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Abstract

Domain Adaptive Object Detection (DAOD) transfers an
object detector to a novel domain free of labels. How-
ever, in the real world, besides encountering novel scenes,
novel domains always contain novel-class objects de facto,
which are ignored in existing research. Thus, we formu-
late and study a more practical setting, Adaptive Open-set
Object Detection (AOOD), considering both novel scenes
and classes. Directly combing off-the-shelled cross-domain
and open-set approaches is sub-optimal since their low-
order dependence, e.g., the confidence score, is insuffi-
cient for the AOOD with two dimensions of novel infor-
mation. To address this, we propose a novel Structured
Motif Matching (SOMA) framework for AOOD, which mod-
els the high-order relation with motifs, i.e., statistically sig-
nificant subgraphs, and formulates AOOD solution as motif
matching to learn with high-order patterns. In a nutshell,
SOMA consists of Structure-aware Novel-class Learning
(SNL) and Structure-aware Transfer Learning (STL). As
for SNL, we establish an instance-oriented graph to cap-
ture the class-independent object feature hidden in dif-
ferent base classes. Then, a high-order metric is pro-
posed to match the most significant motif as high-order
patterns, serving for motif-guided novel-class learning. In
STL, we set up a semantic-oriented graph to model the
class-dependent relation across domains, and match un-
labelled objects with high-order motifs to align the cross-
domain distribution with structural awareness. Exten-
sive experiments demonstrate that the proposed SOMA
achieves state-of-the-art performance. Codes are available
at https://github.com/CityU-AIM-Group/SOMA.

1. Introduction
Domain Adaptive Object Detection (DAOD) studies ro-

bust object detection in cross-domain scenarios, where the
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Figure 1. Illustration of (a) existing DAOD assumption and (b) the
proposed AOOD setting.

independent and identically distributed constraint [17] is no
longer applicable due to the domain shift [7]. With tailor-
designed techniques [7, 22, 5], the object detector trained in
a labeled domain can be generalized to a novel one free of
labels (Figure 1(a)), pushing forward its real-world ground-
ing, e.g., self-driving with novel weather and street scenes.

While achieving great success, existing DAOD works
strongly assume a shared class space between the two do-
mains (see Figure 1(a)), leading to a vast gap between
the transferred domain and real-world [24]. Since natu-
ral scenes are diverse and always contain objects beyond
pre-defined classes, this gap severely limits the scene un-
derstanding for industrial usage [19], e.g., confusing the au-
tonomous driving system with wrong judgments. Hence, to
overcome this limitation, we relax the assumption and for-
mulate a more practical setting, called Adaptive Open-set
Object Detection (AOOD), by allowing the target domain
with novel-class objects. As shown in Figure 1(b), in the
target domain, besides detecting the base-class car and per-
son shared with the source domain, we also aim to identify
novel-class objects, e.g., dustbin and door sign, etc. Specif-
ically, the object detector uses the base-class labels in the
source domain for training, and aims to detect base-class
objects and identify novel-class objects as unknown [19] in
the target domain. The proposed AOOD1 is a practical set-

1See Appendix for comparing with other related task settings.
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ting in the real world that considers two dimensions of novel
information, namely novel scenes and classes.

Aiming to improve the novel-scene robustness, recent
DAOD advances delve into semantic-level cues, e.g., clas-
sification scores [50, 30, 22, 29] and prototype-based dis-
tance [44, 58], to guide the adversarial alignment [44, 29,
22], metric learning [55, 50, 30], and self-training [26, 25,
56], which achieve cross-domain adaptation at the category
level. To improve the novel-class discriminability, existing
works rely on classification scores [24, 19, 12, 21, 16, 24]
to discover informative background objects, and conduct a
novel-class synthesis with base-class sample pairs [59, 14]
to achieve open-set learning [12]. The two streams use low-
order [35] cues, e.g., the pair-wise distance and relation, to
achieve reliable learning with novel information.

However, directly combining cross-domain and open-set
approaches may lead to a sub-optimal AOOD. The reason
is that the novel-class objects out of distribution and the
novel-scene objects attacked by the domain shift are both
embedded outside of the labeled feature space with low
confidence [19, 7, 21], which are difficult to distinguish
with low-order cues. Going beyond the low-order cues, the
motif [2, 36, 42], i.e., a statistically significant subgraph,
has been studied to model the high-order patterns within
a graph. Hence, we aim to use motifs to break through
this low-order barrier. Instead of modeling the pair-wise
relation between two entities, a motif assumes the high-
order relation among several entities (see Figure 2), which
can be used to solve AOOD from the following two as-
pects. Firstly, we observe that novel-class objects inher-
ently contain class-independent features to distinguish from
non-informative backgrounds, e.g., relatively complete con-
tours. These features are shared among different classes
and should not be overwhelmed by class-specific seman-
tics. Thus, our critical insight is discovering this shared
feature among several class centers with motifs, achieving
motif-guided novel-class learning2. Secondly, for the novel
scene, the high-order cues of class-dependent distribution,
e.g., within-class variance, are crucial for the cross-domain
robustness [1, 30]. These observations motivate us to model
the high-order patterns among several class extreme points
with motifs and achieve motif-guided transfer learning.

To address the critical yet unexplored AOOD issue, we
propose a novel Structured Motif Matching (SOMA) frame-
work, which models the high-order patterns with motifs to
learn in the real world. Specifically, we propose Structure-
aware Novel-class Learning (SNL) to empower novel-class
detection in the source domain. SNL estimates class cen-
ters and extremes with a semantic bank, which is used
to construct an instance-oriented graph to capture class-
independent object features. Then, with a newly proposed
high-order metric, each candidate object is matched with a

2See Sec. 5 for a high-level clarification of the core idea.

graph motif to model significant high-order patterns, serv-
ing for motif-guided novel-class learning. Moreover, we
design a Structure-aware Transfer Learning (STL) in the
target domain for cross-domain transfer. STL constructs a
semantic-oriented graph with class extremes, in which the
motif is obtained as class-dependent high-order patterns.
Then, we use motifs to fulfill motif-guided transfer learn-
ing with structural awareness. The proposed motif-based
learning paradigm explores the high-order structural pat-
terns well-suited for diverse real-world situations [35]. To
be summarized, our main contributions are as follows,

• This paper formulates a real-world friendly setting,
Adaptive Open-set Object Detection (AOOD), con-
sidering both novel scenes and classes. To address
AOOD, we propose a novel Structured Motif Matching
(SOMA) framework, which models the high-order pat-
terns with graph motifs for reliable learning.

• We propose a Structure-aware Novel-class Learning
(SNL) module, which models the shared object fea-
tures through motif matching for novel-class learning.

• We design Structure-aware Transfer Learning (STL)
for novel scenes. STL models the high-order relation
with graph motifs, adapting the cross-domain distribu-
tion with structural awareness.

• Three AOOD benchmarks are carefully developed,
thoroughly considering different base-novel splitting
protocols with practical groundings in the real world.
Extensive experiments show that our method achieves
state-of-the-art performance in various scenarios.

2. Related Work
2.1. Domain Adaptive Object Detection

Domain Adaptive Object Detection (DAOD) transfers an
object detector from a labeled source domain to a novel one
with a shared class space. From the perspective of seman-
tic discriminability, existing research can be broadly cate-
gorized into adapting class-agnostic distribution [39, 7, 22,
55, 45, 23, 10, 41, 32] and class-aware conditional distribu-
tion [58, 49, 29, 30, 50, 44, 11, 38]. As for the methodol-
ogy, some works [29, 58, 50] estimate and adapt the cross-
domain prototypes (class centers) to align the class dis-
tribution explicitly. MeGA [44] introduces semantic-level
guidance in adversarial alignment in a class-aware man-
ner. SIGMA [30, 31] formulates and solves adaptation
with graph matching among dense feature points. More-
over, some works conduct self-training [26, 25, 56, 5] to
enhance the discrimination of reliable target-domain sam-
ples. However, existing works leverage low-order cues
to model the semantic relation, which cannot provide suf-
ficient knowledge for the whole distribution. This work
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Figure 2. Left: the pair-wise low-order relation. Existing OSOD
methods aim to discover such knowledge, including the pair-wise
distance [19, 24, 12] and pair-wise synthesis [59, 14]; Middle: a
third-order graph motif; Right: matched motifs in a graph.

breaks through this barrier by introducing high-order mo-
tifs for robust adaptation.

2.2. Open-Set Object Detection

With labeled base-class objects, Open-Set Object Detec-
tion (OSOD) [57, 34, 19, 18, 24, 21, 16, 14, 13] aims to
train an object detector to detect both base and novel ob-
jects. The authors in [12] benchmark the OSOD problem
and then discuss various open-set detectors according to the
classifier. Based on Region Proposal Network (RPN) [37],
ORE [24] selects non-overlapped proposals with larger ob-
jectness scores as potential novel objects and then con-
ducts energy-based novel-class learning. OpenDet [19] op-
timizes the unknown probability on both base-class and
RPN-selected novel-class objects. OW-DETR [18] extends
the open-set learning into detection transformer [60] and se-
lects the activated and unmatched object queries for self-
training. Moreover, some works [59, 14] use two base-class
samples to synthesize novel-class representation for model
optimization. Existing works [19, 24, 18, 59, 14] only con-
sider low-order evidence to identify novel objects (Figure 2
Left), which cannot model shared object features well. Dif-
ferently, we model such features with graph motifs to iden-
tify novel classes with structural awareness.

2.3. Graph Motif

The usage of graphs in computer vision can be generally
categorized into two types. 1) Graph neural networks [4]
model long-range dependencies among pixels, objects, and
images, for better model capacity and effective optimiza-
tion. 2) Graph theories [47], e.g., graph matching, search-
ing, and clustering introduce theoretically-grounded graph-
ical algorithms in computer vision to solve practice issues
and boost the vanilla backpropagation-based optimization.

Beyond the second-order pair-wise relation (Figure 2
Left), graph motif [2] is a statistically significant subgraph
(Figure 2 Middle) with higher-order connectivity patterns,
which is essential to understanding the fundamental struc-
tures of graphs (Figure 2 Right). As a local high-order pat-
tern, graph motif has been studied to improve the graph

representation with contrastive learning [42], graph con-
volution [51], graph attention [36], graph clustering [2].
Graph motifs can model the high-order relation among sev-
eral graph nodes, yielding better downstream graph learning
with structural robustness [2]. Moreover, MotifNet [53] first
leverages the graph motif to model the semantic-level struc-
ture [53] to address the scene graph parsing. More discus-
sion about the graph in computer vision [4, 47] can be found
in Appendix. This work uses graph motifs to model the
high-order patterns among categorical knowledge and can-
didate objects, empowering the novel-class discriminability
and novel-scene robustness in object detection.

3. Structured Motif Matching (SOMA)
Problem Formulation for AOOD. We have a labeled
source-domain dataset Ds = {Iis, Y i

s }
ns
i=1 and unlabeled

target-domain dataset Dt = {Iit}
nt
i=1 drawn from incon-

sistent data distribution P (Is) ̸= P (It). The source
label of each image consists of a set of objects Ys =
{(ys, bxs , bys , bws , bhs )}, where ys ∈ Ls represents the object
class, and (bxs , b

y
s , b

w
s , b

h
s ) are the coordinates of bounding

boxes. Different from the DAOD assumption that the source
and target domain share the same class space, AOOD con-
siders a set of base classes Ωb = {1, 2, 3, ...,K} and novel
classes Ωn = {K +2,K +3, ...,K +K ′} with the follow-
ing constraints. 1) The labeled objects in the source domain
are only in the base class: Ls ⊆ Ωb. 2) The objects appear-
ing in the unlabeled target domain may be in both base and
novel classes, satisfying objects ⊆ Ωb ∪ Ωn.

AOOD aims to use Ds/t for training, making it correctly
detect base-class objects (objects ∈ Ωb) and identify novel-
class objects (objects ∈ Ωn) as a single unknown class (de-
noted as class K + 1 [18]) in the target domain Dt.

3.1. Overview

The workflow of SOMA is shown in Figure 3, based on
Deformable DETR [60]. With batch-wise labelled source
images {Iis, Y i

s }Bi=1 and unlabeled target images {Iit}Bi=1,
we use a feature extractor to extract image-level features
{Xi

s/t}
B
i=1, and send them to the transformer encoder and

decoder [60] to obtain N = 100 decoded object queries
Qs/t. Then, Qs is sent to SNL (Figure 3(a)) and Qt is sent
to STL (Figure 3(b)). In SNL, we first use ground-truth-
matched [3] object queries Qm ⊆ Qs to estimate the class
space with a semantic bank Q = {Qctr,Qext}, which is
used to construct an instance-oriented graph GIG. Then,
for each unmatched query qum ∈ Qum, we traverse graph
motifs and match the one with minimum high-order metric
ΓIG. After that, the matched motifsMmat

IG serve as high-
order patterns for motif-guided novel-class learning LSNL,
and are used to enrich the semantic bank Q in turn. In STL,
we use activated queries Qact ⊆ Qt and class extremes
Qext to establish a semantic-oriented graph GSG. Then, the
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Figure 3. Overview of the proposed SOMA framework for AOOD, consisting of SNL for detecting novel objects and STL for adapting to
novel scenes. SOMA is used in the model training and is eliminated in the inference stage.

graph motif is matched Mmat
SG with the high-order metric

ΓSG, achieving a motif-guided transfer learning withLSTL.

3.2. Structure-aware Novel-class Learning

Given batch-wise source {Iis, Y i
s }Bi=1 and target {Iit}Bi=1

samples with K base classes, the feature extractor and
transformer are deployed to obtain decoded object queries
Qs/t ∈ RBN×D [60]. With object labels and predictions,
some queries Qm ⊆ Qs are matched to the ground-truth via
bipartite matching [3], while the rest queries Qum ⊆ Qs

may contain novel-class and background information [18].
Considering that the randomness of batch-level sampling

may lead to a biased observation [30, 28], we first collect the
ground-truth-matched queries Qm to estimate a semantic-
complete class space with a semantic bank Q. Specifically,
the bank saves class centers Qctr ∈ R(K+1)×D to model
class prototypes [58], and preserves the information of the
class extreme pairs Qext = {Qext,+,Qext,−},Qext,−/+ ∈
R(K+1)×D to estimate the scale of the class distribution,
both of which are randomly initialized at the training start.
Since the extreme points are difficult to estimate directly,
we introduce and save the standard deviation as the inter-
mediate variable Qstd for a batch-level estimation, follow-
ing the assumption of a formalized deep feature space [1].
To this end, for the learning of Q, we conduct an Exponen-
tial Moving Average (EMA) based update strategy for each
base-class k ∈ {1, 2, ...,K} with matched queries Qk

m:

Qk
ctr ← αfmean(Q

k
m) + (1− α)Qk

ctr,

Qk
std ← αfstd(Q

k
m) + (1− α)Qk

std,

Qk
ext,+ = Qk

ctr + βQk
std,Q

k
ext,− = Qk

ctr − βQk
std,

(1)

where fmean/std(·) indicates the statistical mean and stan-
dard deviation of the observed object queries, α ∈ (0, 1)
controls the update speed, and β scales the estimated distri-

bution. For the novel-class QK+1
ctr/std, we generate a class-

independent placeholder by averaging all base-class repre-
sentations 1

K

∑
QK

ctr/std as the update item, since novel ob-
jects contain the shared object features among all classes.

With base-class centers Q
[1,K]
ctr and unmatched queries

Qum, we construct an instance-oriented graph to model the
relation among different classes. Then, object queries will
be matched to the most informative motif, serving as high-
order patterns for motif-guided novel-class learning.
Instance-oriented Graph. To model the structural relation
for novel-class learning, we establish an instance-oriented
graph GIG with class centers Q[1,K]

ctr and unmatched queries
Qum, which discovers the shared instance-level knowledge
among different classes. Specifically, we first connect each
base-class center q1

ctr ∈ Q
[1,K]
ctr with its farthest counter-

part3 q2
ctr ∈ Q

[1,K]
ctr according to L2 distance (blue edges in

Figure 3(a)) to establish the pair-wise relation between the
two most different classes, e.g. car and person. The built re-
lation is critical in discovering the shared class-independent
knowledge, which can identify object instances from non-
informative backgrounds. Then, each query qum ∈ Qum

is linked with all base-class centers Q[1,K]
ctr to model inher-

ent relation candidates (dotted edges in Figure 3(a)). This
graph GIG is established across different images within a
batch, capturing the long-distance dependence and model-
ing inherent class-independent relations among nodes.
Graph Motif Matching. Aiming at extracting high-order
patterns in the graph GIG, we match each query qum with
the most informative motif Mmat

IG satisfying topological ev-
idence. As for the topological evidence, we define the fully-
connected sub-graph with three nodes, i.e., a triangle-like
structure, as the available third-order motif [2]. Then, with
the well-established graph structure, we traverse available

3We prevent two similar classes (e.g., car and truck) overwhelmed by
class-dependent patterns. See Appendix for justifications.
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graph motifs for each unmatched query qum ∈ Qum and
generate a motif candidate set MIG = {M1,M2, ...Mn},
where Mi = {qum,q1

ctr,q
2
ctr}. After that, the optimal mo-

tif Mmat
IG ∈MIG is selected as novel-class representation.

To find the most informative motif Mmat
IG in each can-

didate set MIG, we propose a high-order metric ΓIG that
measures the quality of class-independent knowledge in a
motif. Formally, given the motif with three node variables
Mi = {qum,q1

ctr,q
2
ctr}, the high-order metric is defined as

ΓIG = cos(θ) +NDD with the followed items,

cos(θ) :=
vct1 · vct2

||vct1||2 · ||vct2||2
,

NDD := | ||vct1||2 − ||vct2||2
||q1

ctr − q2
ctr||2

|,
(2)

where vct1/2 := q
1/2
ctr − qum are two intermediate vec-

tors to measure the motif structure (Figure 3(a) Middle),
cos(θ) ∈ [−1, 1] measures the angle between vct1 and vct2,
and NDD ∈ [0, 1] is normalized distance difference, re-
flecting the qum’s affinity difference between q

1/2
ctr . The in-

sight of the two items is as follows. If cos(θ) gives a small
value, i.e., a large θ, the distance between node qum and the
edge connecting q1

ctr and q2
ctr will be small, indicating that

qum is likely to be similar to q
1/2
ctr . If NDD is small, then,

the node qum tends to be embedded near the central axis
between q1

ctr and q2
ctr instead of q1

ctr or q2
ctr itself.

Hence, we select the motif Mmat
IG = argminΓIG

MIG

with minimum ΓIG. Minimizing cos(θ) encourages the
motif to contain more class-independent knowledge. Since
q1
ctr and q2

ctr represent the most inconsistent semantics,
e.g., car and person, qum is likely to contain vital class-
independent information if it shows sufficient similarity on
both q

1/2
ctr in this min-max game [17]. Meanwhile, minimiz-

ing NDD encourages a better class-independent property,
avoiding the query qum overwhelmed by a specific base
class4. Thus, we combine the two structural cues with or-
thogonal effects to select informative motifs for novel-class
learning, yielding a matched motif setMmat

IG = {Mmat
IG }.

Please refer to Figure 5 for the clear justification of ΓIG.
Motif-guided Novel-class Learning. With matched motifs
Mmat

IG , we further conduct motif-guided novel-class learn-
ing with extracted high-order patterns. Considering that the
background knowledge is hidden in Mmat

IG , we rank the
high-order metric ΓIG for matched motifs and select Top-K
minimums to optimize the novel-class posterior:

LSNL = − 1

K

K∑
i=1

log(p(fcls(M̂
mat
IG,i) = K + 1|M̂mat

IG,i)),

where fcls(·) is the classifier in the object detector, M̂mat
IG =

1
3

∑3
n=1 M

mat
IG,n is the abstracted representation for selected

4These overwhelmed queries may be caused by the heavy overlap-
ping [27, 61] (see Figure 4) and should not be treated as novel-class.

motifs. In addition to optimizing the novel-class discrim-
inability with Qum [18], our motif-based strategy empow-
ers the novel-class learning for base-class Q

[1,K]
ctr [19], be-

ing aware of the class-independence among varied classes.
Finally, we use selected motifs to enrich the semantic bank
in QK+1

ctr/ext by updating the novel-class item as Eq. 1.

3.3. Structure-aware Transfer Learning

With class extremes Q[1,K+1]
ext and target-domain queries

Qt, we construct a semantic-oriented graph to model the
relation within the class. Then, with the graph structure,
unlabeled nodes are matched to the graph motif, serving to
remedy the domain gap with motif-guided learning.
Semantic-oriented Graph. As the domain shift severely
attacks the class distribution [58, 30] with weak seman-
tic discriminability, we establish a semantic-oriented graph
GSG to model the semantic-level relation with base-class
extremes Q

[1,K+1]
ext and activated object queries Qact ⊆

Qt. Specifically, considering the one-vs-all property of
the sigmoid classifier, we select activated object queries
qact ∈ Qact according to the pseudo classification scores
Qact = {qt|

∑K+1
k=1 fcls(q

k
t ) > ϵ} 5. Then, we connect

the two extreme points Qk
ext,+ Qk

ext,− in the same class
k = {1, 2, ...,K + 1} to model the class distribution (red
edges in Figure 3(b)), and connect each object query qact
with all Q[1,K+1]

ext (dotted edges in Figure 3(b)) to model the
candidate relations. Thus, the edges contain abundant class-
specific relation, serving for a structure-aware adaptation.
Graph Motif Matching. With the semantic-oriented graph
GSG, each activated query qact will be matched to the opti-
mal motif Mmat

SG as the high-order pattern for robust domain
adaptation. Specifically, for each qact ∈ Qact, we traverse
all available graph motifs to generate a motif candidate set
MSG = {M1,M2, ...Mn},Mi = {qact,qext,+,qext,−}.
Similarly, the intermediate vectors vct1/2 := qext,+/− −
qact are defined (Figure 3(b) Middle) and used to match
the motif with minimum metric ΓSG := cos(θ), where
cos(θ) := vct1·vct2

||vct1||2·||vct2||2 . Unlike the motif matching in
GIG, we only use the angle item for GSG (see Table 5), since
a large NDD, i.e., qact is near one of the extremes, can still
ensure the correct adaptation with the same class distribu-
tion. Thus, with structural cues, each activated query qact is
matched to a high-order motif Mmat

SG = argminΓSG
MSG

drawn from a specific class distribution.
Motif-guided Transfer Learning. With matched high-
order graph motifs Mmat

SG = {Mmat
SG }, each activated

query qact is matched to a specific class with corresponding
pseudo-label ỹ3, serving for a robust cross-domain transfer.
Considering that the second-order knowledge ỹ2 is also crit-
ical for semantic discriminability (see Table 6), we conduct
a cross-order mixup to obtain the ensembled pseudo-labels:

5ϵ is empirically set 0.5 as [30] to satisfy the sigmoid activation.
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Method Set num. novel-class: 3 num. novel-class: 4 num. novel-class: 5
mAPb↑ ARn↑ WI↓ AOSE↓ mAPb↑ ARn↑ WI↓ AOSE↓ mAPb↑ ARn↑ WI↓ AOSE↓

DDETR [60]ICLR′21

he
t-

se
m

47.52 0.00 0.341 459 45.24 0.00 0.506 1028 42.38 0.00 0.659 1968
PROSER [59]CV PR′21 46.92 1.80 0.271 218 44.19 2.02 0.415 531 41.99 2.00 0.584 1127
OpenDet [19]CV PR′22 47.04 1.92 0.269 221 45.71 1.89 0.499 511 42.09 1.70 0.579 922
OW-DETR [18]CV PR′22 43.31 1.84 0.432 192 42.52 2.10 0.619 451 39.92 1.98 0.684 814
SOMA (ours) 50.87 3.78 0.268 139 48.06 4.41 0.412 340 45.55 4.08 0.526 649
DDETR [60]ICLR′21

ho
m

-s
em

44.62 0.00 1.860 2937 43.55 0.00 2.000 3565 40.18 0.00 2.462 6770
PROSER [59]CV PR′21 43.15 4.59 1.842 2146 43.31 4.99 2.018 2641 39.99 5.99 2.563 4963
OpenDet [19]CV PR′22 45.51 5.28 1.336 1458 44.02 5.67 1.653 1798 40.87 6.58 2.303 3416
OW-DETR [18]CV PR′22 43.22 3.15 1.355 1076 42.83 3.46 1.593 1320 39.45 4.38 2.384 3399
SOMA (ours) 48.67 6.96 1.257 915 47.02 7.42 1.527 1232 43.37 8.42 2.281 2886
DDETR [60]ICLR′21

fr
eq

-d
ec

56.99 0.00 0.579 1240 55.02 0.00 0.835 2136 53.89 0.00 0.93 2625
PROSER [59]CV PR′21 55.70 6.68 0.589 536 54.51 7.88 0.780 952 53.43 8.22 0.943 1072
OpenDet [19]CV PR′22 57.28 9.35 0.519 720 54.89 10.59 0.781 1251 53.51 10.37 0.839 1470
OW-DETR [18]CV PR′22 56.63 6.61 0.585 698 55.45 7.90 0.745 930 53.60 7.90 0.807 1105
SOMA (ours) 59.18 11.41 0.507 669 56.85 12.47 0.723 1140 55.63 12.36 0.759 1315
DDETR [60]ICLR′21

fr
eq

-in
c 44.72 0.00 2.862 2859 43.91 0.00 3.270 4907 41.12 0.00 3.609 8291

PROSER [59]CV PR′21 44.23 2.94 2.881 1090 42.47 2.98 2.745 1866 39.11 3.01 3.119 3242
OpenDet [19]CV PR′22 44.85 3.23 2.579 1700 42.92 3.30 2.741 2835 40.34 3.44 2.970 4965
OW-DETR [18]CV PR′22 43.92 3.85 2.032 1377 43.01 3.99 2.219 1891 40.21 2.98 2.184 2293
SOMA (ours) 46.62 8.32 1.452 733 47.30 8.43 1.566 1166 44.45 7.95 1.792 1974

Table 1. Comparison results on Cityscapes→Foggy Cityscapes under AOOD setting.

Method |Ωn| mAPb ↑ ARn ↑ WI↓ AOSE↓
DDETR [60]ICLR′21

6

19.78 0.00 8.95 6347
PROSER [59]CV PR′21 18.23 32.37 9.87 5853
OpenDet [19]CV PR′22 20.57 41.15 8.93 4295
OW-DETR [18]CV PR′22 20.31 35.48 10.26 5184
SOMA (ours) 21.70 43.15 7.32 4278
DDETR [60]ICLR′21

8

19.31 0.00 9.58 7402
PROSER [59]CV PR′21 18.37 33.07 10.40 6636
OpenDet [19]CV PR′22 20.84 41.58 9.53 4919
OW-DETR [18]CV PR′22 21.01 36.53 10.52 5981
SOMA (ours) 21.69 43.40 8.24 5016
DDETR [60]ICLR′21

10

19.12 0.00 10.06 9198
PROSER [59]CV PR′21 16.80 33.74 11.06 8065
OpenDet [19]CV PR′22 18.87 41.50 10.24 6103
OW-DETR [18]CV PR′22 18.42 36.50 11.06 7018
SOMA (ours) 20.09 43.73 8.88 6092

Table 2. Comparison results on Pascal VOC→ Clipart with AOOD
setting. |Ωn| indicates the number of novel classes.

ỹ = 0.5 · ỹ3+0.5 · ỹ2, where ỹ2 = argmin(||qact−Qctr||2)
is the low-order evidence. Then, the motif-guided learning
is implemented with the following loss function,

LSTL = − 1

|Mmat
SG |

|Mmat
SG |∑

i=1

ỹlog(p(fcls(M̂
mat
SG,i)|M̂mat

SG,i)),

where M̂mat
SG = 1

3

∑3
n=1 M

mat
SG,n indicates the pooled mo-

tif representation with high-order patterns. The high-order
relation between the source and target domain can be mod-
eled in each graph motif, encouraging the robust alignment
of per-class distribution with structural awareness.

3.4. Model Optimization

During the training stage of SOMA framework, we im-
plement the overall optimization objective as follows,

L = λ1LSNL + λ2LSTL + LBASE , (3)

where LSNL is the proposed structure-aware novel-class
learning loss, LSTL is used for structure-aware transfer

learning, and LBASE is term shared in all benchmark coun-
terparts, including DETR detection loss [60] and global
alignment loss [7]. λ1/2 are set to 0.1 and 0.01, respectively.

4. Experiments

4.1. Benchmark Setup

Dataset Settings. We develop three AOOD benchmarks
using the datasets [7, 39] with the severe domain gap. 1)
Cityscapes→Foggy Cityscapes. Cityscapes [8] is a street
scene dataset captured under the dry weather condition, in-
cluding train set (2975 images) and val set (500 images)
with 8 classes. Foggy Cityscapes [40] is a synthesized
dataset based on the Cityscapes, whose 0.02 foggy-level
sub-set is used for comparison. 2) Pascal VOC→Clipart.
Pascal VOC [15] is a real-world dataset with annotated
commonly seen objects. Following [39], we use Pascal
VOC 2007/2012 trainval split with 16,551 images for train-
ing. Clipart [39] are collected from the website with im-
ages in abstract styles, containing 1,000 images for training
and test [6]. 3) Cityscapes→BDD100k. BDD100k [52] is
a large-scale landscape dataset with 100K videos. We fol-
low [48, 45] to use the daytime subset with 36,728 for train-
ing and 5,258 images for evaluation.

For Cityscapes→Foggy Cityscapes/BDD100K, we split
the base-/novel-class along two dimensions considering di-
verse real-world situations [43] with 12 sub-tasks. Firstly,
we consider different base/novel-class splittings about se-
mantic overlapping and instance frequency, including 4
sub-tasks: 1) heterogeneous semantics (het-sem): no se-
mantic overlap between base and novel classes (e.g., car and
person), 2) homogeneous semantics (hom-sem): with se-
mantic overlaps (e.g., car and truck), 3) frequency decrease
(freq-dec): more base objects than novel counterparts, and
4) frequency increase (freq-inc): more novel objects than
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Method Set num. novel-class: 3 num. novel-class: 4 num. novel-class: 5
mAPb ↑ ARn ↑ WI↓ AOSE↓ mAPb ↑ ARn ↑ WI↓ AOSE↓ mAPb ↑ ARn ↑ WI↓ AOSE↓

DDETR [60]ICLR′21

he
t-

se
m

13.48 0.00 0.153 1448 13.49 0.00 0.164 1604 13.52 0.00 0.227 2378
PROSER [59]CV PR′21 13.32 1.53 0.148 910 13.35 1.48 0.163 1032 13.37 1.60 0.218 1466
OpenDet [19]CV PR′22 13.70 1.20 0.135 836 13.71 1.17 0.150 992 13.75 1.27 0.209 1244
OW-DETR [18]CV PR′22 13.15 1.27 0.129 792 13.15 1.27 0.157 908 13.50 1.30 0.201 1168
SOMA (ours) 14.11 1.86 0.127 614 14.10 1.90 0.145 732 14.13 2.01 0.197 1074
DDETR [60]ICLR′21

ho
m

-s
em

10.31 0.00 2.846 25530 10.32 0.00 2.873 26488 10.56 0.00 3.003 29812
PROSER [59]CV PR′21 9.17 2.38 2.525 13200 9.19 2.41 2.458 13684 9.40 2.58 3.067 15962
OpenDet [19]CV PR′22 10.50 3.26 2.308 9760 10.54 3.28 2.327 10126 10.84 3.41 2.861 11776
OW-DETR [18]CV PR′22 9.45 1.45 2.255 6236 9.47 1.46 2.372 9440 10.52 1.64 2.780 10088
SOMA (ours) 11.51 3.97 2.251 7670 11.53 4.01 2.312 8054 11.83 4.13 2.611 9968
DDETR [60]ICLR′21

fr
eq

-d
ec

15.91 0.00 0.908 7402 15.88 0.00 0.952 8166 15.86 0.00 1.258 13044
PROSER [59]CV PR′21 15.98 12.92 0.949 4320 15.76 12.54 0.987 4886 12.88 15.57 1.286 7504
OpenDet [19]CV PR′22 16.01 14.87 0.948 4254 16.04 14.36 0.932 4942 16.11 14.69 1.250 7988
OW-DETR [18]CV PR′22 15.80 9.68 0.963 4294 15.76 9.31 1.021 4756 15.81 9.60 1.379 7738
SOMA (ours) 16.81 15.67 0.869 4220 16.55 15.05 0.915 4654 16.63 15.59 1.181 7230
DDETR [60]ICLR′21

fr
eq

-in
c 10.02 0.00 3.054 22108 10.02 0.00 3.08 23060 10.18 0.00 3.219 25684

PROSER [59]CV PR′21 9.02 1.71 3.995 24118 8.95 1.72 4.019 25366 9.80 1.77 4.202 28170
OpenDet [19]CV PR′22 10.47 1.68 3.228 13578 10.30 1.70 3.282 14210 10.46 1.73 3.393 15928
OW-DETR [18]CV PR′22 8.11 1.75 2.785 9602 8.12 1.75 2.787 9960 8.34 1.76 2.867 11034
SOMA (ours) 11.17 4.56 2.556 7420 11.08 4.56 2.577 7762 11.71 4.53 2.713 8844

Table 3. Comparison results on Cityscapes→ BDD100k with AOOD setting.

base ones. Secondly, we also follow [19] to consider the
number of novel classes with 3 sub-tasks {3, 4, 5}. For Pas-
cal VOC→Clipart, we follow existing work [19] by consid-
ering {6, 8, 10} novel classes according to the alphabetical
order, yielding 3 sub-tasks for comparison. See Appendix
for more splitting details and discussions.
Evaluation Metrics. We use mean Average Precision
with a 0.5 IoU threshold (mAPb) to evaluate the base-
class performance. For the novel-class evaluation, we fol-
low the main stream [24] to use Average Recall (ARn),
Wilderness Impact (WI) [12], and Absolute Open-Set Error
(AOSE) [12] for strict evaluation. WI and AOSE measure
the confusion in predicting a novel objects as base classes.
Implementation Details. Benchmarked methods are im-
plemented on Deformable DETR [60] with backbone align-
ment [17]. We adopt ResNet-50 [20] feature extractor
pretrained with DINO [54] to avoid the novel-class leak-
age [18] of the ImageNet [9] pretraining. Our model is
trained with the AdamW optimizer [33] with a 0.0002 learn-
ing rate, four batch-size, and weight decay of 5×10−4

on two NVIDIA V100 GPUs. We use 3 transformer en-
coder and decoder layers and implement SOMA on the
last decoder layer for computation efficiency on small-scale
datasets [46]. The training schedule is as [18] with extra
epochs of warm-up. During optimizing LSNL, we select
Top-5 motifs to generate novel-class signals and encourage
the unknown score of matched object queries to ϵ = 0.5
in classification to learn the unknown probability of base-
class objects. The update factor α and scaling factor β in
the semantic bank are set 0.01 and 1.0, respectively.

4.2. Benchmark Comparison

Cityscapes→Foggy Cityscapes. The comparison is shown
in Table 1. Compared with DDETR [60] baseline, we ob-
serve that existing works are prone to sacrifice large perfor-

SNL STL mAPb↑ ARn↑ WI↓ AOSE↓
✗ ✗ 42.38 0.00 0.659 1968
✓ ✗ 42.88 3.31 0.608 834
✗ ✓ 44.70 0.88 0.658 1791
✓ ✓ 45.55 4.08 0.526 649

Table 4. Ablation study on Cityscapes→Foggy Cityscapes under
het-sem setting (5 novel classes).

cos(θ) NDD mAPb↑ ARn↑ WI↓ AOSE↓

ΓIG

✓ 44.79 3.17 0.562 766
✓ 43.85 1.37 0.529 1158

✓ ✓ 45.55 4.08 0.526 649

ΓSG

✓ 45.55 4.08 0.526 649
✓ 44.03 3.92 0.597 949

✓ ✓ 45.01 4.11 0.531 672

Table 5. Comparison on Cityscapes→Foggy Cityscapes (het-sem)
with varied high-order metric ΓIG/SG designs.

sets mAPb↑ ARn↑ WI↓ AOSE↓

SN
L

w/o. SNL 44.70 0.88 0.658 1791
SNL w. Top-3 46.00 3.80 0.687 789
SNL w. Top-5 45.55 4.08 0.526 649
SNL w. Top-7 45.31 4.03 0.579 582

ST
L w/o. STL 42.88 3.31 0.608 834

STL w. ỹ3 44.05 3.91 0.599 801
STL w. ỹ2 & ỹ3 45.55 4.08 0.526 649

Table 6. Comparison results on Cityscapes→Foggy Cityscapes
(het-sem) with different hyper-parameter settings.

mance on base class precision, e.g., OW-DETR [18] gives
39.92% (42.38%), 39.45% (40.18%), 53.6% (53.89%), and
39.89% (41.1%) mAPb from set 1 to set 4 with 5 novel
classes. Differently, the proposed SOMA gives significant
gains with 45.55%, 42.71%, 55.61%, and 41.58% mAPb,
outperforming existing works by a large margin. For the
novel-class evaluation, the proposed SOMA achieves the
best ARn on all 12 sub-tasks, verifying the effectiveness
and robustness of the proposed method in various settings.
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Figure 4. Comparison on Cityscapes→Foggy Cityscapes (freq-dec) among (a) DDETR [60], (b) OW-DETR [18], (c) the proposed SOMA.

Figure 5. Distribution of novel classes and backgrounds about (a)
the high-order metric ΓIG and (b) cos(θ) and NDD.

Pascal VOC→Clipart. As shown in Table 2, SOMA
achieves the best mAPb and APn on all sub-tasks on this
semantic-rich benchmark. For the novel-class comparison,
SOMA gives 43.15%, 43.4% and 43.73% APn, surpass-
ing state-of-the-art OW-DETR [18] (35.48%, 36.53% and
36.5%) by a large margin. For the base-class comparison,
SOMA gives 21.7%, 21.69% and 20.09% mAPb, outper-
forming state-of-the-art OW-DETR [18] (20.31%, 21.69%
and 18.42%) comprehensively and significantly.
Cityscapes→BDD100k. As shown in Table 3. the pro-
posed SOMA achieves satisfactory and robust performance
on all four settings with different numbers of novel-class ob-
jects, yielding the best mAPb and APn for all 12 sub-tasks.
Compared with state-of-the-art method OW-DETR [18]
(1.3%, 1.64%, 9.6% and 1.76% ARn), SOMA surpasses it
by a large margin with 2.01%, 4.13%, 15.59% and 4.53%
ARn from set 1 to set 4 under 5 novel-class evaluation.

4.3. Quantitative Analysis

Ablation Study. The detailed ablation studies are shown in
Table 4. Compared with baseline [60], introducing SNL
significantly boosts the novel-class recall (from 0.0% to
3.31% ARn), and reduces WI (from 0.659 to 0.608) and
AOSE (from 1968 to 834). Introducing STL improves

cross-domain adaptation with a better 44.7% mAPb, sur-
passing the baseline (42.38% mAPb) with 2.32% points.
Moreover, we observe that STL is able to empower the
novel-class detection with a 0.88% ARn due to the matched
motifs with novel-class extremes. After integrating the two
parts, the proposed SOMA performs best and outperforms
baseline [60] with 3.17% mAPb and 4.08% ARn, verifying
the complementary benefits between them.
High-order Metric Design. The two items in high-order
metric ΓIG/SG are analyzed in Table 5. As for ΓIG, intro-
ducing cos(θ) and NDD together gives the best open-set
results (4.08% ARn, 0.526 WI, and 649 AOSE), encourag-
ing a better feature space for the novel-class learning. More-
over, using cos(θ) for ΓSG achieves the best 45.5% mAPb

with the optimal adaptation, verifying our practical design.
Hyper-parameter Sensitivity. As shown in Table 6, we
analyze the hyper-parameters in each module. In SNL, re-
ducing the number of selected motifs (Top-3) gives a better
46.0% mAPb, while increasing the motif number (Top-7)
provides a better AOSE (582). Our optimal setting with
Top-5 achieves a balanced performance on all evaluation
metrics. For SNL, we compare the pseudo-labeling with
distance-based ỹ2 and motif-based ỹ3 cues. Combining
cross-order cues can give the best performance with 45.55%
mAPb and 4.08% ARn, verifying our effective design.

4.4. Qualitative Analysis

Comparing AOOD Predictions. We make a comparison6

with DDETR baseline [60] and OW-DETR [18] in Figure 4.
Compared with OW-DETR [18], SOMA not only detects
high-quality novel objects beyond the Cityscapes [8] la-
bel space, e.g., dustbin (1st image), but also identifies pre-
defined novel objects, e.g., bus (2nd image) and truck (3rd

6We remove the open-set predictions sharing queries with selected
base-class predictions as a post-processing procedure.
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Figure 6. T-SNE feature visualization on the Pascal→Clipart.

image). Moreover, we observe that OW-DETR [18] tends
to wrongly consider local parts inside a base-class object as
unknown, e.g., the car in 4th image, which can be relieved
by our method due to the effective NDD constraint in ΓIG.
Justifying the High-order Metric. In Figure 5(a), we ran-
domly sample background and novel-class queries and plot
the distribution of the high-order metric ΓIG. We observe
that novel-class objects can be successfully separated from
backgrounds via a smaller ΓIG, verifying the practical de-
sign in selecting the motifs with smaller ΓIG. To delve into
the metric design, we further plot cos(θ) (x-axis) and NDD
(y-axis) in Figure 5(b). The novel class distribution is at the
left-bottom of the background, revealing a smaller cos(θ)
(i.e., more significant affinity with two most different base
classes) and a smaller NDD (i.e., preventing being too near
one base-class). Hence, the rationality of the proposed high-
order terms (Sec. 3.2) can be justified.
T-SNE Feature Visualization. As shown in Figure 6, we
further conduct T-SNE feature visualization and highlight
the optimal and sub-optimal motifs with red and blue trian-
gles, respectively. We observe that background regions can
be successfully distinguished with a larger cos(θ) (left), and
ambiguous objects can be identified with a larger NDD
(right), as our practical design. Moreover, it can be ob-
served that the sub-optimal solution can be easily found if
we do not connect the farthest counterparts for the graph
establishment, verifying the practical design of our graph
establishment. Kindly note that the justification of the an-
gle term is not rigorous since the T-SNE dimension reduc-
tion cannot fully preserve the angle relationship in the high-
dimensional space.

5. Discussion

To clarify the advantage of the proposed high-order
framework in open-set learning, we thoroughly compare
the methodology design in Table 7. Existing works [18,
24, 19, 59, 14] can be categorized into two types. Firstly,
most works [18, 24, 19] discover potential novel objects
hidden in the background. OW-DETR [18] leverages the
intensity of the feature activation to identify novel objects,
capturing and modeling 1st order cues. Moreover, some
works [19, 24] use 2nd order evidence, e.g., the distance be-
tween a sample and a class center [24] to measure the novel-

Method Ord. Methodology
OW-DETR [18] 1

discovering in the background
ORE [24] 2
OSD [12] 2
Opendet [19] 2
PROSER [59] 2

synthesis with two base samples
VOS [14] 2

Ours K
synthesis with K base samples
selecting via topological evidence
discovering in the background

Table 7. Methodology comparison of existing methods. Ord.
indicates the order of considered discriminative knowledge.

class uncertainty. Secondly, some works [59, 14] aim to
synthesize novel-class samples by randomly sampling base-
class image pairs (i.e., the mixup of two base-class images),
which also consider 2nd order evidence, i.e., the relation be-
tween two samples. Differently, we break through the low-
order barrier and use graph motifs, i.e., statistically signifi-
cant subgraphs, to model the high-order (K) relation among
several nodes, which has the following advantages.

1) Subgraph achieves a high-order novel-sample syn-
thesis with enriched feature space. Different from [59,
14] using the mixup of two base-class images as syn-
thesized novel samples, we go beyond its 2nd order and
achieve high-order synthesis among several samples in sub-
graphs. Moreover, we use topological evidence to select
informative subgraphs instead of randomly selecting image
pairs [59, 14]. 2) Subgraph encourages the interaction
between real and synthesized novel samples with better
discriminability. Directly optimizing unmatched queries
Qum [18] (potential novel-class objects) in the background
is sub-optimal since many unseen novel samples are not in
Qum [18, 24]. Differently, we incorporate Qum into sub-
graphs and optimize the real and synthesized novel knowl-
edge collaboratively.

6. Conclusion
This paper formulates and studies a real-world friendly

setting, Adaptive Open-set Object Detection (AOOD), and
develops three benchmarks, which consider both novel
scenes and novel classes in object detection. To address this
issue, we propose a Structured Motif Matching (SOMA)
framework, which delves into the high-order patterns with
graph motifs. SOMA adopts a Structure-aware Novel-class
Learning (SNL) for novel-class detection, which conducts
a motif-matching on the instance-oriented graph and per-
forms motif-guided novel-class learning. Moreover, it uses
Structure-aware Transfer Learning (STL) to adapt to novel
scenes, which matches the motif on the semantic-oriented
graph to align the per-class distribution with structural
awareness. Extensive experiments show that the proposed
method outperforms existing approaches significantly.

15788



References
[1] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-

creg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.
2, 4

[2] Austin R Benson, David F Gleich, and Jure Leskovec.
Higher-order organization of complex networks. Science,
353(6295):163–166, 2016. 2, 3, 4

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 3, 4

[4] Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou,
Mutian Xu, Sibei Yang, Xiaoguang Han, and Yizhou Yu. A
survey on graph neural networks and graph transformers in
computer vision: A task-oriented perspective. arXiv preprint
arXiv:2209.13232, 2022. 3

[5] Chaoqi Chen, Zebiao Zheng, Xinghao Ding, Yue Huang, and
Qi Dou. Harmonizing transferability and discriminability for
adapting object detectors. In CVPR, pages 8869–8878, 2020.
1, 2

[6] Chaoqi Chen, Zebiao Zheng, Yue Huang, Xinghao Ding, and
Yizhou Yu. I3net: Implicit instance-invariant network for
adapting one-stage object detectors. In CVPR, pages 12576–
12585, 2021. 6

[7] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In CVPR, pages 3339–3348, 2018. 1, 2,
6

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016. 6, 8

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 7

[10] Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Un-
biased mean teacher for cross-domain object detection. In
CVPR, pages 4091–4101, June 2021. 2

[11] Jinhong Deng, Xiaoyue Zhang, Wen Li, and Lixin Duan.
Cross-domain detection transformer based on spatial-aware
and semantic-aware token alignment. arXiv preprint
arXiv:2206.00222, 2022. 2

[12] Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and
Terrance Boult. The overlooked elephant of object detection:
Open set. In WACV, pages 1021–1030, 2020. 2, 3, 7, 9

[13] Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan
Li. Siren: Shaping representations for detecting out-of-
distribution objects. In Neurips, 2022. 3

[14] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos:
Learning what you don’t know by virtual outlier synthesis.
arXiv preprint arXiv:2202.01197, 2022. 2, 3, 9

[15] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010. 6

[16] Dario Fontanel, Matteo Tarantino, Fabio Cermelli, and Bar-
bara Caputo. Detecting the unknown in object detection.
arXiv preprint arXiv:2208.11641, 2022. 2, 3

[17] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML, pages 1180–1189,
2015. 1, 5, 7

[18] Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan,
Fahad Shahbaz Khan, and Mubarak Shah. Ow-detr: Open-
world detection transformer. In CVPR, 2022. 3, 4, 5, 6, 7, 8,
9

[19] Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan,
and Gui-Song Xia. Expanding low-density latent regions for
open-set object detection. In CVPR, 2022. 1, 2, 3, 5, 6, 7, 9

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 7

[21] Yusuke Hosoya, Masanori Suganuma, and Takayuki
Okatani. More practical scenario of open-set object detec-
tion: Open at category level and closed at super-category
level. arXiv preprint arXiv:2207.09775, 2022. 2, 3

[22] Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-
Hsuan Yang. Every pixel matters: Center-aware feature
alignment for domain adaptive object detector. In ECCV,
pages 733–748, 2020. 1, 2

[23] Wei-Jie Huang, Yu-Lin Lu, Shih-Yao Lin, Yusheng Xie, and
Yen-Yu Lin. Aqt: Adversarial query transformers for domain
adaptive object detection. In IJCAI, 2022. 2

[24] KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vi-
neeth N Balasubramanian. Towards open world object de-
tection. In CVPR, pages 5830–5840, 2021. 1, 2, 3, 7, 9

[25] Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and
William G. Macready. A robust learning approach to domain
adaptive object detection. In ICCV, October 2019. 2

[26] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Chang-
ick Kim. Self-training and adversarial background regular-
ization for unsupervised domain adaptive one-stage object
detection. In ICCV, pages 6092–6101, 2019. 2

[27] Wuyang Li, Zhen Chen, Baopu Li, Dingwen Zhang, and Yix-
uan Yuan. Htd: Heterogeneous task decoupling for two-stage
object detection. TIP, 30:9456–9469, 2021. 5

[28] Wuyang Li, Jie Liu, Bo Han, and Yixuan Yuan. Adjustment
and alignment for unbiased open set domain adaptation. In
CVPR, pages 24110–24119, June 2023. 4

[29] Wuyang Li, Xinyu Liu, Xiwen Yao, and Yixuan Yuan. Scan:
Cross domain object detection with semantic conditioned
adaptation. In AAAI, volume 6, page 7, 2022. 2

[30] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma: Semantic-
complete graph matching for domain adaptive object detec-
tion. In CVPR, pages 5291–5300, June 2022. 2, 4, 5

[31] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma++: Im-
proved semantic-complete graph matching for domain adap-
tive object detection. TPAMI, pages 1–18, 2023. 2

[32] Xinyu Liu, Wuyang Li, Qiushi Yang, Baopu Li, and Yixuan
Yuan. Towards robust adaptive object detection under noisy
annotations. In CVPR, pages 14207–14216, June 2022. 2

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 7

15789



[34] Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko
Sünderhauf. Dropout sampling for robust object detection in
open-set conditions. In ICRA, 2018. 3

[35] Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrela-
tion squeeze for few-shot segmentation. ICCV, 2021. 2

[36] Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Yuanx-
ing Ning, and Philip S Yu. Graph convolutional neu-
ral networks via motif-based attention. arXiv preprint
arXiv:1811.08270, 2018. 2, 3

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: towards real-time object detection with region
proposal networks. In NeurIPS, pages 91–99, 2015. 3

[38] Farzaneh Rezaeianaran, Rakshith Shetty, Rahaf Aljundi,
Daniel Olmeda Reino, Shanshan Zhang, and Bernt Schiele.
Seeking similarities over differences: Similarity-based do-
main alignment for adaptive object detection. In ICCV, pages
9204–9213, 2021. 2

[39] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Strong-weak distribution alignment for adaptive ob-
ject detection. In CVPR, pages 6956–6965, 2019. 2, 6

[40] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Se-
mantic foggy scene understanding with synthetic data. IJCV,
126(9):973–992, 2018. 6

[41] Wenxu Shi, Lei Zhang, Weijie Chen, and Shiliang Pu. Uni-
versal domain adaptive object detector. In ACM MM, pages
2258–2266, 2022. 2

[42] Arjun Subramonian. Motif-driven contrastive learning of
graph representations. In AAAI, volume 35, pages 15980–
15981, 2021. 2, 3

[43] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Open-set recognition: A good closed-set classifier is
all you need. arXiv preprint arXiv:2110.06207, 2021. 6

[44] Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A.
Sindagi, and Vishal M. Patel. Mega-cda: Memory guided
attention for category-aware unsupervised domain adaptive
object detection. In CVPR, pages 4516–4526, June 2021. 2

[45] Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-
Jun Zha, Yonggang Wen, and Dacheng Tao. Exploring
sequence feature alignment for domain adaptive detection
transformers. In ACM MM, pages 1730–1738, 2021. 2, 6

[46] Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and
Dacheng Tao. Towards data-efficient detection transformers.
In ECCV, pages 88–105, 2022. 7

[47] Douglas Brent West et al. Introduction to graph theory, vol-
ume 2. Prentice hall Upper Saddle River, 2001. 3

[48] Aming Wu, Rui Liu, Yahong Han, Linchao Zhu, and Yi
Yang. Vector-decomposed disentanglement for domain-
invariant object detection. ICCV, 2021. 6

[49] Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, and Xiu-Shen
Wei. Exploring categorical regularization for domain adap-
tive object detection. In CVPR, pages 11724–11733, 2020.
2

[50] Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, and Wenjun
Zhang. Cross-domain detection via graph-induced prototype
alignment. In CVPR, pages 12355–12364, 2020. 2

[51] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei
Han. Node, motif and subgraph: Leveraging network func-

tional blocks through structural convolution. In ASONAM,
pages 47–52. IEEE, 2018. 3

[52] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, June 2020. 6

[53] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin
Choi. Neural motifs: Scene graph parsing with global con-
text. In CVPR, pages 5831–5840, 2018. 3

[54] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 7

[55] Yixin Zhang, Zilei Wang, and Yushi Mao. Rpn prototype
alignment for domain adaptive object detector. In CVPR,
pages 12425–12434, June 2021. 2

[56] Ganlong Zhao, Guanbin Li, Ruijia Xu, and Liang Lin. Col-
laborative training between region proposal localization and
classification for domain adaptive object detection. In ECCV,
pages 86–102. Springer, 2020. 2

[57] Jiyang Zheng, Weihao Li, Jie Hong, Lars Petersson, and
Nick Barnes. Towards open-set object detection and discov-
ery. In CVPR, pages 3961–3970, 2022. 3

[58] Yangtao Zheng, Di Huang, Songtao Liu, and Yunhong Wang.
Cross-domain object detection through coarse-to-fine feature
adaptation. In CVPR, pages 13766–13775, 2020. 2, 4, 5

[59] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning
placeholders for open-set recognition. In CVPR, 2021. 2, 3,
6, 7, 9

[60] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. ICLR, 2020. 3, 4, 6, 7, 8

[61] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 5

15790


