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Abstract

CNN’s limited receptive field restricts its ability to
capture long-range spatial-temporal dependencies, lead-
ing to unsatisfactory performance in video super-resolution
(VSR). To tackle this challenge, this paper presents a
novel multi-frequency representation enhancement module
(MFE) that performs spatial-temporal information aggre-
gation in the frequency domain. Specifically, MFE mainly
includes a spatial-frequency representation enhancement
branch which captures the long-range dependency in the
spatial dimension, and an energy frequency representation
enhancement branch to obtain the inter-channel feature re-
lationship. Moreover, a novel model training method named
privilege training is proposed to encode the privilege infor-
mation from high-resolution videos to facilitate model train-
ing. With these two methods, we introduce a new VSR model
named MFPI, which outperforms state-of-the-art methods
by a large margin while maintaining good efficiency on var-
ious datasets, including REDS4, Vimeo, Vid4, and UDM10.

1. Introduction

Video super-resolution (VSR), which restores high-

resolution (HR) video frames from their highly related but

unaligned low-resolution (LR) video frames, is well-desired

in various real-world applications [11, 2]. Compared with

single image super-resolution (SISR), VSR is much more

challenging as it aggregates information from multiple re-

lated but misaligned frames in the input video. Hence, an

ideal VSR model is expected to leverage the spatial infor-

mation from single images but also integrate the temporal
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Figure 1: VSR performance comparison on UDM10 [65]

in terms of PSNR (dB), runtime (ms), and parameters (M).

MFPI outperforms SOTA methods with high efficiency.

semantic features from multiple frames [45, 50, 18, 3].

CNN-based models have become the standard choice

for VSR due to their simplicity and efficiency. While re-

cent advances in CNN-based VSR, such as residual learn-

ing [2, 73], dense connections[59], hierarchical structures

[20], and multi-scale frameworks [63, 34, 48], have shown

impressive performance, some potential problems still ex-

ist. Firstly, CNN’s limited receptive field hinders it from

modeling long-range spatial dependencies, making it un-

able to capture complex semantic information. Secondly,

convolutional filters have fixed scales and weights, limit-

ing their performance on large motions and adaptability

to diverse inputs. In comparison, with the advantages of

self-attention layers, ViTs are effective in processing inputs

with long-term spatial dependencies. However, the stack
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of self-attention layers is accompanied with a large compu-

tation budget, which results in inferior inference efficiency

on edge devices [29]; A natural question arises: can CNNs
capture long-range dependencies like ViTs?

In this paper, we propose to answer this question from a

frequency perspective. Thanks to their ability to capture

global representation, frequency-based models have been

widely utilized in single image processing [72, 41, 71].

Unfortunately, their performance in video super-resolution

(VSR) is usually limited due to several reasons. (1) Com-

pared with single images, videos are composed of multiple

related but misaligned images, which contain both spatial

and temporal information. However, traditional frequency

methods have fixed paradigms and coefficients [56, 66, 40],

making them not able to capture the complex information

in videos. (2) Traditional frequency methods are sensitive

to the noise in images [64, 14]. This disadvantage becomes

more fatal in videos where the noise of different frames can

be accumulated.

To address these challenges, we propose a novel mod-

ule named multi-frequency representation enhancement

(MFE), which aggregates information in the frequency do-

main. Unlike convolutional and self-attention layers that

operate in the feature space, MFE directly manipulates the

energy feature map in the frequency domain through three

branches: 1) a spatial-frequency representation enhance-

ment branch (SFE) that utilizes a Fast Fourier Transform

(FFT) and large kernel convolution layer to capture arbitrary

interactions among spatial and long-range dependent fea-

tures, 2) an energy-frequency representation enhancement

branch (EFE) that employs a novel energy discrete cosine

transform (DCT) to improve representation and explore po-

tentially useful frequency components, and 3) a pair of con-

volution layers that leverage large kernels to obtain global

range-interact features with stronger shape bias. Compared

with the previous frequency methods, the learnable filter

in SFE enables FFT to capture both spatial and temporal

information, and the energy function in EFE can alleviate

the noise accumulated in multiple video frames. Moreover,

MFE only contains 0.02M parameters, making it affordable

for edge devices.

Besides MFE, we further propose a novel model train-

ing method named privilege training (PT) to facilitate the

training of VSR models. Motivated by previous research

in learning using privilege information (LUPI) [53], we

propose to apply a trainable encoding module to encode

the privilege information from HR videos and then employ

them to obtain a good initialization for VSR models. Suffi-

cient experiments demonstrate the effectiveness of privilege

training on both our model and the other VSR models.

With MFE and privilege training, we introduce a novel

VSR model referred to as MFPI. Extensive experimental

results have demonstrated that MFPI outperforms eighteen

previous methods by a clear margin in six VSR benchmarks.

For instance, on UDM10, compared with BasicVSR++ [4],

which has similar parameters and runtime with MFPI, MFPI

achieves 0.36 dB higher PSNR improvements on UDM10

BD degradation, as shown in Figure 1. To sum up, the main

contributions in this paper can be summarized as follows:

• We propose multi-frequency representation enhance-

ment (MFE), a module that effectively aggregates in-

formation in the frequency domain by operating the

spatial- and energy-frequency components.

• We propose privilege training, which encodes the priv-

ilege information from the HR videos to boost the per-

formance of VSR models.

• Abundant experiments demonstrate the effectiveness

of MFPI on four datasets, including REDS4, Vimeo,

Vid4, and UDM10 in both BI and BD degradation.

2. Related Work
2.1. Video Super Resolution

Different from SISR, VSR typically produces higher-

quality results by utilizing information from neighboring

frames. Recently, learning-based approaches have been

highly effective in solving the problem of VSR [16, 4].

The main challenge for VSR is how to correctly fuse aux-

iliary frames in the presence of dynamic content and ob-

ject motion. To address this problem, abundant methods

have been proposed to explicitly use optical flow [55], de-

formable convolution [57, 50, 3], and homography [18] to

align neighbor frames. However, estimating accurate opti-

cal flow or transformation is still challenging in large mo-

tions. Recently, some methods have been proposed to learn

the spatial correspondence across different frames to tackle

this challenge [25, 13]. However, these methods have lim-

ited performance in VSR since they cannot capture infor-

mation between adjacent locations or long-range interac-

tions [47, 41]. To address this problem, we introduce a

spatial-frequency representation enhancement branch that

models long-range spatial and temporal dependencies.

2.2. Learning in Frequency Domain

Due to the difficulty of distinguishing high-frequency

textures from artifacts, fruitful methods [70, 6, 14] have

been introduced to decouple them in the frequency space

and reconstruct the high-quality textures. For instance,

Zhou et al. proposed a deep Fourier up-sampling method

to recover the resolution in the frequency domain [72].

Guo et al. utilized the wavelet technique to simplify the

mapping between the LR and HR images, reducing the ar-

tificial blocks and recovering the edge‘s information [10].

Motivated by their success, abundant works have tried to
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apply frequency methods to SR. Dario et al. proposed a

Fourier space supervision loss to improve restoration re-

sults [6]. Qiu et al. designed a fine-grained self-attention

module in the space-frequency domain, which reconstructs

the real visual texture without artifacts [41]. However, the

images that are directly transformed into the frequency do-

main still face obstacles as follows: (1) Decomposing fea-

tures into different frequency components usually lacks lo-

cal correlation information in the channel dimension, mak-

ing it difficult to utilize the useful frequency components

[40]. (2) Non-parametric frequency-based methods are eas-

ily susceptible to noise and image scale factors [35]. To ad-

dress the above problems, this paper proposes to combine

the advantages of the energy function and frequency-based

representations by using DCT with learnable filters.

2.3. Learning Using Privilege Information

Learning using privilege information (LUPI) was first

proposed by Vapnik et et al. to employ the privilege in-

formation provided by a teacher model in support vector

machine [53]. Generally speaking, LUPI aims to improve

the performance of a model by using privilege information,

which is utilized during training but not required during in-

ference. Vapnik et al. further utilized LUPI to accelerate the

inference speed of SVMs by similarity control and knowl-

edge transfer [52]. Motivated by the success of knowl-

edge distillation [12] on deep neural networks, recently,

David et al. proposed generalized distillation, which com-

bines knowledge distillation with learning with privilege in-

formation theoretically [32]. Recently, label-guided aux-

iliary was introduced to apply LUPI to point cloud-based

3D detection by using the privilege information from an-

notations [15]. Lee et al. proposed PISR, which intro-

duces LUPI to single image super-resolution by using vari-

ational knowledge distillation [24]. Moreover, LUPI has

also been utilized in semi-supervised learning [7], domain

adaptation [37], speech recognition [36] and so on.

The most related work of the privilege training in our

method is PISR [24], which is proposed for knowledge dis-

tillation on single image super-resolution. Their main dif-

ference is that: (1) PISR is proposed for SISR for model

compression while our method is proposed for VSR to im-

prove the quality of restoration. (2) Besides, PISR is a

knowledge distillation method which mainly leverages the

privilege information with distillation loss. In contrast,

our method leverages the privilege information by sharing

model weights. (3) PISR implicitly encodes the privilege

information via the reconstruction of LR images while our

method explicitly encodes privilege information from HR

videos with a trainable network. Besides, ablation studies

in Table 3 also demonstrate that our method leads to signif-

icantly higher performance than PISR.

3. Methodology

3.1. Overall Framework for VSR

Following the previous work [4], we adopt the recur-

rent bidirectional propagation as the baseline model. Based

on its architecture, we propose a novel VSR model termed

MFPI, which consists of a multi-frequency representation

enhancement module (MFE) to improve the LR frames

representation in the frequency domain, and a novel VSR

model training method named privilege training which en-

codes privilege information from HR frames to facilitate

model training. The overall architecture is shown in Fig-

ure 2: (1) The VSR model extracts features from the LR

frames images to reconstruct the HR frames images. (2)

Residual blocks and MFE are employed to extract the fea-

ture f j
i from the LR images, where f j

i denotes the feature at

ith timestamp in the jth propagation branch. (3) The flow-

guided deformable alignment block (FDA) aligns the neigh-

boring features f j
i−1 and f j

i−2. And the pixel-shuffle op-

erator is employed to perform upsampling 4× scales from

LR to HR frames. Besides, learning privilege information

boosts the performance of our VSR models during training,

as shown in Figure 3.

3.2. MFE: A Multi-Frequency Representation
Enhancement Module

As depicted in Figure 2 (b), we design a multi-frequency

representation enhancement (MFE) to improve the repre-

sentation ability and aggregate spatial-temporal information

in VSR architecture. MFE is a plug-in-play building block

which adopts a multi-branch structure to capture multi-

frequency representation [9]. Concretely, it first encodes

the input features with a depthwise convolution (DWConv)

layer [68] and then processes them with three different

branches, including 1) a spatial-frequency representation

enhancement branch to capture the spatial-frequency infor-

mation and long-range dependence features, 2) an energy-

frequency representation enhancement branch to improve

the representation ability and model the inter-channel rela-

tionship in the frequency domain, and 3) an auxiliary branch

with a pair of 7 × 1 and 1 × 7 DWConv to inject the in-

ductive bias and facilitate training [8, 31]. Finally, a 1 × 1
convolution layer aggregates the diverse features from three

branches, and the skip connection is employed to facilitate

the convergence of MFE [30].

3.2.1 Spatial Frequency Representation Enhancement

As illustrated in Figure 2 (c), the spatial frequency repre-

sentation enhancement (SFE) branch first employs a pair

of DWConv to generate the feature map fin from the in-

put xin ∈ R
H×W×C . Then, we split fin into two parts

fmid1, fmid2 ∈ R
h×w×c/2 [26, 69]. The FFT layer pro-
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(a) The Overall Framework of MFPI (b) MFE: Multi-frequency Representation Enhancement
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Figure 2: (a) An overview framework of MFPI. The blue dot line denotes the bilinear upsampling operator. The red curve

denotes second-order propagation. “FDA“ denotes the flow-guided deformable alignment block [4]. The green block denotes

the proposed multi-frequency representation enhancement (MFE). (b) An overview of the MFE. (c) The details of the spatial-

frequency representation enhancement branch in MFE extract spatial-level and long-range dependencies. (d) The details of

the energy-frequency representation enhancement branch. e∗i,j denotes the energy feature. Note that the ‘FC layer‘ consists

of a sequence of the ‘linear-LReLU-linear-LReLU‘ operator. DWConv denotes the depthwise convolution [68].

cesses fmid1 represents different spatial dependence infor-

mation as follows:

freq = F [fmid1] ∈ C
h×w×c/2 (1)

where c, h, w denote the input channel, height, width of the

feature maps, respectively. F [·] denotes the 2D FFT, freq
represents the frequency feature of fmid1. To make SFE

adaptive to diverse features [43, 54], we modulate the freq
multiplies with a learnable filter L ∈ C

h×w×c/2 in the fre-

quency domain: ˜freq = freq × L. The inverse FFT trans-

fers the modulated frequency feature back to the spatial do-

main:
˜fmid1 ← F−1

[
˜freq

]
(2)

Finally, the output feature fout is obtained by concate-

nating with an instance normalization (IN) [51] layer, which

prevents covariance shift and preserves the scale informa-

tion: fout = Concat
(

˜fmid1, IN (fmid2)
)

.

It is also worth noting that in our implementation: (1)

SFE utilizes a relatively large local window of DWConv
(e.g., 21 × 1,1 × 21) to capture the long-range spatial de-

pendencies from features. (2) Besides, a learnable Fourier

transform with IN can exhibit clear patterns and general-

izations in the frequency domain. Hence, the proposed

SFE branch tends to be more efficient than directly utiliz-

ing Fourier transforms in the spatial-temporal dimension

(Table 2b). (3) Considering that FFT has less computa-

tion than DFT, we employ FFT in SFE as the frequency

transformation to improve model representation. Moreover,

the Fourier domain has the nature of global modeling [54].

Hence, computation on frequency bands implies informa-

tion aggregation over all the spatial locations of the input

images. Specifically, in our SFE, FFT is performed over the

whole feature map across all the spatial locations, which is

equivalent to the global receptive field of the whole feature.

(4) SFE splits features into two branches to improve compu-

tational efficiency. Specifically, this split operator enables

SFE to capture and combine different aspects or representa-

tions of the input data. One part focus on the spatial fre-

quency characteristics or patterns, and the other part act

as a form of regularization by introducing additional con-

straints, such as instance normalization. Their outputs can

be concatenated to create a richer and more comprehensive

representation. This can enhance the SFE’s ability to learn

complex relationships and improve its overall performance.
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Besides, this two-branch design is also similar to the idea

of group convolution and CSN [71], which is a well-known

technique of efficient neural networks. Please refer to sup-

plementary materials for theoretical analysis.

3.2.2 Energy Frequency Representation Enhancement

Considering that the frequency methods with a learning fil-

ter can be more generic and flexible interactions among spa-

tial locations from diverse images, we introduce an energy

function to reweight the input feature and utilize the learn-

able filter with DCT to represent the rich inter-channel rela-

tionship [40]. The architecture of the energy frequency rep-

resentation enhancement (EFE) is illustrated in Figure 2 (d).

More specifically, EFE first utilizes a pair of DWConv (e.g.,
11 × 1,1 × 11) to generate the feature map f . Then, we

calculate the mean μ̂ and variance σ̂2 of f , and the energy

value [62] can be obtained by minimizing the following:

ei,j =
4
(
σ̂2 + δ

)
(ti,j − μ̂)

2
+ 2σ̂2 + 2δ

(3)

where δ is the hyper-parameter, ei,j denote the energy

value of target pixel ti,j , i ∈ {0, 1, · · · , H − 1}, j ∈
{0, 1, · · · ,W−1}. The energy feature is obtained by group-

ing all the ei,j across spatial and channel levels, which

rescale the energy value to restrict too large energy value:

e∗i,j = LeakyReLU

(
1∑h

i¬=0

∑w
j¬=0 ei,j

)
(4)

To further enrich the representation ability of EFE, we

employ the DCT technique to convert the energy features

into the frequency domain as follows:

Fc(i, j) =
2√
HW

α(i)α(j)
H−1∑
h=0

W−1∑
w=0

e∗i,j (5)

Ki,j
h,w = cos

(
(2h+ 1)iπ

2H

)
cos

(
(2w + 1)jπ

2W

)
(6)

fh,w
c = Ki,j

h,w ×Fc

(
e∗i,j

)
(7)

where Fc denotes DCT operation, K denotes the basis func-

tion of DCT, α(x) = 1/
√
2 for x = 0 and α(x) = 1 oth-

erwise [46]. Finally, the output refined feature as follows:

fout = fh,w
c × xi,j . Note that an element-wise multipli-

cation between frequency-domain features and the learn-

able filters improves the representation ability and makes

EFE flexible adaptive to different feature inputs. Besides,

the FC layer in Figure 2 (d) consists of a sequence of the

‘Linear-LeakyReLU-Linear-LeakyReLU‘ operators, which

convert the channel-wise feature into a scalar representa-

tion, which reduces the complexity and improves the effec-

tiveness in the frequency domain. Different from the SFE

branch, the EFE branch leverages the merits of the energy

function and frequency components to improve the repre-

sentation power and model the relationship among inter-

channel dimensions, as shown in Figure 9.

3.3. Privilege Training

Learning using privilege information is a well-known

theory in machine learning, which shows that one can im-

prove the performance of machine learning by using kinds

of privilege information, which is available in training but

not accessible during inference. Motivated by its effective-

ness, in this paper, we propose a novel neural network train-

ing method for VSR, which is shown in Figure 3. By denot-

ing the LR and and corresponding HR videos as x and y,

respectively, the traditional training method can be formu-

lated as minE[|f(x) − y|], where f(·) denotes the super-

resolution model. In contrast, in our method, we addition-

ally introduce a lightweight neural network D, which aims

to encode the privilege information from the HR frames

y to a tensor of privilege information D(y) which has the

same shape with the LR frames x. Then, we can denote

a mixture of the LR images and the privilege information

as x∗ = x + γ · D(y), where γ ∈ [0, 1] is a parameter to

balance the two items. During the training period, we grad-

ually decrease γ from 1 to 0. Hence, the VSR model is

able to firstly learn a good representation by using the priv-

ilege information, and then gradually get rid of it. Note that

since γ is decreased to 0, the VSR model does not require

any privilege information during inference. In summary, its

objective of privilege training can be written as

argmin
f,D

E[|f(x∗)− y|+ |D(y)|] (8)

where the first loss item is the common reconstruction loss

for VSR training. The second loss item is a regularization

item which reduces the energy of privilege information to

prevent the model from overusing the privilege informa-

tion. Note that the regularization item is indispensable since

without this item the VSR model may degenerate into a

naive auto-encoder which reconstructs the HR images to-

tally based on the privilege information. Note that D in our

implementation is a stack of three convolutional layers fol-

lowed with LeakyReLU.

Why does privilege training work? The effectiveness of

privilege information can be understood from the perspec-

tive of weight initialization. During the early training it-

erations, the model can quickly converge to a flat minima

by using the privilege information. Then, by reducing γ,

the privilege information gradually makes a less influence

to the VSR model, and hence the VSR model can converge
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Figure 3: The paradigm of the proposed learning using privilege information on VSR. +© denotes a weighted addition between

the privilege information and the LR frames.

Figure 4: Visualization of the privilege information.

stably. Secondly, the success of our method can also be un-

derstood as a special case of knowledge distillation, where

the teacher model is trained with privilege information, the

student model is trained with only the LR frames, and the

knowledge distillation is applied by sharing the weights of

the student and the teacher. Besides, Figure 4 visualizes

the privilege information encoded during the training pe-

riod. It is observed that most of privilege information con-

centrates on the pixels belonging to the objects and their

edges, which are more important in the assessment of im-

age quality. These privilege information is utilized to help

VSR models to converge at the early training period.

4. Experiment

4.1. Experimental Setup

Our model is trained for each task with 6×105 iterations

using randomly cropped patches. We apply data augmenta-

tion techniques such as random horizontal and vertical flip-

ping and 90◦ rotation. The Adam optimizer [22] is used

with an initial learning rate of 2 × 10−4, which is steadily

decreased to 1 × 10−7 with cosine annealing learning rate

decay [33]. δ is set to 1 × 10−6 [62]. We employ SPyNet

to predict optical flow in videos [42]. Each branch contains

7 residual blocks and 64 feature channels. The batch size

is set to 4, and the input low-resolution (LR) frames are of

patch size 64× 64.

Figure 5: Challenging scenario on REDS4 [38]. MFPI gen-

erates sharp edge in repeated structures of the windows and

sharper texts.

Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-

larity Index Measure (SSIM) [58] between ground truth and

restored videos are utilized as the metrics in our quantitative

comparisons. We follow [4] to utilize REDS [38], Vimeo-

90K [60] as training set, and REDS4, Vimeo-90K-T [60],

Vid4 [28], UDM10 [65] , and Vimeo-90K as the test set.

REDSval4 is utilized as the validation set. All models are

tested with 4× downsampling via two degradations – Bicu-

bic (BI) and Blur Downsampling (BD). All experiments are

implemented with PyTorch [39] and on two NVIDIA Tesla

A100 GPUs.

4.2. Comparisons with State-of-the-Art Methods

Qualitative Comparison We show the comparison of vi-

sual results in Figure. 5, 6, 7 and 8. It is observed that the re-

sults of prior works usually suffer from incomplete artifacts

or blurred regions in the image. In contrast, our model re-

stores sharper edges and finer detailed textures of the num-

ber plate in Figure 5 and the display board in Figure 6. Be-

sides, MFPI is able to recover the edge of the small object

in Figure 6. As shown in Figure 7 and 8, MFPI also shows
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Table 1: Quantitative comparison (PSNR/SSIM). All results are calculated on Y-channel except REDS4 [38] (RGB-channel).

The runtime is computed on an LR size of 180×320. A 4× upsampling is performed following previous studies. Blanked

entries correspond to results not reported in previous works. Numbers in bold indicate the best performance.

Model
Params Runtime BI degradation BD degradation

(M) (ms) REDS4 [38] Vimeo-90K-T [60] Vid4[28] UDM10 [65] Vimeo-90-T [60] Vid4 [28]

Bicubic - - 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246

VESPCN [1] - - - - 25.35/0.7557 - - -

SPMC [49] - - - - 25.88/0.7752 - - -

TOFlow [61] - - 27.98/0.7990 33.08/0.9054 25.89/0.7651 36.26/0.9438 34.62/0.9212 -

FRVSR [45] 5.1 137 - - - 37.09/0.9522 35.64/0.9319 26.69/0.8103

DUF [21] 5.8 974 28.63/0.8251 - - 38.48/0.9605 36.87/0.9447 27.38/0.8329

RBPN [11] 12.2 1507 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 -

EDVR-M [57] 3.3 118 30.53/0.8699 37.09/0.9446 27.10/0.8186 39.40/0.9663 37.33/0.9484 27.45/0.8406

EDVR [57] 20.6 378 31.09/0.8800 37.61/0.9489 27.35/0.8264 39.89/0.9686 37.81/0.9523 27.85/0.8503

PFNL [65] 3.0 295 29.63/0.8502 36.14/0.9363 26.73/0.8029 38.74/0.9627 - 27.16/0.8355

MuCAN [27] - - 30.88/0.8750 37.32/0.9465 - - - -

TGA [18] 5.8 384 - - - - 37.59/0.9516 27.63/0.8423

RLSP [5] 4.2 49 - - - 38.48/0.9606 36.49/0.9403 27.48/0.8388

RSDN [17] 6.2 94 - - - 39.35/0.9653 37.23/0.9471 27.92/0.8505

RRN [19] 3.4 45 - - 38.96/0.9644 - 27.69/0.8488

BasicVSR [2] 6.3 63 31.42/0.8909 37.18/0.9450 27.24/0.8251 39.96/0.9694 37.53/0.9498 27.96/0.8553

IconVSR [2] 8.7 70 31.67/0.8948 37.47/0.9476 27.39/0.8279 40.03/0.9694 37.84/0.9524 28.04/0.8570

BasicVSR++ [4] 7.3 77 32.39/0.9069 37.79/0.9530 27.79/0.8400 40.72/0.9722 38.21/0.9550 29.04/0.8753

PSRT [47] 13.4 812 32.72/0.9106 38.27/0.9536 28.07/0.8485 - - -

MFPI (Ours) 7.3 76 32.81/0.9106 38.28/0.9534 28.11/0.8481 41.08/0.9741 38.70/0.9579 29.34/0.8781

Figure 6: Challenging scenario on Vimeo-90K-T [60].

Compared to the other methods, Our method more effec-

tively preserves while recovering the strip-like features in

the skirts.

significantly better performance than prior works when the

camera and the foreground objects are moving, which is

a more challenging case in VSR. Moreover, MFPI can re-

cover the scene details more faithfully than other methods,

such as pedestrians’ feet and text in Figure 7. More visual

comparisons are shown in the supplementary material.

Quantitative Comparison The quantitative results on six

test sets with scaling factors 4 are shown in Table 1. It is

observed that: (1) Compared with existing approaches that

Figure 7: Challenging scenario on Vid4 [28]. MFPI recov-

ers the clear textures and reduces the produce blurry results.

only perform well on a certain dataset, our MFPI achieves

the best performance in all the datasets for both BI and BD

degradation. (2) Compared with BasicVSR++ which has

very similar parameters and speed to our method, 0.42 dB,

0.49 dB and 0.32 dB PSNR improvements can be achieved

on the three datasets in BI degradation experiments, re-

spectively. (3) Compared with PSRT-recurrent which has

slightly lower PSNR than our method, our model only has

around 54% parameters, which indicates better efficiency.

These observations indicate that our method significantly

outperforms the previous VSR models.
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Figure 8: Challenging scenario on UDM10 [65]. Our

method produces much clearer text and sharper edges.

4.3. Ablation Studies

This subsection gives a series of ablation studies to study

the effectiveness of each component of MFPI. The evalua-

tions were performed on the REDS4 dataset [38] trained on

image patches of size 180× 320 for 6× 105 iterations. Ba-

sicVSR++ is utilized as the baseline.

A. Individual components. An ablation study is conducted

by progressively adding SFE, EFE and the auxiliary branch

to study the influence of different network blocks in our

MFPI. Besides, we also investigate the effectiveness of the

proposed privilege training and compare it with knowledge

distillation (KD), which is another popular neural network

training method. As shown in Table 2a: (a) 0.16 dB and

0.13 dB PSNR improvements can be obtained by using SFE

and EFE individually. Besides, 0.02 dB further PSNR im-

provements can be obtained by combining the two meth-

ods with the auxiliary branch. (b) Privilege training leads

to 0.12 PSNR improvements while KD leads to 0.38 dB

PSNR reduction, indicating the traditional model training

method fails in VSR while our method leads to significant

performance benefits. As Table 2a suggests, combining all

the components yields the best performance vs. complex-

ity tradeoff (32.81 dB, 7.34 M, and 281.25 G) compared to

employing single or partial components.

B. Ablation on SFE. We further study the performance of

our proposed SFE in Table 2b with different variants: only

FFT, FFT with learnable filter, the split input with FL and

original feature, the split operator with FL and batch nor-

malization, the split operator with FL and instance normal-

ization. Then, we incrementally added different DWConv
layers on top of the existing components, such as 3 × 3,

7 × 7, 11 × 11, and 21 × 21. Besides, we only substituted

the FFT with the original feature while keeping the LF, IN,

and DWConv 21×21 (-w/o FFT). Experimental results show

that: (i) Only adding FFT to Base leads to 0.04 PSNR drop,

indicating that only utilizing Fourier transform cannot boost

performance. (ii) Using the learnable filter leads to 0.07 dB

improvements, which account for 41% performance bene-

fits, indicating the learnable filter can improve the repre-

sentation ability of FFT. (iii) Splitting the features into FFT

and IN branches leads to 0.07 dB PSNR benefits, indicating

that IN can help the model preserve scale information and

prevent covariance shifts. (iv) DWConv with 21×21 kernel

performs better than other kernels, indicating a larger kernel

is necessary. (v) SFE without FFT achieves only 31.93 dB

PSNR, indicating FFT plays an essential role in SFE.

C. Ablation on EFE. To evaluate different DCT basis func-

tions in the EFE, we have compared our method with four

different DCT variants, which are DCT initialization with

fixed coefficients (DF), DCT initialization with learnable

filter (DL), DF and DL added energy function, respectively.

Experimental results show that: (i) Our method achieves the

best PSRN, which demonstrates the effectiveness of using

a learnable filter and the energy function. (ii) Removing

DCT from EFE leads to 0.43 dB PSNR drop, which indi-

cates EFE is necessary. (iii) EFE with DWConv 11x11 ker-

nel achieves the best PSNR than other DWConv kernels, in-

dicating that a relatively larger kernel tends to achieve better

performance.

D. Privilege Training As shown in Table 2a, 0.12 dB PSNR

improvements can be obtained by applying PT to our model,

which is 0.50 higher than KD. To further study its effec-

tiveness, we have compared PT with the other six popu-

lar model training methods in Table 3 on BasicVSR [2]. It

is observed that four of the previous methods do not bring

any performance benefits but lead to significant PSNR and

SSIM drop. PISR leads to 0.04 dB PSNR and 0.0009 SSIM

improvements, which are 0.14 dB and 0.0022 lower than PT

in PSNR and SSIM, respectively. Besides, PT can be easily

implemented without a pre-trained teacher model.

E. Feature Visualization Visualization of intermediate fea-

tures in MFPI is shown in Figure 9. It is observed that: (1)

The feature map significantly reduces noise after MFE, in-

dicating that MFE effectively suppresses noise information.

(2) SFE can capture object motion and extract spatial fea-

tures in the frequency domain. (3) EFE focuses on the fine-

grained texture and details of the input feature, as shown in

the red arrow and circle. (4) Moreover, the MFE effectively

fuses the multi-frequency feature and enhances the repre-

sentation ability.

5. Conclusion
In this paper, we have proposed a novel VSR model

referred to as MFPI, which consists of a multi-frequency

representation enhancement module (MFE) and a privilege

training method. MFE is utilized to aggregate informa-
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Table 2: Ablation studies. Subtables 2a, 2b, and 2c contain

components that are defined in Sec. 3.2 and 3.3. We con-

duct ablation experiments on various components of SFE

and EFE, such as FFT/DCT, split operator, learnable fil-

ter, BN/IN, energy function, and different coefficients. We

also evaluate the effects of different kernel sizes using DW-
Conv. Additionally, we employ knowledge distillation [12]

or privilege training (PT) to improve our results.

Base
MFE Training PSNR Params FLOPs

SFE EFE Aux KD PT (dB) (M) (G)

� 32.39 7.32 280.59

� � 32.55 7.34 280.76

� � 32.52 7.33 280.68

� � � 32.67 7.34 280.86

� � � � 32.69 7.34 281.25

� � � � � 32.31 7.34 281.25

� � � � � 32.81 7.34 281.25

(a) Individual components.

Variant PSNR

Base + FFT 32.35

Base + FFT w/. Learnable filter 32.48

Base + FFT w/. Learnable filter + original feature 32.49

Base + FFT w/. Learnable filter + BN 32.43

Base + FFT w/. Learnable filter + IN 32.52

Base + FFT w/. Learnable filter + IN + DWConv 3× 3 32.48

Base + FFT w/. Learnable filter + IN + DWConv 7× 7 32.52

Base + FFT w/. Learnable filter + IN + DWConv 11× 11 32.51

Base + FFT w/. Learnable filter + IN + DWConv 21× 21 (Our SFE) 32.55
Base + w/. Learnable filter + IN + DWConv 21× 21 31.93

(b) Effects of the SFE branch.

Variant PSNR

Base + Energy function 32.40

Base + DCT w/. Fixed coefficients 32.32

Base + DCT w/. Learnable filter 32.41

Base + DCT w/. Fixed coefficients + Energy function 32.37

Base + DCT w/. Learnable filter + Energy function 32.50

Base + DCT w/. Learnable filter + Energy function + DWConv 3× 3 32.42

Base + DCT w/. Learnable filter + Energy function + DWConv 7× 7 32.40

Base + DCT w/. Learnable filter + Energy function + DWConv 11× 11 (Our EFE) 32.52
Base + DCT w/. Learnable filter + Energy function + DWConv 21× 21 32.43

Base + w/. Learnable filter + Energy function + DWConv 11× 11 32.07

(c) Effects of the EFE branch.

Table 3: Comparison between the proposed privilege train-

ing and previous training methods with BasicVSR on [38].

Method Needs Teacher? PSNR SSIM

BasicVSR � 31.58 0.8940

+ Deep Supervision [23] × 31.58 0.8941

+ Self-KD [67] × 31.47 0.8914

+ Hinton KD [12] � 31.26 0.8883

+ FitNet [44] � 31.52 0.8934

+ PISR [24] � 31.62 0.8949

+ Ours × 31.76 0.8971

tion in the frequency domain by operating the spatial- and

energy-frequency components via SFE and EFE. It enables

CNN-based VSR models to capture long-range dependen-

Figure 9: Visualization of the features in MFPI on images

from REDS4[38]. The red dot curve denotes the change in

spatial information at different locations of the same object.

cies with very minor additional parameters and computa-

tions. Besides, we also propose to improve the performance

of VSR from a training perspective by introducing privi-

lege training, which contributes orthogonal effects to our

frequency modules. We hope that this paper may promote

more research that studies VSR from the perspective of fre-

quency methods and model training methods.

6. Future Work

In the future, exploring MFPI in a real-world scenario

would be an exciting direction, which offers a new valu-

able perspective on our proposed MFEI performance. We

speculate that our frequency methods will be useful for real-

scenario tasks and a broader investigation of it has pro-

vided additional depth to our study. We will continue to

(1) evaluate MFPI on more challenging datasets such as Re-

alVSR [63], and (2) deploy MFPI on edge devices and eval-

uate its performance. We are actively working on conduct-

ing the requested experiments that can further strengthen

our conclusions.
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