inappropriate number of clustering center

will result in over-small or over-large area of initial search

region, and thus introduce negative effect on MCLC.

4) Performance with Stronger Supervision: As shown

in Table 2, stronger supervision can introduce additional

0.3% ∼ 2.6% improvements in term of IoU on the NUAA-

SIRST dataset, but at a cost of 121% ∼ 700% increase of

annotation time (i.e., 1.4s, 3.1s, and 11.2s for single-point,

multi-point, and pixel-level annotation in Fig. 3). Similar

results can be also found on the other three datasets. There-

fore, we argue that single-point annotation is the most eco-

nomical supervision and is strong enough for SIRST detec-

tion.

5) Labelling Position Deviation: Real-world SIRST

application may suffer from labelling position deviation

shown in Fig. 8 (a). To simulate the labelling position de-

viation in real world, we manually re-labelled 105 targets

in NUAA-SIRST and IRSTD-1k dataset, and generated a

distribution map of labelling position in Fig. 8 (b). Based

on this distribution map, we re-produced the pseudo masks

of whole dataset and generated the final detection results in

Table 3. Average results from three trails demonstrate that

our method can produce competitive results under practical

labelling settings.

6) Time Efficiency: As aforementioned, once the opti-

mal parameters (e.g., type and intensity of noise, number

of clustering centers) are searched in one real-world dataset

(e.g., NUAA-SIRST), we directly adopt these parameter-

s to new scenes without secondary search (e.g., IRSTD in

Table 4). As shown in Table 4, single-point labelling can

produce about 5.2× (with parameter search) ∼ 8.0× (w/o

parameter search) annotation than the pixel-level labelling

with the same annotation budget, and thus achieves much

better performance. Note that, our MCLC can efficiently
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Table 5. IoU(10−2), Pd(10
−2), and Fa(10

−6) values achieved by different state-of-the-art methods on four benchmark datasets. For

IoU and Pd, larger values indicate better performance. For Fa, smaller values indicate better performance. Unsup. refers to unsupervised

methods. The best single-point supervised results are in red and the second best results are in blue.

Method Sup.
Dataset

NUAA-SIRST [11] IRSTD-1k [45] NUDT-SIRST [23] NUDT-SIRST-sea [39]

Top-Hat [31] Unsup. 7.143 79.84 1012 6.222 55.48 595.6 20.72 78.41 166.7 1.17 2.680 95.37
WSLCM [20] Unsup. 1.158 77.95 5446 0.019 55.79 31547 2.283 56.82 1309 0.60 10.52 7.330
MSLSTIPT [16] Unsup. 10.30 82.13 1131 10.37 57.05 3707 8.342 47.40 888.1 0.33 0.350 6283
NRAM [43] Unsup. 12.16 74.52 13.85 4.221 49.21 27.86 6.927 56.40 19.27 0.35 17.31 3.585
PSTNN [44] Unsup. 22.40 77.95 29.11 9.871 51.72 99.75 14.85 66.13 44.17 1.50 13.51 15.44

ACM [11] Full 70.33 93.91 3.728 60.97 90.58 21.78 67.08 95.97 10.18 47.57 70.46 21.31
ACM + KMeans[26] Point 46.16 88.59 27.45 33.41 54.42 41.82 41.18 77.88 34.86 38.15 42.45 23.25
ACM + SuperPixel[1] Point 53.84 90.49 56.18 49.69 84.69 42.36 51.76 92.33 34.60 40.42 36.70 16.92
ACM + GrabCut[33] Point 57.63 90.87 60.46 54.03 81.97 23.99 55.24 91.65 6.457 38.76 52.37 15.54
ACM + Ours Point 67.08 92.01 19.80 56.53 82.31 25.05 57.74 92.38 16.77 43.69 55.69 9.820

ResUnet[39] Full 75.93 97.71 15.68 66.34 92.83 8.198 83.74 98.09 4.820 46.05 60.18 7.920
ResUnet + KMeans[26] Point 22.34 39.92 156.5 33.86 80.95 10.32 42.65 89.20 42.51 31.11 51.74 44.63
ResUnet + SuperPixel[1] Point 60.02 93.15 23.45 59.28 88.43 24.36 62.65 93.40 26.95 36.43 56.50 30.61
ResUnet + GrabCut[33] Point 61.38 95.43 25.16 61.67 90.13 13.96 63.01 94.03 13.44 37.04 56.19 17.32
ResUnet + Ours Point 71.58 94.67 15.21 64.59 90.81 6.223 68.04 93.86 25.35 39.06 59.44 6.979

DNANet [23] Full 76.24 97.71 12.80 68.44 94.77 8.806 86.36 97.39 6.897 42.17 61.60 17.19
DNANet + KMeans[26] Point 45.69 90.49 58.11 32.98 81.63 25.18 42.84 88.04 56.99 20.59 32.67 21.59
DNANet + SuperPixel[1] Point 62.59 93.53 14.54 58.44 89.45 27.70 64.68 95.44 33.39 38.42 36.70 6.921
DNANet + GrabCut[33] Point 61.14 97.71 20.53 61.00 91.15 20.87 64.00 97.03 40.65 28.08 49.79 4.816
DNANet + Ours Point 72.86 96.95 14.43 62.23 92.13 24.14 70.52 95.55 33.20 40.23 58.32 11.29

ISNet [40] Full 80.01 99.23 4.96 68.72 95.68 15.43 82.57 96.49 44.11 41.27 58.89 13.26
ISNet + KMeans[26] Point 38.27 74.88 112.7 29.67 69.52 38.43 44.57 89.87 66.20 32.57 44.20 35.26
ISNet + SuperPixel[1] Point 65.82 93.73 28.26 57.93 90.75 41.74 61.59 95.61 29.59 35.21 48.56 15.32
ISNet + GrabCut[33] Point 63.72 96.27 26.32 62.29 91.37 19.34 65.53 94.89 45.31 33.68 48.24 23.56
ISNet + Ours Point 75.93 95.44 11.04 63.19 92.58 22.23 66.87 96.22 48.59 38.29 52.27 19.97

UIUNet [45] Full 76.83 97.64 12.31 65.27 92.76 12.40 75.35 93.33 27.69 41.88 55.69 11.56
UIUNet + KMeans[26] Point 35.17 90.90 46.53 21.26 82.52 19.43 38.27 88.27 78.09 29.33 33.17 14.22
UIUNet + SuperPixel[1] Point 64.23 92.11 49.34 54.42 87.30 29.82 51.68 91.32 39.40 37.83 47.22 20.09
UIUNet + GrabCut[33] Point 63.29 93.86 33.27 60.37 89.27 14.24 64.33 92.57 33.59 37.03 51.55 26.12
UIUNet + Ours Point 74.22 96.20 16.19 64.13 90.74 14.93 69.35 91.11 38.21 39.27 53.23 23.14

Image Pseudo.MMCLC Process TPM

Iter = 1 Iter = 2 Iter = 20 Iter = 100 CRF Refine

Figure 9. Examples of target probability map (TPM) and the cor-

responding refined pseudo masks during the MCLC process.

recover a single point annotation to a pixel-level one with

only 0.075s (average result from 533 targets) on a PC-level

CPU.

4.4. Comparison to the State­of­the­art Methods

We compare our method to several state-of-the-art meth-

ods on four benchmark datasets in this subsection. For fair

comparison, we used the same hyper-parameters and ex-

perimental settings (e.g., special dataset division method

in UIUNet[40]) as reported in their original papers when

re-implementing comparing methods and retrained all the

Table 6. IoU(10−2), Pd(10−2), and Fa(10−6) values achieved

by existing salient object detection (SOD) methods.
Sup. NUAA-SIRST IRSTD-1k

ResUnet Full 75.9 97.7 15.7 66.3 92.8 8.19

Res.+PFAN [48] Point 27.6 83.9 49.6 22.8 76.5 66.2

Res.+F3Net [38] Point 33.2 81.6 106.2 26.3 71.3 82.3

ResUnet+MCLC Point 71.6 94.7 15.2 64.6 90.8 6.22

DNANet Full 76.2 97.7 12.8 68.4 94.7 8.8

DNA.+PFAN [48] Point 29.3 85.2 66.8 37.6 78.6 57.7

DNA.+F3Net [38] Point 33.6 84.9 78.0 31.2 77.1 61.2

DNANet+MCLC Point 72.9 96.9 14.4 62.2 92.1 24.1

models from scratch on these four datasets.

1) Quantitative and Qualitative Results: Quantitative

results are shown in Table 5. Our Monte Carlo linear clus-

tering method (i.e., MCLC) achieves much better perfor-

mance over those unsupervised methods. Compared to M-

CLC with other single-point supervised methods, MCLC

can produce better pseudo masks and thus achieve better

performance in term of Pd, Fa, and IoU . Compared to the

fully-supervised counterparts, MCLC enables the respec-

tive networks to generate comparable result with 87% an-

notation time reduction. Qualitative results on four datasets

are shown in Fig. 10. Compared to fully supervised meth-

ods, our MCLC can help existing detection methods to pro-

duce comparable results in a more time-efficient manner,

especially for those point targets (e.g., img-1, img-4) and

spot targets (e.g., img-2, img-3, img-5, img-6). Moreover,

Fig. 10 (img-7. img-8) demonstrates the robustness of our

method on the dense target scenarios. Readers can refer to
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NUDT-SIRST-sea

(7) (8)

NUAA-SIRST

(a)    Input 

(1) (2)

(b)  Point Result

(c)   Full Result

(d)       GT

IRSTD-1k

(3) (4)

NUDT-SIRST

(5) (6)

Figure 10. Qualitative results achieved by DNANet[23] under (b) point-level and (c) pixel-level supervision. The correctly detected target,

false alarm, and miss detection areas are highlighted by red, yellow, and green dotted circles. More visualization results are shown in

supplementary material.

the supplementary material for more visualization results.

2) Compared with SOD Methods: Quantitative results

in Table 6 show that our MCLC performs much better than

those salient object detection (SOD) methods. That is be-

cause, although the small targets are salient in local region,

a single point label can not provide sufficient supervision

to train high-performance SOD methods (e.g., PFAN [48],

F3Net [38]). In contrast, our MCLC can make full use of

single point labels to obtain higher accuracy.

5. Conclusion

In this paper, we propose a simple yet effective pipeline

for single-frame infrared small target detection with single-

point annotation. First, we found that SIRST is generally

salient in the local small region and exhibits high energy

concentricity. Then, based on this observation, we proposed

a linear clustering approach (LCA) to coarsely separate the

targets from clustering background by measuring the col-

or and spatial distance with clutter background. To further

refine the results, we design a Monte Carlo regularization

approach to constrain the clustering process and continu-

ously expand the the point-level annotation to a high-quality

pixel-level one. Extensive experiments on four benchmark

datasets demonstrate that our method achieves comparable

performance with fully-supervised methods. We hope our

study can draw attention to the research on weakly super-

vised SIRST detection.
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