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Figure 1: NeRF-MS trains neural radiance fields from multiple sequences captured by different sensors and at different times,
achieving better scene reconstruction by implicit modeling appearance styles from multi-sequence and separating transient
contents from static scenes, such as the rider.

Abstract

Neural radiance fields (NeRF) achieve impressive per-
formance in novel view synthesis when trained on only sin-
gle sequence data. However, leveraging multiple sequences
captured by different cameras at different times is essential
for better reconstruction performance. Multi-sequence data
takes two main challenges: appearance variation due to dif-
ferent lighting conditions and non-static objects like pedes-
trians. To address these issues, we propose NeRF-MS, a
novel approach to training NeRF with multi-sequence data.
Specifically, we utilize a triplet loss to regularize the distri-
bution of per-image appearance code, which leads to better
high-frequency texture and consistent appearance, such as
specular reflections. Then, we explicitly model non-static
objects to reduce floaters. Extensive results demonstrate
that NeRF-MS not only outperforms state-of-the-art view
synthesis methods on outdoor and synthetic scenes, but also
achieves 3D consistent rendering and robust appearance
controlling. Project page: https://nerf-ms.github.io/.

* Work done during an internship at Huawei Noah’s Ark Lab.
† Co-corresponding Author.

1. Introduction

Neural radiance field [20] demonstrates great success
for novel view synthesis when given a photo collection. It
works best when photos are from a single sequence, which
means they are captured by the same camera at the same
time. Multiple sequences are collections of photos captured
by different cameras at different times as shown in Fig 1.
Using multiple sequences is important for creating a bet-
ter 3D reconstruction of a scene. By combining images
captured from different cameras and at different times, we
can fill in the gaps and improve the quality of poorly recon-
structed regions. Furthermore, we can use videos captured
at different seasons or times to show the changes or varia-
tions in the scene over time. Additionally, videos captured
by different visitors and cameras at the same event can pro-
vide different perspectives or angles of the scene.

Multi-sequence data raise challenges for existing meth-
ods. The first is appearance variance. Sequences are cap-
tured under different conditions, e.g. sensor, lighting, and
weather. Assigning a per-image appearance code [19, 5, 33]
can handle extreme appearance changes. However, this
gives the model too big flexibility, so the learned appearance
code will overfit image content and camera pose, which
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results in 3D inconsistent rendering and loss of complex
texture in novel views, see Fig. 3. Moreover, it leads to
ghosting during interpolation between different appearance
codes. The second is sequence transient. Previous meth-
ods split a scene into static and transient parts [30]. For
multi-sequence data, an object can be static in the whole
sequence (parked vehicle, standing pedestrian) but absent
from other sequences. This kind of object can not be suc-
cessfully categorized as transient, leading to a floater in the
scene as shown in Fig. 5.

We propose NeRF-MS, a novel method for building neu-
ral radiance fields using multiple sequences. Firstly, to ad-
dress the overfitting appearance code due to high flexibility,
we introduce a triplet loss that assumes similarity between
images within a sequence and diversity between sequences.
With the triplet loss that constrains the distribution of ap-
pearance latent codes, our method can reduce ambiguity in
the reconstruction process and improve texture and reflec-
tion fidelity. Since building a better latent space, we can per-
form more natural appearance interpolation across different
sequences. Secondly, We propose a transient decomposi-
tion module to separate transient objects from static scenes
better. By explicitly modeling sequence and image tran-
sients separately, we prevent overfitting to sequence tran-
sients and improve geometric reconstruction quality.

Our experiments on real-world outdoor dataset [29]
and synthetic dataset [20] demonstrate that our approach
achieves state-of-the-art performance in multi-sequence
scenes by reconstructing 3D consistent appearance and re-
ducing ghosting artifacts. Moreover, by controllable exper-
iments on the synthetic dataset, we show that our method is
robust against various multi-sequence settings and outper-
forms the baseline consistently.

In conclusion, our contribution can be summarized as
follow:

• A novel framework enabling neural radiance fields to
perform novel view synthesis with multi-sequence im-
ages captured in the wild.

• A triplet loss to regularize appearance code for reduc-
ing the ambiguity of appearance variation, allowing
high-fidelity rendering and controllable appearance.

• A sequence transient decomposition module to sep-
arate transient objects and static scenes for reducing
floaters in novel view synthesis.

2. Related Work
2.1. Novel View Synthesis

Novel view synthesis (NVS) is a popular research area
in computer vision and graphics, involving generating tar-
get views from input images. Initial approaches use image-
based rendering (IBR), in which models generate target

views from a set of input images. Later some methods con-
structed light fields [15] or proxy geometry [6, 9, 28, 27]
from posed inputs and synthesized views through resam-
pling or blending warped inputs. However, these methods
required dense input images and were limited by the qual-
ity of 3D reconstruction and sparse input data. Recent ad-
vancements in deep learning have facilitated the use of neu-
ral networks for computing radiance values corresponding
to a given 3D position and direction, leading to the synthesis
of high-quality novel views. Specifically, Neural Radiance
Fields (NeRF) [20] techniques, which employ coordinate
Multi-Layer Perceptrons (MLP), model a scene and render
it using volumetric rendering, yielding exceptional quality
view synthesis results. NeRF achieves impressive view syn-
thesis results and has inspired a lot of related researches
for further improvements, such as accelerating rendering
and optimization [7, 8, 25, 38, 21, 4], handling color varia-
tions [19, 33], optimizing camera poses [16, 37, 35, 1], and
improving performance with few input images [12, 14, 22].

2.2. Calibrated Volume Rendering

NeRF directly optimizes a neural volumetric scene rep-
resentation to match all input images using gradient descent
on a rendering loss. Thus, imperfect input data can neg-
atively impact synthesized novel views. To address this,
several methods have been proposed to improve perfor-
mance with relaxed assumptions in volume rendering, such
as varying camera conditions [19, 5, 30, 26], occluded ob-
jects [5, 17], and distractors [30]. NeRF in the Wild (NeRF-
W) [19] uses web images in a wild setting for reconstruc-
tion and introduces a handling mechanism by appearance
and transient embeddings to deal with varying camera con-
ditions and occluded objects. Block-NeRF [33] adds ap-
pearance embeddings, learned pose refinement, and control-
lable exposure to NeRF to make it robust to data captured
over months under different environmental conditions. Ha-
NeRF [5] introduces an appearance hallucination module
and an anti-occlusion module to handle time-varying ap-
pearances and complex occlusions in tourism images. Ro-
bustNeRF [30] models distractors as outliers in the opti-
mization problem used for NeRF training, effectively re-
moving them from the scene and reducing artifacts.

Some methods aim to address images with varying ex-
posures and achieve high dynamic range (HDR) rendering
from low dynamic range (LDR) images. RawNeRF [20]
modifies NeRF to train directly on linear raw images, pre-
serving the scene’s full dynamic range and enabling HDR
view synthesis tasks from extremely noisy input images
captured in near-darkness. HDR-NeRF [11] and HDR-
Plenoxels [13] recover the high dynamic range neural ra-
diance field from a set of low dynamic range images
with varying exposures using a differentiable tone mapper,
achieving high-quality rendering for both HDR and LDR.
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Figure 2: Overview of NeRF-MS. Our appearance variation module outputs the static color c based on the per-image
appearance code ℓi. We use triplet loss to regularize the distribution of appearance code. By utilizing the image transient
code ψi and sequence transient code ωk, the transient decomposition module can effectively generate the color, density, and
uncertainty for non-static objects. The static and transient components are then integrated to obtain the pixel’s color and
uncertainty. Finally, we employ a color loss to supervise the radiance field.

Some works target to address image degradation caused
by defocus or motion blur. Deblur-NeRF [18] proposes an
analysis-by-synthesis approach using a deformable sparse
kernel module to recover a sharp NeRF from blurry inputs
caused by defocus or motion blur. BAD-NeRF [35] jointly
learns the parameters of NeRF and recovers camera mo-
tion trajectories during exposure time to be robust to severe
motion-blurred images and inaccurate camera poses.

In this paper, we address the challenges of optimizing
NeRF with multi-sequence, which relaxes the requirements
on photometric consistency in trainging data.

3. Preliminaries
3.1. NeRF

NeRF [20] represents the object to be reconstructed as a
neural radiance field, which takes 3D coordinates (x, y, z)
and viewing direction (θ, ϕ) as input and map them to color
c and density σ with MLP:

[σ (t) , z (t)] = Fθ1 (γ (x)) , (1)
c (t) = Fθ2 (γ (d) , z (t)) , (2)

where θ = {θ1, θ2} is the parameter of MLP, the γ(·)
represents a positional encoding. Given rays denoted as
r(t) = o + td pass from camera origin o through pixels
of images along ray direction d. A pixel’s predicted color
can be represented in the following form:

Ĉ (r) =

K∑
k=1

T (tk)α (σ (tk) δk) c (tk) , (3)

where α (x) = 1 − exp (−x), δk = tk+1 − tk is the sam-
pling interval and T (tk) = exp

(
−
∑k−1

k′=1 σ (tk′) δk′

)
is

the transmittance of sampled point.
All parameters of models are optimized by decreasing

the difference in pixels’ color between generated images
and reference images:

L =
∑
r∈R

∥Ĉ (r)−C (r)∥22, (4)

where R denotes a set of rays in each batch.

3.2. NeRF in the Wild

NeRF-W [19] performs better when synthesizing novel
views of complex in-the-wild scenes using unstructured im-
age sets. Combining the unique learned appearance code
and transient code of each image with viewing direction
and sampled points, NeRF-W produces static and transient
colors and densities as well as uncertainty β, which are en-
coded to eliminate temporary occlusions.

To disentangle static and transient components, not only
uncertainty masks β are considered, but the rendering equa-
tion is also modified as follows:

Ĉi (r) =

K∑
k=1

Ti (tk)
(
α (σi (tk) δk) ci (tk) + α

(
σ
(τ)
i (tk) δk

)
c
(τ)
i (tk)

)
, (5)

where Ti (tk) = exp

(
−

k−1∑
k′=1

(
σi (tk′) + σ

(τ)
i (tk′)

)
δk′

)
, (6)

in which σi, ci are density and radiance, and σ
(τ)
i , c(τ)i

are their transient counterparts. This modification results
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Figure 3: Effectiveness of triplet loss. Our method can
reconstruct fine details (window dividers) and 3D consistent
reflection (on windows and bulldozer tracks) by utilizing
triplet loss to prevent appearance code overfitting.

Figure 4: T-SNE visualization of appearance codes. We
show that, without triplet loss, the appearance codes from
different sequences are overlapped due to overfitting.

in larger density clustering near static objects, which helps
remove transient objects.

4. Method
Our method aims to reconstruct neural radiance fields

with an image collection {Ii}Ni=1 containing multiple se-
quences {Sk}Mk=1, which are captured at different times or
with different sensors. Specifically, we build neural radi-
ance fields by optimizing sequence-consistent appearance
latent code with triplet loss in Sec. 4.1. To better separate
non-static objects, we model different categories of non-
static objects using sequence transient code and image tran-
sient code in Sec. 4.2, which reduced artifacts in the ren-
dered results. Fig. 2 presents an overview of the proposed
method’s workflow and structure.

4.1. Triplet Loss for Appearance Regularization

For reconstructing 3D scenes with multiple sequences,
it is important to disentangle the varying appearance from
the static geometry. We follow [19] to fit appearance latent
code ℓi ∈ Rn1 for each image Ii using Generative Latent

Optimization [2]. Thus, with the appearance embedding as
MLP’s input, we extend the Eq. 2 as follows:

ci (t) = Fθ2 (γ (d) , z (t) , ℓi) (7)

Due to the high degree of freedom, optimizing one ap-
pearance code for each image leads to overfitting when the
training dataset lacks appearance diversity, which results in
poor generalization performance in test views. Addition-
ally, Per-image appearance cannot model the similarity be-
tween images within a sequence, preventing 3D consistent
novel view synthesis.

To address this issue, we propose a triplet loss, which is
largely used in metric learning [32, 10, 31, 3], to preserve
the sequence appearances disentanglement:

Ltriplet =
1

N

N−1∑
i=0

max (∥ℓi − ℓp∥ − ∥ℓi − ℓn∥+m, 0) , (8)

where m is a hyper-parameter to adjust the constant margin
between inner-sequence distance and inter-sequence dis-
tance. Appearance codes ℓp and ℓn represent the positive
sample and negative sample, which means that (ℓi, ℓp, ℓn)
corresponds to images (Ii, Ip, In), while Ii, Ip ∈ Sk and
In /∈ Sk.

Compared to optimizing per-sequence appearance code
trivially, the triplet loss function is robust against subtle
appearance variance between images within the same se-
quence, which is common due to white balance, exposure,
and lens flare. Table. 2 shows that such a method won’t
work.

Optimizing per-image appearance code weakens multi-
view consistency constraints and leads to overfitting. Our
method overcomes this drawback with the regularization of
the appearance code. Therefore, as illustrated in Fig. 3, our
method can reconstruct high-frequency texture and view-
dependent effects such as reflections by integrating multi-
view information.

Our method can construct reasonable appearance latent
space as shown in Fig. 4, which is consistent with the prior
that the appearance of pictures between sequences is simi-
lar. To regularize the latent space more concisely is essential
to make robust novel view synthesis and smooth appearance
interpolation, as shown in Sec.5.3.

4.2. Transient Decomposition

In a multi-sequence task, a scene comprises three parts,
“static components”, “sequence transients” and “image
transients”. Since sequence transient keep static within a
sequence such as a parked vehicle, current works [19, 33, 5]
can’t separate the sequence transients from the static scene
as shown in Fig. 5, which leads to artifacts and ghosting in
the novel view.
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Figure 5: Transient Decomposition. In the provided GT diagram, we label sequence transient region as yellow and image
transient region as green. Subsequently, we present the decomposition performance of various algorithms alongside their cor-
responding depth maps. Our proposed method not only addresses the challenging yellow region that SOTA methods struggle
with, but also improves the details in green area. Furthermore, our method effectively preserves the intricate geometric details
of the static region, resulting in more accurate depth estimation.

We introduce a transient decomposition module to better
disentangle the static geometry and transients by explicitly
modeling the sequence transients. We leverage two kinds
of learned transient latent code to model non-static objects:
sequence transient code ωk ∈ Rn2 for each sequence and
per-image transient code ψi ∈ Rn3 . We encode the tran-
sient field in two MLP with parameter {θ3, θ4} as follows:

z′ (t) = z (t) + Fθ3 (z (t) , ωk) , (9)[
c
(τ)
i (t), σ

(τ)
i (t), βi(t)

]
= Fθ4 (z

′ (t) , ψi) , (10)

where z(t) is the output of Eq. 1, ωk corresponds to se-
quence Sk and ψi corresponds to image Ii ∈ Sk. By dis-
entangling the sequence transient and image transient, our
method encourages NeRF to fit the non-static objects with
transient codes instead of frame-dependent appearance.

The output of transient decomposition module along the
ray r will be composed with the static radiance ci and den-
sity σi to obtain the pixel color Ĉi(r) and uncertainty β̂i(r).
Following [19], the color loss is proposed as follows:

Lcolor =
∑
r∈R

(
∥Ĉi (r)−Ci (r)∥22

2β̂i (r)
+

log β̂i (r)

2
+
λu
K

K∑
k=1

σ
(τ)
i (tk)

)
, (11)

where λu is a loss weight to adjust the penalty for the tran-
sient amount. In the test stage, we omit the transient decom-
position module and only render ci and σi for novel view
synthesis.

4.3. Optimization

To obtain NeRF-MS, we integrate the constraints men-
tioned above and perform joint training of network pa-
rameters {θ1, θ2, θ3, θ4} and the learned latent codes

{ℓi}Ni=1, {ψi}Ni=1, {ωk}Mk=1 to minimize the full loss func-
tion:

L = Lcolor + λLtriplet, (12)

which is a linear combination of color loss and triplet loss
with loss weights λ.

5. Experiment
5.1. Datasets

NeRF-OSR. The NeRF-OSR dataset [29] is a bench-
mark dataset for outdoor scene relighting, containing 8 out-
door scenes captured from 3240 viewpoints in 110 differ-
ent recording sessions. We select 3 sequences under differ-
ent lighting conditions for 4 scenes each. Specifically, we
select the first frame of every eighth frames as the testing
set. Furthermore, during testing, we utilize semantic seg-
mentation to generate masks for ground truth in order to
eliminate transient occlusions, and focus on evaluating the
performance of our algorithm in reconstructing the static
components.

Synthetic Dataset. For controllable experiments, we
construct a synthetic dataset based on NeRF Synthetic
dataset [20]. We first randomly split the 100 training views
into several sequences {Sk}Mk=1. Then, similar to NeRF-
W [19], we apply random color perturbation for each se-
quence, except the first sequence in which appearance code
of the first image is used to render test views. By adjusting
image count per sequence, while fixing the overall number
of training images to 100, we show the robustness of our
method against different multi-sequence settings in Sec.5.5.
Please refer to our supplementary for more controllable ex-
periments and complete details.
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Figure 6: Qualitative results on NeRF-OSR dataset.
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Figure 7: Qualitative results of appearance interpolation. We make interpolation between appearance codes of two
training images.With overfitting appearance code, NeRF-W and Ha-NeRF suffer from ghosting in the sky on the right.
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stjohann lwp st europa

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [20] 14.891 0.4319 0.6388 11.510 0.4677 0.5742 17.196 0.5143 0.5017 17.492 0.5508 0.5034
NeRF-W [19] 21.230 0.6673 0.4255 19.607 0.6159 0.4453 20.310 0.6067 0.4380 20.000 0.6899 0.3397
Ha-NeRF [5] 17.187 0.6857 0.3309 20.027 0.6850 0.3647 17.298 0.5378 0.4831 17.790 0.6323 0.4210
Ours 22.839 0.7933 0.2347 21.904 0.7187 0.3361 20.675 0.6304 0.4021 21.028 0.7214 0.2939

Table 1: Quantitative results on NeRF-OSR dataset. We compare with state-of-art NeRF-like methods. Our method can
significantly improve the performance with multi-sequence images.

5.2. Implementation Details

Our implementation of NeRF and NeRF-W is based
on [24], while our implementation of Ha-NeRF follows [5].
The static radiance field consists of 8 layers with 256 chan-
nels and a 128 channels layer to generate σ and c. Two
MLPs with 2 layers in the Transient Decomposition module
are followed by ReLU, and we generate color, density, and
uncertainty by one fully-connected layer. Our per-image ap-
pearance vector with 48 dimensions is constrained by triplet
loss with margin m = 2, and the weight of triplet loss λ
is set to 0.01. Dimensions of sequence transient code and
image transient code are both 16. We train the full model
on 8 Nvidia 2080Ti GPUs for 200k steps with a batch size
of 1024 and downsample all the images by 2 times during
training and evaluation. We use MindSpore [34] and Py-
Torch [23] for the implementation and code will be released.

5.3. Comparisons with the State-of-the-art Methods

Baselines. We evaluate our NeRF-MS and other SOTA
NeRF-like baselines as follows: a) vanilla NeRF which
presents volume rendering but requires strict illumination
conditions; b) NeRF-W [19] which is able to train radi-
ance field using unstructured image sets; c) Ha-NeRF [5]
which uses a convolutional neural network to extract ap-
pearance code and an occluded network to predict 2D tran-
sient masks.
Evaluation. We use a number of different assessment met-
rics to measure visual quality of our novel view synthesis,
such as the Peak Signal-to-noise Ratio(PSNR), the Struc-
tural Similarity Index Measure(SSIM [36]) and the Learned
Perceptual Image Patch Similarity(LPIPS [39]). We follow
the setting in [5] and optimize the appearance code on the
left half of each test image for our method and NeRF-W
and report metrics on the right half, while Ha-NeRF takes
the whole test image as input to fetch appearance feature.

Quantitative results are shown in Table. 1. With multi-
sequence training images, our method outperforms the
baselines on PSNR, SSIM and LPIPS on NeRF-OSR
dataset. By regularizing per-image appearance code, we
strengthen the multi-view consistent constraint so that our
method can perform robust rendering and reconstruct 3D
consistent appearance, especially some view-dependent ef-
fects like specular reflections as shown in Fig. 3. For bet-

ter geometry reconstruction, we propose a transient decom-
position module to enhance the modeling capability of se-
quence transients, realizing thorough separation of static
and transient objects. The quantitative results on the real-
world dataset announce our method achieves state-of-art
performance in multi-sequence tasks.

Qualitative results are shown in Fig. 6. Our method
significantly improves the rendering performance in test
views with multiple sequences as training data compared
with the baselines. NeRF suffers from severe ghosting and
artifacts since it has a strong assumption for photometric
consistency. NeRF-W optimizes per-image appearance and
transient codes for each image without regularization and
assumption and suffers from overfitting in multi-sequence
tasks due to a lack of diversity of appearance variations and
the limited number of training views. The overfitting ap-
pearance embedding leads to a weak ability to reconstruct
high-frequency texture and geometry details (examples 1,
2, 4, Fig. 6). Ha-NeRF uses a CNN to fetch the appearance
features from training images. Similarly, CNN is prone to
overfit in image content, resulting in global color bias and
blurry rendering (example 1, 3, 4, Fig. 6). Besides, Ha-
NeRF leverages MLP to predict 2D masks for transient ob-
jects instead of transient fields. The 3D inconsistent masks
result in an excessive separation of geometry, leading to the
loss of fine details in the reconstruction (example 2 in Fig. 6
and roof in Fig.7).
Controllable Appearance. Our method achieves control-
lable appearances by interpolation between different se-
quences. In Fig. 7, we present some images rendered by
interpolated appearance code from the leftmost image and
rightmost image. Our method performs smooth appearance
style transfer by building a better latent space, while NeRF-
W and Ha-NeRF suffer from ghosting artifacts in unseen
regions (the sky on the right). It reveals that per-image ap-
pearance code without regularization is prone to overfitting
on the training views and cannot robustly render and inter-
polate in novel viewpoints.

5.4. Ablation Studies

Results in Table. 2 show that each component is ben-
eficial to multi-sequence fusion tasks. This illustrates the
effectiveness of regularization on appearance code distribu-
tion and explicitly modeling sequence transients.
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↑PSNR ↑SSIM ↓LPIPS

NeRF-W 20.287 0.6450 0.4121
Ours w/o Triplet Loss 20.848 0.6932 0.3410
Ours w/ Seq App Code 20.366 0.6780 0.3645
Ours w/o Sequence Transient 21.224 0.6846 0.3572
Full Model 21.611 0.7160 0.3167

Table 2: Ablation study on NeRF-OSR dataset.

Label Error ↑PSNR ↑SSIM ↓LPIPS

NeRF-W 2 21.230 0.6673 0.4255
Ha-NeRF 2 17.187 0.6857 0.3309
Ours 2 22.839 0.7933 0.2347

Ours 2� 21.668 0.7315 0.2989

Table 3: Robustness against sequence label error. The
performance of our method decreases with sequence parti-
tion error, but still better than the other methods.

Without Triplet Loss. We remove the triplet loss in this
experiment. Without triplet loss, appearance code tends to
overfit image content and camera pose, leading to global
color shift and loss of high-frequency texture in test views.
Furthermore, without the regularization of the embedding
distribution, neural radiance fields can’t perform 3D con-
sistent rendering and reconstruct view-dependent effects, as
shown in Fig. 3.
With Sequence Appearance Code. In this experiment, we
replace the per-image appearance code with a per-sequence
appearance code. This experiment’s result is worse than
“w/o Triplet Loss”, indicating that sequence appearance
code harms multi-sequence tasks. The main reason is that
such a trivial method can’t model the difference between
frames in the same sequence.
Without Transient Decomposition Module. In the exper-
iment, we remove sequence transient code, only optimizing
image transient code like NeRF-W. Without explicitly mod-
eling the sequence transients, current methods struggle to
disentangle sequence transients from static scenes, causing
artifacts and floaters, as shown in Fig. 5.

5.5. Robustness Analysis

Robustness against Error Sequence Label. Sequence la-
bel is free to obtain, such as by timestamp. However, in
some extreme cases, there existing some inaccurate labels,
for example, the scene appearance will change dramatically
due to turning on the light.

By labeling sequence 0 and sequence 1 in “stjohann”
scene as the same sequence, we evaluate our method’s ro-
bustness against the sequence label error. As shown in Ta-
ble. 3, with sequence label error, our method still shows
performance beyond baselines, which proves our method’s
robustness against label error and drastically changes within
a sequence. The main reason is that triplet loss allows vari-

Figure 8: Evaluation with various multi-sequence set-
tings. By fixing the total number of training images as 100,
we adjust the number of sequences and number of images
within a sequence, e.g. 50 sequences with 2 images per se-
quence and 5 sequences with 20 images per sequence.

ance between the images in the same sequence.
Robustness against Various Multi-sequence Settings.
We discuss the robustness of our method against different
multi-sequence settings. We evaluate our method and base-
lines with different numbers of sequences and numbers of
images per sequence on synthetic dataset, while fixing the
number of whole training views to 100. Fig. 8 shows that
our method consistently outperforms NeRF-W even in a
NeRF-W like setting (50 sequences with 2 images per se-
quence). Therefore, the sequence suitable for our method is
not only a long video or hundreds of frames collection but
also an image set with several images.

6. Conclusion
We present NeRF-MS, a novel framework to train neural

radiance fields with multi-sequence images. NeRF-MS uti-
lizes a triplet loss to avoid overfitting for appearance code
and proposes sequence transient code for better non-static
object separation. Our method can reconstruct 3D consis-
tent reflection and achieve controllable appearance. The se-
quence transient code effectively separates non-static com-
ponents, while existing methods are unable to handle this
phenomenon. Experiments show that NeRF-MS achieves
state-of-art novel view synthesis effects with multiple se-
quences. We believe our method represents a significant ad-
vancement in expanding the potential applications of NeRF.
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