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Abstract

Generalizing deep learning models to unknown target
domain distribution with low latency has motivated re-
search into test-time training/adaptation (TTT/TTA). Exist-
ing approaches often focus on improving test-time train-
ing performance under well-curated target domain data.
As figured out in this work, many state-of-the-art meth-
ods fail to maintain the performance when the target do-
main is contaminated with strong out-of-distribution (OOD)
data, a.k.a. open-world test-time training (OWTTT). The
failure is mainly due to the inability to distinguish strong
OOD samples from regular weak OOD samples. To im-
prove the robustness of OWTTT we first develop an adap-
tive strong OOD pruning which improves the efficacy of the
self-training TTT method. We further propose a way to dy-
namically expand the prototypes to represent strong OOD
samples for an improved weak/strong OOD data separa-
tion. Finally, we regularize self-training with distribution
alignment and the combination yields the state-of-the-art
performance on 5 OWTTT benchmarks. The code is avail-
able at https://github.com/Yushu-Li/OWTTT.

1. Introduction

The distribution gap between training and testing data
poses great challenges to the generalization of modern deep
learning methods [34, 4]. To improve model’s generaliza-
tion to testing data which may feature a different data distri-
bution from the training data, domain adaptation has been
extensively studied [44] to learn domain invariant features.
Nevertheless, the existing unsupervised domain adaptation
paradigm requires simultaneous access to both source and
target domain data with an off-line training stage [12, 41].
In a realistic scenario, access to target domain data may
not become available until the inference stage, and instant
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Figure 1: Existing test-time training methods suffer sub-
stantially when target domain data is contaminated with
strong OOD samples. We illustrate the results by test-
time training on CIFAR10-C contaminated by SVHN as
strong OOD samples, with reference to values extracted
from Tab 1.

prediction on testing data is required without further ado.
Therefore, these requirements give rise to the emergence of
a new paradigm of adaptation at test time, a.k.a. test-time
training/adaptation (TTT/TTA) [40, 43].

The success of TTT has been demonstrated on many syn-
thesized corrupted target domain data [18], manually se-
lected hard samples [35] and adversarial samples [8]. Nev-
ertheless, the boundary of existing TTT methods’ capa-
bility is yet to be fully explored. In particular, to enable
TTT in the open-world, focus has been shifted to investi-
gating open-world scenarios where TTT methods could fail.
Among these scenarios, when testing data is not drawn in
an i.i.d. fashion, TTT methods may be biased towards the
continually changing distribution [45, 14]. When the target
domain consists of testing data drawn from both source and
target distributions, [29] developed a non-forgetting training
paradigm to avoid failure on source domain samples. When
TTT must be updated with small batch size, shifting dis-
tribution, and class imbalanced testing data, [30] proposed
to swap out the batch normalization and remove unreliable
pseudo labels for improved robustness.

Despite many efforts into developing stable and robust
TTT methods under a more realistic open-world environ-
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ment, in this work, we delve into an overlooked, but very
commonly seen open-world scenario where the target do-
main may contain testing data drawn from a significantly
different distribution, e.g. different semantic classes than
source domain, or simply random noise. We refer to
the above testing data as strong out-of-distribution (strong
OOD) data, as opposed to distribution-shifted testing data,
e.g. common corruptions, which are referred to as weak
OOD data in this work. The ignorance of this realistic set-
ting by existing works, thus, drives us to explore improving
the robustness of open-world test-time training (OWTTT)
where testing data is contaminated with strong OOD sam-
ples.

As shown in Fig. 1, we first empirically evaluate exist-
ing TTT methods and reveal that TTT methods through
self-training [43, 25] and distribution alignment [27, 39]
would all suffer substantially subject to strong OOD sam-
ples. These results suggest applying existing TTT tech-
niques fails to achieve safe test-time training in the open-
world. We attribute the failure to the following two reasons.
First, self-training based TTT [25] struggles to deal with
strong OOD samples as it has to assign testing samples to
known classes. Despite some low confident samples that
could be filtered out by applying a threshold as adopted in
semi-supervised learning [38], it is still not guaranteed to
prune out all strong OOD samples. This issue exacerbates
when strong OOD samples are not “strong enough”. For ex-
ample, when adapting the model pre-trained on CIFAR10 to
CIFAR10-C, testing samples drawn from CIFAR100-C are
significantly more difficult to be pruned out than random
noise samples. Thereby, learning from incorrectly labeled
strong OOD samples would weaken the model’s discrimina-
tion on weak OOD samples. Second, distribution alignment
based approaches would suffer when strong OOD samples
are counted for estimating target domain distribution. Both
global distribution alignment [27] and category-wise distri-
bution alignment [39] could be affected and lead to less ac-
curate feature distribution alignment.

With the potential causes for the failure of existing TTT
methods in mind, we propose two techniques to improve the
robustness of open-world TTT under a self-training frame-
work. First, we build the baseline of TTT upon a variant of
self-training, i.e. clustering in the target domain with source
domain prototypes as cluster centers. To lessen the influ-
ence of self-training with incorrectly pseudo-labeled strong
OOD samples, we design a hyper-parameter-free method to
prune out strong OOD samples. To further separate the fea-
tures of weak and strong OOD samples, we allow the proto-
type pool to expand by including isolated strong OOD sam-
ples. Therefore, self-training will allow strong OOD sam-
ples to form tight clusters around newly expanded strong
OOD prototypes. Second, as strong OOD samples are likely
to be attracted by newly grown prototypes, a more accurate

distribution characterizing the target domain data can be es-
timated. This would benefit distribution alignment between
source and target domains. Therefore, we further propose to
regularize self-training with global distribution alignment to
reduce the risk of confirmation bias [3]. Finally, to synthe-
size an open-world TTT scenario, we employ CIFAR10-C,
CIFAR100-C, ImageNet-C, VisDA-C, ImageNet-R, Tiny-
ImageNet, MNIST, and SVHN datasets and create a bench-
mark by treating one dataset as weak OOD and others as
strong OOD. We refer to this benchmark as the open-world
test-time training benchmark and hope this would encour-
age more future works to pay attention to the robustness of
test-time training in more realistic scenarios.

We summarize the contributions of this work below.

• Overlooked by existing studies into test-time training,
we argue that open-world test-time training (OWTTT)
could be spoiled by strong OOD testing data. We
demonstrated that without special treatment state-of-
the-art TTT methods fail to generalize well under the
open-world protocol.

• We introduce a baseline method by prototype clus-
tering with distribution alignment regularization. A
strong OOD detector and prototype expansion are fur-
ther developed to improve the robustness of the base-
line under OWTTT protocol.

• We established a benchmark for evaluating OWTTT
protocol covering multiple types of domain shift, in-
cluding common corruptions and style transfer. Our
approach achieves state-of-the-art performance on the
proposed benchmark.

2. Related Work

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) [12] aims to im-
prove models’ ability to generalize to target domain data
where no labeled data exists. UDA is often achieved by
learning invariant features across source and target do-
mains [12], discovering cluster structures in the target
domain[41, 46, 7], self-supervised training[26], distance-
based alignment[22], etc. Although UDA has made con-
siderable progress in improving the generalizability of the
target domain, having access to both the source and tar-
get domain during adaptation is not always realistic, e.g.
due to data privacy issues. Source-free domain adapta-
tion (SFDA) [25, 33, 10] has thus emerged which gets rid
of the access to source domain data. Nevertheless, SFDA is
still not versatile enough to deal with a more realistic sce-
nario where target domain distribution is not known before
testing begins.
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Figure 2: An overview of the proposed method for open-world test-time training. Testing data may be contaminated with
strong OOD samples. We first prune out potential strong OOD samples by τ∗ for inference. Then, we expand the prototype
pool by isolating strong OOD samples and update model weights through self-training and distribution alignment.

2.2. Test-Time training

Considering that in some scenarios we would like mod-
els that have been deployed to the target domain to au-
tomatically adapt to the new environment without access-
ing source domain data. With these considerations in
mind, In response to the demand for adaptation to arbitrary
unknown target domain with low inference latency, test-
time training/adaptation (TTT/TTA) [40, 43] have emerged.
TTT is often realized by three types of paradigms. Self-
supervised learning on the testing data enables adapting to
the target domain without considering any semantic infor-
mation [40, 27]. Self-training reinforces model’s prediction
on unlabeled data and has been demonstrated to be effec-
tive for TTT [43, 6, 25, 15]. Lastly, distribution alignment
provides another viable approach towards TTT by adjusting
model weights to produce features following the same dis-
tribution as the source domain [39, 27]. Despite the efforts
into developing more sophisticated TTT methods, certify-
ing the robustness of TTT is still yet to be fully investigated.
Recent works studied the robustness of TTT when target do-
main distribution shifts over time [45, 14]. A more exten-
sive investigation into TTT under small batch size and im-
balanced classes was carried out [30]. Orthogonal to the ex-
isting attempts into robustifying TTT, we revealed that TTT
is extremely vulnerable to an open-world scenario where
testing data consists of strong OOD samples. In this work,
we aim to improve the robustness of open-world test-time
training by self-training with a dynamic expanded prototype
pool.

2.3. Open-Set Domain Adaptation

[37] introduced the concept of open-set recognition, re-
ferring to a setting in that trained models are required to

reject testing samples drawn from unknown semantic cat-
egories. In the context of domain adaptation, ATI [5]
proposed open-set domain adaptation (OSDA) and imple-
mented open-set identification by defining and maximizing
the open-set to closed-set distance. OSBP [36] uses back-
propagation methods to make the logits of the unknown
class samples into a recognizable constant by joint adversar-
ial training of the generator and classifier. DAOD [11] of-
fers a new perspective by proposing unsupervised open-set
domain adaptation (UOSDA) where the target domain has
unknown classes that are not found in the source domain.
[47] moved towards a soft rejection method for open-set
domain adaptation. In the open-world setting we advocate,
we assume testing data could be contaminated by arbitrary
strong OOD data, thus it makes little sense to discover new
categories for strong OOD data. Instead, we define open-
world test-time training as classifying testing samples from
source domain categories and rejecting any unknown OOD
sample.

3. Methodology
In this section, we first overview the formulation of test-

time training. Then, we introduce TTT by prototype cluster-
ing and how to expand prototypes for open-world test-time
training. Distribution alignment is finally combined with
prototype clustering to achieve robust open-world test-time
training. An overview of the method is presented in Fig. 2.

3.1. Overview of Test-Time Training

We first briefly review the practice of test-time train-
ing/adaptation for classification tasks. Test-time training
aims to adapt the source domain pre-trained model to the
target domain which may be subject to a distribution shift
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from the source domain. We first give an overview of the
self-training based TTT paradigm, following the protocol
defined in [39]. In specific, we define the source and target
domain datasets as Ds = {xi, yi}i=1···Ns

with label space
Cs = {1 · · ·Ks} andDt = {xi, yi}i=1···Nt

with label space
Ct = {1 · · ·Ks,Ks + 1, · · ·Ks + Kt}. In closed-world
TTT, the two label spaces are identical while Cs ⊆ Ct is
true under open-world TTT. At the testing stage, a mini-
batch of testing samples at timestamp t is denoted as Bt.
We further denote the representation learning network as
zi = f(xi; Θ) ∈ RD and the classifier head as h(zi;ω, β).
Test-time training is achieved by updating the representa-
tion network and/or classifier parameters on the target do-
main dataset Dt. To avoid confusion between TTT defi-
nitions, we adopt the sequential test-time training (sTTT)
proposed in [39] for evaluation. Under the sTTT protocol,
testing samples are sequentially tested and a model update is
carried out after a minibatch of testing samples is observed.
The prediction on any testing sample arriving at time-stamp
t will not be affected by any testing samples arriving at t+k
where k ≥ 1.

3.2. TTT by Prototype Clustering

Inspired by the success of discovering clusters in domain
adaptation tasks [41, 36], we formulate test-time training
as discovering cluster structures in the target domain data.
The cluster structures are identified in the target domain by
identifying representative prototypes as cluster centers and
testing samples are encouraged to embed close to one of
the prototypes. Inference is then enabled by measuring the
testing samples’ similarity to the prototypes in the feature
space. Formally, we write the prototypes in the source do-
main as Ps = {pk ∈ R

D}k∈Cs
. The prototype cluster-

ing objective is defined as minimizing the following nega-
tive log-likelihood loss, where ŷ indicates the pseudo label
ŷ = argmaxk h(f(x)) for zi and < ·, · > measures the
cosine similarity.

LPC = −
∑
k∈Cs

1(ŷ = k) log
exp(<pk,zi>

δ )∑
l exp(

<pl,zi>
δ )

(1)

Minimizing the above objective will allow testing sam-
ples to embed close to their predicted prototypes and away
from other prototypes. In a closed-world test-time train-
ing scenario [39], prototype clustering has demonstrated
strong performance [25]. Nevertheless, prototype cluster-
ing is severely challenged in the open-world test-time train-
ing scenario where strong OOD samples may exist. Should
strong OOD samples be forcibly categorized into any source
category, self-training on the noisy labeled sample would
confuse the network’s discriminative capability on weak
OOD samples.
Strong OOD Pruning: We develop a hyper-parameter-free
approach to prune out strong OOD samples to avoid the

negative impact of adapting model weights. Specifically,
we define a strong OOD score osi for each testing sample
as the highest similarity to source domain prototypes as in
Eq. 2.

osi = 1− max
pk∈Ps

< f(xi), pk > (2)

We make an observation that the outlier score is subject
to a bimodal distribution as shown in Fig. 3. Therefore,
instead of specifying a fixed threshold, we define the op-
timal threshold as separating the two distribution modali-
ties. In specific, the problem can be formulated as dividing
the outlier scores into two clusters and the optimal thresh-
old will minimize the intra-cluster variations in Eq 3, where
N+ =

∑
i 1(osi > τ) and N− =

∑
i 1(osi ≤ τ). Opti-

mizing Eq 3 can be efficiently implemented by exhaustively
searching over all possible thresholds from 0 to 1 with a
step of 0.01. To maintain a stable estimation of the outlier
score distribution, we update the distribution in an exponen-
tial moving average manner, with length Nm.

min
τ

1

N+

∑
i

[osi −
1

N+

∑
j

1(osj > τ)osj ]
2+

1

N−

∑
i

[osi −
1

N−

∑
j

1(osj ≤ τ)osj ]
2

(3)

With the optimal threshold τ∗, we could identify strong
OOD samples with two benefits. First, during the model
weights update, we can exclude detected OOD samples
from self-training w.r.t. source domain prototypes. Sec-
ond, it provides us with a way to differentiate weak OOD
samples from strong ones during the inference stage.

3.3. Open-World TTT by Prototype Expansion

Identifying strong OOD samples and excluding them
from updating model weights does not guarantee a good
separation between weak OOD testing samples from strong
OOD ones. Inspired by the success of novelty detec-
tion [32], we propose to dynamically expand the prototype
pool to incorporate prototypes representing strong OOD
samples. Self-training is then applied with both source do-
main prototypes and strong OOD prototypes to create wider
gaps between weak and strong OOD samples in the feature
space. Specifically, we denote additionally a strong OOD
prototype set as Pn = {pk ∈ RD}k∈Ct\Cs

. When no prior
information on the target domain is available, we initialize
the novel prototypes as an empty set. As TTT goes on, Pn

is expected to expand to accommodate the unknown distri-
bution in the target domain.
Prototype Expansion: Expanding a strong OOD proto-
type pool requires evaluating testing samples against both
source domain and strong OOD prototypes. A similar prob-
lem was investigated for the purpose of dynamically esti-
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Figure 3: A bimodal distribution of strong OOD scores is
observed. An optimal threshold separates weak and strong
OOD samples.

mating the number of clusters from data. A deterministic
hard clustering algorithm, DP-means [21], was developed
by measuring the distance of data points to known clus-
ter centers, and a new cluster will be initialized when the
distance is above a threshold. DP-means is shown to be
equivalent to optimizing a K-means objective with an ad-
ditional penalty on the number of clusters. DP-means was
later adapted to few-shot learning tasks [2]. DP-means pro-
vides a viable solution to dynamic prototype expansion with
an additional threshold hyper-parameter τ , which can be es-
timated from the concentration parameter α for the Chinese
restaurant process [1]. Despite the connection to theoret-
ical stochastic processing, estimating τ requires knowing
the standard deviation for the base distribution which is still
not trivial. To ease the difficulty of estimating additional
hyper-parameter, we first define a testing sample with an
extended strong OOD score õsi as the closest distance to
existing source domain prototypes and strong OOD proto-
types as in Eq. 4. A dynamic threshold is estimated follow-
ing Eq. 3. Hence, testing samples above this threshold will
establish a new prototype. To avoid adding close-by test-
ing samples, we repeat the additive process incrementally.
Since model weights are subject to constant updates, OOD
prototypes may experience a representation shift. To avoid
expanding OOD prototypes indefinitely, we treat the Pn as
a queue with fixed length Nq , and old OOD prototypes will
be discarded when new OOD prototypes are appended.

õsi = 1− max
pk∈Ps

⋃
Pn

< f(xi), pk > (4)

Prototype Clustering with Strong OOD Prototypes:
With additional strong OOD prototypes being identified,
we define the prototype clustering loss for testing samples
with two considerations. First, testing samples classified
as known classes should embed closer to the prototype and
keep away from other prototypes, which defines a K-way
classification task. Second, testing samples classified as
strong OOD prototypes should embed further away from
any source domain prototypes, which defines a K+1-way
classification task. With these objectives in mind, we de-
fine the prototype clustering loss as in Eq. 5, where the
pseudo labels are predicted as ŷi = argmaxpk∈Ps

⋃
Pn

<
pk, zi >.

LPC = −
∑
k∈Cs

1(ŷi = k) log
exp(<pk,zi>

δ )∑
l∈Cs

exp(<pl,zi>
δ )

−
∑
k∈Ct

1(ŷi = k) log
exp(<pk,zi>

δ )∑
l∈Cs+1

exp(<pl,zi>
δ )

(5)

3.4. Distribution Alignment Regularization

Self-training (ST) is known to be prone to incorrect
pseudo labels, a.k.a. confirmation bias [3]. The situation
exacerbates when the target domain consists of OOD sam-
ples. To reduce the risk of ST failure, we further incorporate
distribution alignment [27] as regularization to self-training.
Specifically, we assume a Gaussian distribution N (µs,Σs)
for the source domain feature. In the target domain, we
incrementally estimate the feature distribution N (µt,Σt)
with a momentum β [39]. Only testing samples passing
the strong OOD pruning are included for estimating the dis-
tribution. The KL-Divergence loss LKLD between source
and target domain distributions is finally utilized to regular-
ize prototype clustering on the target domain.

LKLD = DKL(N (µs,Σs)||N (µt,Σt)) (6)

3.5. Open-World TTT Algorithm

In this section, we provide an overview of the open-
world TTT algorithm in Algo. 1. We divide the TTT pro-
cedure into two steps, the inference stage and the adaption
stage.
Inference Stage: i) We evaluate the testing samples’ strong
OOD score osi by Eq. 2 and categorize the samples into
weak or strong OOD. ii) We further categorize weak OOD
samples into one of the Cs classes, strong OOD samples are
simply counted as one separate strong OOD class.
Adaptation Stage: i) We calculate the extended strong
OOD score and threshold and expand the prototype pool by
the isolated strong OOD sample. ii) We calculate test-time
training loss LPC and LKLD and update model by gradient
descent. For test-time training on the full testing data, we
repeat the two stages until the testing data is exhausted.
4. Experiments

We validate the effectiveness of open-world TTT and ex-
tensively benchmarked multiple state-of-the-art TTT meth-
ods. In the following of this section, we first elaborate on
the datasets, evaluation metrics, and competing methods.
Then, we present open-world TTT results on five datasets
and analyze the effectiveness of individual components.

4.1. Datasets

We introduce several datasets, including corruption
datasets, style transfer datasets, and some other com-
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Algorithm 1: Open-World TTT Algorithm
input : Testing sample batch Bt = {xi}i=1···NB

# Inference Stage:
for xi ← 1 to NB do

Calculate osi & τ∗ by Eq. 2 & 3;
# Label Prediction:
if osi < τ∗ then

ŷi = argmaxpk∈Ps
< f(xi; Θ), pk >

else
ŷi = |Cs|+ 1

# Adaptation Stage:
for xi ← 1 to NB do

Calculate õsi & τ̃∗ by Eq. 4 & 3 ;
# Prototype Expansion:
if õsi > τ̃∗ then
Pn = Pn

⋃
f(xi; Θ)

for xi ← 1 to NB do
Calculate losses LPC & LKLD by Eq. 5 & 6;
Update Θ = Θ− α(∇LPC + λ∇LKLD);

mon datasets. For the corruption datasets, We se-
lected CIFAR10-C/CIFAR100-C [18] as a small corrup-
tion dataset, each containing 10,000 corrupt images with
10/100 categories, and ImageNet-C [18] as a large-scale
corruption dataset, which contains 50,000 corruption im-
ages within 1000 categories. We also introduced some style
transfer datasets. VisDA-C [31] is a synthetic to real large-
scale dataset containing 152,397 synthetic training images
and 55,388 real testing images, belonging to 12 categories.
ImageNet-R [17] is a large-scale realistic style transfer
dataset that has renditions of 200 ImageNet classes resulting
in 30,000 images. Tiny-ImageNet [23] consists of 200 cat-
egories with each category containing 500 training images
and 50 validation images. We also introduce some digits
datasets. MNIST [24] is a handwritten digit dataset, which
contains 60,000 training images and 10,000 testing images.
SVHN [28] is a digital dataset in a real street context, in-
cluding 50,000 training images and 10,000 testing images.

4.2. Evaluation Metric

To evaluate open-world test-time training, we adopt
an evaluation metric similar to open-set classification
tasks [13]. The major concern for TTT evaluation is the
accuracy of source domain categories and whether strong
OOD samples can be rejected. Therefore, we define two
accuracy metrics, the first measures the accuracy of source
domain classes, denoted AccS , which is equivalent to exist-
ing TTT metrics. We further define the accuracy on strong

OOD categories, denoted as AccN , as a binary classification
task, i.e. true positive is defined as successfully rejecting a
strong OOD sample as any of the source domain classes. As
we pursue a good trade-off between source accuracy and
OOD accuracy, we further report a harmonic mean AccH
between AccS and AccN to measure the balanced predic-
tion. More detailed definitions are given in Eq. 7, where ŷi
refers to the predicted label and 1(yi ∈ Cs) is true if yi is in
the set Cs.

AccS =

∑
xi,yi∈Dt

1(yi = ŷi) · 1(yi ∈ Cs)∑
xi,yi∈Dt

1(yi ∈ Cs)

AccN =

∑
xi,yi∈Dt

1(ŷi ∈ Ct \ Cs) · 1(yi ∈ Ct \ Cs)∑
xi,yi∈Dt

1(yi ∈ Ct \ Cs)

AccH = 2 · AccS ·AccN
AccS +AccN

(7)

4.3. Open-World Test-Time Training Protocol

We propose the Open-World Test Time Training
(OWTTT) protocol to evaluate different TTT methods’ per-
formance in the open-world case. In order to set up a fair
comparison with existing methods, we take all the classes
in the TTT benchmark dataset as seen classes and add addi-
tional classes from additional datasets as unseen classes. By
doing so we do not need to modify the source domain train-
ing process. In the later experiments, we set the number
of known class samples and the number of unknown class
samples to be the same. Then we follow the ”One Pass”
protocol in [39], which has two main restrictions. Firstly,
the training objective cannot be changed during the source
domain training procedure (e.g. add additional self-training
branches). Secondly, testing data in the target domain is
sequentially streamed and predicted.

4.4. Training Details

We followed the sequential test-time training protocol
specified in [39] and choose ResNet-50 [16] as the back-
bone network for all experiments. For optimization, we
choose SGD with momentum to optimize the backbone net-
work. We set learning rate α={1e-3, 1e-4, 2.5e-5, 2.5e-
5, 2.5e-5}, batch size NB = {256, 256, 128, 128, 128},
λ = {1, 1, 0.4, 0.4, 0.04}, respectively for experiments
on Cifar10-C, Cifar100-C, ImageNet-C, ImageNet-R and
VisDA-C, respectively. To further reduce the effect of in-
correct pseudo labeling, we only use 50% of samples with
odi far from τ∗ to perform prototype clustering for each
batch. For all experiments, we use temperature scaling δ =
0.1, the length of strong OOD prototypes queue Nq = 100,
and the length of moving average Nm = 512.
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Table 1: Open-world test time training results on CIFAR10-C. All numbers are in %.

Method Noise MNIST SVHN Tiny-ImageNet CIFAR100-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 68.59 99.97 81.36 60.48 88.81 71.96 60.94 86.44 71.48 57.41 79.63 66.72 52.74 74.24 61.67
BN 76.63 95.69 85.11 76.15 95.75 84.83 79.18 94.71 86.25 67.66 82.67 74.42 68.44 81.38 74.35
TTT++ 41.09 57.31 47.86 59.52 77.52 67.34 68.77 85.80 76.34 66.70 79.28 72.44 65.69 77.47 71.10
TENT 32.24 33.30 32.77 55.64 68.27 61.31 66.70 82.50 73.77 66.54 79.32 72.37 64.80 76.40 70.12
SHOT 63.54 71.37 67.23 56.92 53.26 55.03 70.01 72.58 71.27 67.78 82.25 74.32 67.73 72.87 70.21
TTAC 64.46 77.42 70.35 77.60 84.53 80.92 77.30 81.10 79.16 71.64 77.14 74.29 71.94 75.44 73.65
OURS 85.46 98.60 91.56 83.89 97.83 90.32 84.99 87.94 86.44 71.77 84.71 77.70 74.08 84.64 79.01

Table 2: Test time training results on CIFAR100-C.

Method Noise MNIST SVHN Tiny-ImageNet CIFAR10-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 36.75 99.87 53.73 25.99 49.59 34.11 30.01 81.62 43.89 25.41 70.06 37.3 25.55 73.28 37.89
BN 50.21 98.72 66.56 36.21 84.69 50.73 45.69 90.45 60.71 34.88 82.18 48.97 37.00 83.54 51.28
TTT++ 23.47 70.26 35.19 28.31 86.74 42.68 37.56 90.45 53.08 34.67 81.25 48.60 33.78 81.12 47.70
TENT 22.57 66.60 33.72 27.85 80.92 41.43 37.08 89.90 52.51 35.51 77.34 48.68 35.20 80.26 48.94
SHOT 51.52 98.21 67.58 35.35 81.71 49.35 45.87 89.72 60.70 35.72 81.11 49.59 38.00 82.13 51.96
TTAC 51.11 98.66 67.34 37.78 86.66 52.62 47.29 91.42 62.33 32.04 80.46 45.83 38.83 83.68 53.05
OURS 56.76 97.25 71.68 40.77 82.91 54.66 54.32 81.98 65.34 38.90 81.92 52.75 38.97 83.20 53.08

Table 3: Test time training results on ImageNet-C.

Method noise MNIST SVHN

AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 18.51 100.00 31.24 18.66 98.27 31.36 18.94 87.75 31.15
BN 36.34 99.97 53.31 30.77 74.53 43.55 33.26 84.54 47.74
TENT 22.54 10.47 14.29 27.53 10.01 14.68 41.16 45.51 43.22
SHOT 46.79 100.00 63.75 27.47 55.25 36.70 34.00 75.94 46.97
TTAC 42.60 94.52 58.73 30.43 72.11 42.80 31.59 74.07 44.29
OURS 41.40 100.00 58.56 38.86 93.35 54.87 38.60 98.06 55.40

4.5. Competing Methods

As no existing TTT methods have considered the chal-
lenges in open-world TTT, we benchmark the following
test-time training methods. TEST directly evaluates the
source domain model on testing data. BN [19] update batch
norm statistics on the testing data for test-time adaptation.
TTT++ [27] aligns source and target domain distribution
by minimizing the F-norm between the mean covariance.
TENT [43] updates model batch norm affine parameters by
minimizing the entropy loss on testing data. SHOT [25]
implements test-time training by entropy minimization and
self-training. SHOT assumes the target domain is class bal-
anced and introduced an entropy loss to encourage uniform
distribution of the prediction results. TTAC [39] employs
distribution alignment at both global and category levels to
facilitate test-time training. Finally, we present our method
(Ours) which combines self-training with prototype expan-
sion to accommodate the strong OOD samples. For all com-
peting methods, by default, we equip them with the same
strong OOD detector introduced in Sect. 3.2.

4.6. Evaluation of Open-World TTT

Open-World TTT on Noise Corrupted Target Domain:
We first evaluate open-world test-time training under

noise corrupted target domain. We treat CIFAR10, CI-

FAR100 [20] and ImageNet [9] as the source domain
and test-time adapt to CIFAR10-C, CIFAR100-C, and
ImageNet-C as the target domain respectively. For ex-
periments on CIFAR10/100, we introduce random noise,
MNIST, SVHN, Tiny-ImageNet with non-overlap cate-
gories, and CIFAR100 as strong OOD testing samples.
For ImageNet-C, we introduce random noise, MNIST, and
SVHN as strong OOD samples. The results are presented in
Tab. 1, Tab. 2 and Tab. 3 respectively. We make the follow-
ing observations from the results. First, direct testing does
not necessarily gives the worst performance when strong
OOD samples are drawn from random noise distribution.
This suggests the impact of strong OOD samples is more
severe than some corruptions on target domain testing data.
Second, BN and TTAC perform relatively well compared
with TENT and SHOT across different types of strong OOD
testing samples. This result indicates that test-time adapta-
tion through distribution alignment is in general more robust
than self-training based methods under the interference of
strong OOD testing samples. Finally, our proposed method
consistently outperforms all competing methods under most
experiment settings, suggesting the effectiveness of the pro-
posed method. In addition to vertically comparing different
competing methods, we further notice that the performance
variation among different methods is significantly higher on
using random noise and MNIST as strong OOD samples
than using Tiny ImageNet and CIFAR100 as strong OOD
samples. We owe the difference to the fact that there is a
less significant distribution shift between CIFAR10 and CI-
FAR100 than between CIFAR10 and random noise/MNIST.

Open-World TTT on Style Transfer Target Domain: We
further evaluate VisDA-C and ImageNet-R to demonstrate
the effectiveness of the style transfer target domain. For
both ImageNet-R and VisDA-C the strong OOD samples
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Table 4: Test time training results on ImageNet-R.

Method noise MNIST SVHN

AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 35.83 100.00 52.76 35.50 99.96 52.39 35.75 98.32 52.43
BN 40.05 100.00 57.19 39.86 99.98 57.00 38.16 69.41 49.25
TENT 32.35 94.96 48.26 18.77 31.70 23.58 29.17 65.12 40.29
SHOT 39.20 100.00 56.32 37.30 96.30 53.77 32.37 57.53 41.43
TTAC 41.24 100.00 58.40 40.55 99.41 57.60 36.68 68.48 47.77
Paper 41.66 100.00 58.82 41.40 100.00 58.56 41.47 99.90 58.61

Table 5: Test time training results on VisDA-C.

Method noise MNIST SVHN

AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 48.22 100.00 65.07 48.59 98.80 65.14 49.38 98.48 64.95
BN 52.58 100.00 68.92 50.11 82.34 62.30 58.49 86.19 69.69
TENT 58.80 98.99 73.78 46.27 68.19 55.13 51.00 81.48 62.73
SHOT 62.09 100.00 76.61 48.19 36.00 41.21 56.47 62.84 59.48
TTAC 59.21 100.00 74.38 52.04 67.38 58.72 57.94 66.27 61.83
OURS 63.93 100.00 78.00 64.18 90.96 75.26 64.76 74.80 69.42

are selected in a similar way to ImageNet-C and the re-
sults are presented in Tab. 4 and Tab. 5. We draw similar
conclusions from the results as with common corruptions.
Our proposed method consistently outperforms competing
methods.

4.7. Ablation Study

We investigate the effectiveness of the components in
the proposed method. In particular, we evaluate the effec-
tiveness of prototype clustering (Pro. Cls.), OOD detec-
tion (OOD Det.), prototype expansion (Pro. Exp.), and fi-
nally distribution alignment regularization (Dist. Al.). We
report TTT performance as AccH on CIFAR10-C as weak
OOD and MNIST, SVHN, and CIFAR100-C as strong OOD
in Tab. 6. When strong OOD detection (O.D.) is not present,
all testing samples are classified as source domain classes,
thus resulting in AccN = 0%. When strong OOD detec-
tor (O.D.) is enabled for inference, we observe a drop of
source domain accuracy AccS with significantly improved
strong OOD accuracy AccN . We further incorporate pro-
totype clustering (P.C.) on the target domain by updating
source domain prototypes Ps only. As no strong OOD pro-
totypes are present, direct self-training with source domain
prototypes does not necessarily improve AccS and AccN
simultaneously. Therefore, as we include prototype expan-
sion (P.E) to dynamically expand strong OOD prototypes,
consistent improvements upon O.D. without adaptation are
observed on the three datasets. Finally, as we combine
distribution alignment (D.A) to regularize self-training, we
achieve the best performance on all categories of accuracies.
The combined approach also significantly outperforms dis-
tribution alignment with strong OOD detection alone.

4.8. Additional Analysis

In this section, we provide additional analysis of open-
world TTT from several aspects and explore alternative de-

Table 6: Ablation study on CIFAR10-C as weak OOD
samples. We investigate the effectiveness of OOD Detec-
tion (O.D.), Prototype Clustering (P.C.), Prototype Expan-
sion (P.E.) and Distribution Alignment (D.A.).

O.D. P.C. P.E. D.A.
Noise SVHN CIFAR100-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH

- - - - 70.6 0.0 0.0 70.6 0.0 0.0 70.6 0.0 0.0
✓ - - - 68.6 100.0 81.4 60.9 86.4 71.5 52.7 74.2 61.7
✓ Ps - - 65.2 91.5 76.1 60.9 90.0 72.7 56.3 69.0 62.0
✓ Ps+Pn ✓ - 68.7 99.8 81.4 65.3 95.0 77.4 52.6 78.9 63.2
✓ - - ✓ 72.9 88.8 80.1 78.1 88.0 82.8 70.5 78.7 74.4
✓ Ps+Pn ✓ ✓ 85.5 98.6 91.6 85.0 87.9 86.4 74.1 84.6 79.0

Table 7: Evaluating the robustness of our method on
CIFAR10-C under different ratios of strong to weak OOD
samples.

Ratio noise MNIST SVHN Tiny-ImageNet CIFAR100-C

0.2 90.83 89.59 86.91 77.64 69.15
0.4 91.59 90.55 88.51 77.67 76.99
0.6 91.80 90.92 88.28 77.68 78.77
0.8 91.70 90.19 86.65 77.42 79.58
1.0 91.34 90.34 86.91 77.70 79.04

signs of the model. The performance of open-world TTT is
also investigated under different testing data compositions.
Cumulative performance in the TTT process: We first
present the cumulative testing performance under open-
world TTT protocol in Fig. 4. We report AccH for mul-
tiple TTT methods. Our method consistently outperforms
the competing methods during the whole TTT procedure,
and the performance gets progressively better as the num-
ber of test samples increases.
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Figure 4: Comparison of test-time cumulative AccH .

Performance under different open world data ratios: In
real-world applications, the ratio of strong OOD to weak
OOD in open-world test data is variable. We examine the
impact of different ratios between weak and strong OOD
samples on open-world TTT performance. Specifically, we
control the ratio between strong to weak OOD samples from
0.2 to 1.0. ACCH on CIFAR10-C are presented in Tab. 7.
Experiments show that our approach is not sensitive to the
data ratio and can be applied to a variety of data ratio sce-
narios.
Comparison with fixed thresholds: We use different fixed
thresholds τf to divide the visible and invisible classes and
compare it with the performance of our adaptive threshold
τ∗. As shown in Fig. 5, it is impossible to find a fixed
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Figure 5: Comparison between the optimal strong OOD
threshold τ∗ (dotted lines) and fixed threshold τ (solid lines)
range from 0.1 to 0.9.

(a) TEST (b) TTAC w/ OOD Det.

(c) TTAC w/o OOD Det. (d) Ours

Figure 6: T-SNE visualization on Cifar10-C test set with
SVHN as strong OOD samples. Black dots are strong OOD
examples while other colors are weak OOD examples. The
colors indicate different classes.

threshold that outperforms the adaptive threshold for strong
OOD detection.
T-SNE Visualization To demonstrate the representation
adaptation effect of different methods, we use t-SNE[42] to
reduce the dimensionality of the features for visualization.
In Fig. 6, we compared the features adapted by TEST (with-
out adaptation), TTAC [39], and our method. We observe a
more distinct separation between weak (colorful points) and
strong (black points) OOD sample features learned by our
method, compared to without adaptation and state-of-the-
art TTT method. We also observe that filtering out strong
OOD samples (w/ OOD Det.) benefits the generic TTT
method, e.g. (b) TTAC w/ OOD Det yields more distin-
guishable separation between weak and strong OOD sam-
ples of weak OOD and strong OOD features.

Table 8: Performance under mixed strong OOD samples.
Metrics TEST BN TENT SHOT TTT++ TTAC Ours

AccS 63.90 75.18 58.10 76.63 60.58 85.01 82.19
AccN 88.20 90.37 77.19 60.94 87.39 66.78 96.76
AccH 74.11 82.08 66.30 67.89 71.56 74.80 88.88

(a) Before TTT (b) After TTT

Figure 7: Noisy bimodal distribution under multiple corrup-
tion.

Performance Under Multiple Corruption Datasets
We provide an evaluation, in Tab. 8, of combining

“snow”, “contrast”, and “glass blur” on CIFAR10-C as
weak OOD and combining random noise, MNIST, and
SVHN as strong OOD. It is evident that our approach
consistently outperforms all competitors under both mixed
weak OOD samples and mixed strong OOD samples.

We illustrate the OOD score distributions in Fig. 7 for
the experiment with mixed weak OOD samples and mixed
strong OOD samples presented in Tab. 8. In Fig. 7 (a) and
(b) we respectively show the OOD score distributions be-
fore and after test-time training. We conclude that, although
the more challenging mixed setting makes it harder to dif-
ferentiate weak and strong OOD samples before TTT, our
method can well separate these two groups after TTT. This
suggests the robustness of our method under noisy OOD
score distributions.

5. Conclusion

Test-time training has been extensively studied to enable
adaptation to unknown target distribution with low infer-
ence latency. In this work, we investigate the robustness of
test-time training when testing data is contaminated with
strong OOD samples, a.k.a. open-world test-time train-
ing (OWTTT). We proposed a hyper-parameter-free strong
OOD detector that benefits both self-training and distribu-
tion alignment for OWTTT. We further allow the prototype
pool to expand dynamically with which self-training can al-
low better separation between weak and strong OOD sam-
ples. Extensive evaluations on five OWTTT benchmarks
demonstrated the effectiveness of the proposed method.
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