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Abstract

Visual object tracking is essential to intelligent robots.
Most existing approaches have ignored the online latency
that can cause severe performance degradation during real-
world processing. Especially for unmanned aerial vehicles
(UAVs), where robust tracking is more challenging and on-
board computation is limited, the latency issue can be fatal.
In this work, we present a simple framework for end-to-end
latency-aware tracking, i.e., end-to-end predictive visual
tracking (PVT++). Unlike existing solutions that naively
append Kalman Filters after trackers, PVT++ can be jointly
optimized, so that it takes not only motion information but
can also leverage the rich visual knowledge in most pre-
trained tracker models for robust prediction. Besides, to
bridge the training-evaluation domain gap, we propose a
relative motion factor, empowering PVT++ to generalize to
the challenging and complex UAV tracking scenes. These
careful designs have made the small-capacity lightweight
PVT++ a widely effective solution. Additionally, this work
presents an extended latency-aware evaluation benchmark
for assessing an any-speed tracker in the online setting.
Empirical results on a robotic platform from the aerial per-
spective show that PVT++ can achieve significant perfor-
mance gain on various trackers and exhibit higher accu-
racy than prior solutions, largely mitigating the degrada-
tion brought by latency. Qur code is public at https:
//github.com/Jaraxxus—Me/PVT_pp.git.

1. Introduction

Visual object tracking' is fundamental for many robotic
applications like navigation [49], cinematography [5], and
multi-agent cooperation [9]. Most existing trackers are de-
veloped and evaluated under an offline setting [38, 29, 34,
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'We focus on single object tracking in this work.
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Figure 1. Distance precision and success rate of the trackers on
UAVDT dataset [ 16]. Compared with offline evaluation, the track-
ers suffer a lot from their onboard latency in the online setting
(30 frames/s (FPS)). Coupled with PVT++, the predictive trackers
achieve significant performance gain with very little extra latency,
obtaining on par or better results than the offline setting.

, 6, 8], where the trackers are assumed to have zero pro-
cessing time. However, in real-world deployment, the on-
line latency caused by the trackers’ processing time can-
not be ignored, since the world would have already changed
when the trackers finish processing the captured frame. In
particular, with limited onboard computation, this issue is
more critical in the challenging unmanned aerial vehicle
(UAV) tracking scenes [21, 38, 20]. As shown in Fig. 1,
compared with offline setting (gray markers), the latency
can cause severe performance degradation during online
processing (colored markers). If not handled well, this can
easily lead to the failure of robotic applications such as UAV
obstacle avoidance [ 1] and self-localization [61].

To be more specific, the latency hurts online tracking due
to: (1) The tracker outputs are always outdated, so there
will be mismatch between the tracker result and world state.
(2) The trackers can only process the latest frame, so that
the non-real-time ones may skip some frames, which makes
object motion much larger (see Fig. 2(a) right).
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Figure 2. (a) Standard tracker suffers from onboard latency (height of the red boxes). Hence, its result lags behind the world, i.e., ry is
always obtained after 7y on the timestamp. (b) Latency-aware trackers introduce predictors to compensate for the latency, which predict

the word state, b f+1, when finishing the processed frame. (c) Compared with prior KF-based solutions [32,

], our end-to-end framework

for latency-aware tracking PVT++ leverages both motion and visual feature for prediction.

The existence of the latency in real-world applications
calls for trackers with prediction capabilities, i.e., predic-
tive trackers. While a standard tracker yields the objects’
location in the input frame (i.e., when it starts processing
the input frame, as in Fig. 2(a)), a predictive tracker pre-
dicts where the objects could be when it finishes processing
the input frame, as illustrated in Fig 2(b).

Existing solutions [32, 36] directly append a Kalman fil-
ter (KF) [30] after trackers to estimate the potential object’s
location based on its motion model (see Fig 2(c)). How-
ever, the rich and readily available visual knowledge from
trackers is primarily overlooked, including the object’s ap-
pearance and the surrounding environments, which can be
naturally exploited to predict the objects’ future paths [51].

To this end, we present a simple framework PVT++
for end-to-end predictive visual tracking. Composed of a
tracker and a predictor, PVT++ is able to convert most off-
the-shelf trackers into effective predictive trackers. Specif-
ically, to avoid extra latency brought by the predictor, we
first design a lightweight network architecture, consisting of
a feature encoder, temporal interaction module, and predic-
tive decoder, that leverage both historical motion informa-
tion and visual cues. By virtue of joint optimization, such
a small-capacity network can directly learn from the visual
representation provided by most pre-trained trackers for an
efficient and accurate motion prediction, as in Fig. 2(c).
However, learning this framework is non-trivial due to the
training-evaluation domain gap in terms of motion scales.
To solve this, we develop a relative motion factor as train-
ing objective, so that our framework is independent of the
motion scales in training data and can generalize well to
the challenging aerial tracking scenes. The integration of
lightweight structure and training strategy yields an effec-
tive, efficient, and versatile solution.

Beyond methodology, we found that the existing latency-

aware evaluation benchmark (LAE) [32] is unable to pro-
vide an effective latency-aware comparison for real-time
trackers, since it evaluates the result for each frame as
soon as it is given. In this case, the latency for any real-
time trackers is one frame. Hence, we present an extended
latency-aware evaluation benchmark (e-LAE) for any-speed
trackers. Evaluated with various latency thresholds, real-
time trackers with different speeds can be distinguished.
Empirically, we provide a more general, comprehensive,
and practical aerial tracking evaluation for state-of-the-art
trackers using our new e-LAE. Converting them into pre-
dictive trackers, PVT++ achieves up to 60% improvement
under the online setting. As shown in Fig. 1, powered
by PVT++, the predictive trackers can achieve comparable
or better results than the offline setting. Extensive experi-
ments on multiple tracking models [33, 57, 22] and datasets
[47, 16, 37] show that PVT++ works generally for latency-
aware tracking, which, to the best of our knowledge, is also
the first end-to-end framework for online visual tracking.

2. Related Work
2.1. Visual Tracking and its Aerial Applications

Visual trackers basically fall into two paradigms, respec-
tively based on discriminative correlation filters [4, 27, 15,

] and Siamese networks [2, 34, 64, 33,23, 58]. Compared
with general scenarios, aerial tracking is more challenging
due to large motions and limited onboard computation re-
sources. Hence, for efficiency, early approaches focus on
correlation filters [38, 29, 39, 35]. Later, the development of
onboard computation platforms facilitates more robust and
applicable Siamese network-based approaches [20, 7, 6, 8].

Most of them are designed under offline settings, ignor-
ing the online latency onboard UAVs, which can lead to
severe accuracy degradation. We aim to solve the more
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Figure 3. (a) Framework overview of PVT++ for a non-real-time tracker. The tracker has processed frame 0, 2, 5, 8 and obtained corre-
sponding motions m and visual features x, z. The predictor needs to predict future box b11, b1z based on tracker result rs. (b) Comparison
between LAE (¢(f)) [32] and our e-LAE (¢, (f)). For real-time trackers, the mismatch between output and input frames will always be one
in LAE (¢(f) — f = 1) regardless of the trackers’ various latency. Differently, e-LAE introduces permitted latency thresholds o € [0, 1),
which effectively distinguishes the latency difference of distinct models.

practical and challenging latency-aware perception prob-
lem, which goes beyond tracking and is often neglected.

2.2. Latency-Aware Perception

Latency of perception systems is first studied in [36],
which introduces a baseline based on the Kalman-filter [30]
to compensate for the online latency of object detectors.
Inspired by this, [59] converts a real-time detector into a
latency-aware one. More recent work [54] also leverage
context scenario properties to select best configurations.
While most previous work aims at object detection, [32]
is more related to us in the field of visual tracking, which
introduces dual KFs [30] similar to [36]. Overall, most ex-
isting works didn’t address latency-aware tracking through
a deeply coupled framework. In this work, we target aerial
tracking and present an end-to-end structure.

2.3. Tracking with/by Prediction

Integrating prediction into trackers has been widely
adopted for robust perception [41, 51, 46, 19, 42, 44].

Some previous works [42, 44] introduce a predictor to
correct the tracker results under object occlusion, which po-
tentially share similar design with PVT++. However, they
are still developed for offline tracking, i.e., the predictor
works only for current frame. Yet predicting the future
state for aerial tracking is non-trival due to the training-
evaluation gap. PVT++ aims to address this gap via a rela-
tive motion factor, thus working beyond [42, 44].

Others [41, 51, 46, 19] focus on trajectory prediction
after tracking. While PVT++ predicts both the trajectory
and the object scale. Moreover, as a result of fast cam-
era motion and viewpoint change, UAV tracking scenes are
much more complex than the ordered environments in au-
tonomous driving [41, 46]. PVT++ discovers the valuable
visual knowledge in pre-trained trackers, yielding its capa-
bility for such challenging condition with small capacity.

2.4. Visual Tracking Benchmarks

Various benchmarks are built for large-scale tracking
evaluation [18, 48, 28, 17, 43, 47, 31, 62] with differ-
ent challenges such as first-person perspective [17], aerial
scenes [47], illumination conditions [31, 62], and thermal
infrared inputs [43]. Since they all adopt offline evaluation,
the influence of the trackers’ latency is ignored. A recent
benchmark targets online evaluation [32], but it falls short
in real-time trackers and we aim to improve it in this work.

3. Preliminary

We first introduce the latency-aware tracking task here.
The input is an image sequence broadcasting with a certain
framerate «, denoted as (Zy, tyv), f€{0,1,2,---}, where
tWV = % is the world timestamp and f is the frame index.
Provided with the ground truth box by = [z, Yo, wo, ho]
at initial O-th frame, the tracker estimates the boxes in the
following frames. Detailed notation table see Appendix C.
Inference. During inference, the tracker finds the latest
frame to process when finishing the previous one. Due to
the latency, for the j-th frame that the tracker processes,
its index j may differ from its frame index f; in the image
sequence. The frame to be processed (frame f;) is deter-
mined by the tracker timestamp t}rj,l when the model fin-
ishes frame f;_; as follows:

0 =0
. T

arg max tyv < t?j_l , others

With the frame index f;, the tracker processes frame Zy,
to obtain the corresponding box ry, = [zy,,yy,, wy,, hy,],
forming the raw result of the tracker on the frame (ry,, t}; ).
Since tracker may be non-real-time, input frame ids f;, j €
{0,1,2,---} may not be consecutive numbers. For exam-
ple, in Fig. 3 (a), considering a non-real-time tracker, the
processed frames are f; = 0,2,5,8,---.
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Figure 4. Detailed structure of the predictor modules in PVT++. The models shares similar architecture, i.e., feature encoder, temporal
interaction, and predictive decoder. We present the motion branch, visual branch, and share decoding branch in (a), (b), and (c). Dashed
blocks denote auxiliary branch, which only exists in training. The input and output are in correspondence to the case in Fig. 3 (a).

Evaluation. Latency-aware evaluation (LAE) [32] com-
pares the ground-truth b in frame Z; with the latest result

b  from the tracker at t?’ for evaluation. For standard track-

ers, the latest result b ¢ to be compared with the ground-
truth is obtained as by = ry4(f)> Where ¢(f) is defined as:

W _ T
argmax; iy, <ty , others

o = { @

For instance, in Fig. 3 (b), LAE compares the ground
truth b with the raw tracker result ro.

4. Extended Latency-Aware Benchmark

Existing latency-aware evaluation [36, 32] adopt Eq. (2)
to match the raw output (ry,, t};) to every input frame f.
However, such a policy fails to reflect the latency difference
among real-time trackers. As shown in Fig. 3, since the
real-time methods is faster than frame rate, every frame will
be processed, ie., [fo, f1, f2, -] = [0,1,2,---]. In this
case, the latest results will always be from the previous one
frame, i.e., using Eq. (2), ¢(f) = f — 1. Differently, we
extend Eq. (2) to:

). = 0 oty <t 3
¢(f)e = argmaxfjt?-jgtyv—&—a , others 3

where o € [0,1) is the variable permitted latency. Under
e-LAE, ¢(f), canbe f — 1 or f for real-time trackers de-
pending on o. For instance, ¢(f), would turn from f —1to
f at larger o for slower real-time trackers. This extension
distinguishes different real-time trackers (see Section 6.2).

5. Predictive Visual Tracking

Because of the unavoidable latency introduced by the
processing time, there is always a mismatch between ¢( f)
(or ¢(f),) and f (when o is small), where ¢(f) is always
smaller than f, i.e., ¢(f) < f, f > 0. To compensate for

the mismatch, we resort to predictive trackers that predicts
possible location of the object in frame f. For the evalua-
tion of f-th frame, prior attempts [36, 32] adopt traditional
KF [30] to predict the result based on the raw tracking result
rgp) in Zy(f) [36], ie., Bf = KF(ryy)). Since previous
work [36, 32] are not learnable, neither existing large-scale
datasets nor the visual feature are leveraged. Differently,
our predictive visual tracking framework PVT++ aims for
an end-to-end predictive tracker, which takes both the his-
torical motion and visual features for a more robust and ac-
curate prediction. Note that we use - to represent the predic-
tion (results for evaluation) and others are from the tracker
output or ground-truth in the following subsections.

5.1. General Framework

As in Fig. 3 (a), PVT++ consists of a tracker 7 and a
predictor P. For the f-th frame at world time tW . the latest
result from the tracker is ry(y) obtained from frame Zy sy,
ie,ryry = T (Xg(s),2), Where x4 () is the search feature
from Z sy and z is the template feature.

After this, the predictor P takes input from the infor-
mation generated during tracking of the %k past frames (in-
cluding Zy(f)), denoted as Input,, ), and predict the posi-

tion offset normalized by object’s scale, i.e., motion m; =
As(f) Ay(f) iy hy )

[qu(f) 7 he(s) ’LOg(wwf) )’LOg(hmn )l where Az (f) and

Ay(f) denote the predicted box center distance between the

f-th and ¢(f)-th frame. wg sy and hg(sy are the tracker’s

output box scale in frame ¢( f) and @y, h are the predicted
scale in f-th frame. With the raw output r ¢ at ¢(f) and
the motion rmy from Id)( #) to the f-th frame, the predicted
box b + can be easily calculated.

Relative Motion Factor: Due to the large domain gap be-
tween the training [52] and evaluation [37] in terms of the
absolute motion scale, we find directly using the absolute
motion value my as the objective can result in poor per-
formance (see Table 4). Therefore, we define the output of
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Figure 5. The performance of the SOTA trackers in authoritative UAV tracking benchmarks under our e-LAE benchmark. We report [online
mAUC and mDP, offline AUC and DP] in the legend. All trackers struggle to overcome onboard latency in online tracking.

predictor P to be the relative motion factor based on the av-
erage moving speed py, from the past k frames, which we
find is easier to generalize after training:

my

) 1 :
mf:P(Input¢(f),Af)®pfj, P, = Z A./’(4)

imj—ky1 T

where Ay = f — ¢(f) denotes the frame interval
between current and target frame, and f; is the lat-
est processed frame, e.g., o(f). Ay, fi — fic1
denotes the frame interval between (i — 1) and i-th
processed frame. © indicates element-wise multiplica-

tion. my, is the normalized input motion defined as
Ax(fi) Ay(fi Wi hy,
my, = [wfi(fl)7 hzi(,1)7Log(wfif—1 )7Log(hfif71 )], where

Ay(fi) = xy, —xy, , and Ay(f;) = yy, — yy,_, are the
distance from tracker results ry, and ry, . Such design has
made PVT++ agnostic to the specific motion of a dataset,
which is crucial for its generalization capability.

We next present the predictor of PVT++ step by step as
motion-based Py, visual-appearance-based Py and multi-
modal-based Pyry. All the predictors share the same train-
ing objective (Eq. (4)) and a similar structure, consisting of
feature encoding, temporal interaction, and predictive de-
coding as in Fig. 4. In practice, a predictor may need to
predict N results, depending on the tracker’s latency.

5.2. Motion-based Predictor

The motion-based predictor Py; only relies on the past
motion, i.e., Inputy, ;) =my, .5,

mym = Pum (mfj—k+1:fj7Af) (OF : J 7 5)

wheremy, .., = [my_, ., - ,my] € RF*¥4

The detailed model structure of the motion predictor Py
is presented in Fig. 4(a). For pre-processing, the motion
data my, . ,,---,my, are first concatenated. Then we
apply a fully connected (FC) layer with non-linearity for
feature encoding and a 1D convolution followed by acti-
vation and global average pooling to obtain the temporally
interacted motion feature. In the predictive decoding head,
a share FC layer with non-linearity is used for feature map-
ping. N independent FCs map the feature to N future latent
spaces. Finally, the latency features are stacked and trans-
formed to 4 dimension output using a shared FC.

For training, we adopt £, loss between prediction and
ground-truth Ly = L4 (1 a7, my).

5.3. Visual Appearance-based Predictor

For efficiency, our visual predictor Py takes search
and template features directly from the tracker backbone
as input. Besides, we also find the strong representa-
tion in the pre-trained tracker models can boost the small-
capacity predictor network. Specifically, template fea-
ture z € RIXCvxaxa jg extracted from the given ob-
ject template patch in the initial frame and search feature
Xy € RIXCvxsxs jg obtained from the f;-th frame patch
cropped around (¢, ,yy,_, ). Given k past search features
Xfi_pi1:f; € RF*CVXsXs and 7, we have:

myy = lPV(ijkaFrfjvszf) © Py; - (©)

The detailed model structure of Py is shown in Fig. 4(b).
Inspired by Siamese trackers [33], the feature encoding
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Table 1. The effect of PVT++ on the four SOTA trackers with different inference speeds and backbones. Our models work generally for
different tracker structures and can achieve up to 60% performance gain. The best scores are marked out in gray for clear reference. We

present some qualitative visualization in Appendix D and the supplementary video.

Dataset DTB70 UAVDT UAV20L UAV123
Tracker PVT++|AUC@La0 o o, DP@La0 5 o |AUC@La0 p oy DP@La0 A o | AUC@La0 5 oy DP@La0 o |[AUC@La0 5 o, DP@La0 p
N/A | 0.305:0.00 0.38740.00| 049%40.00 0.71940.00 | 04481 0.00 0.61940.00 | 047240.00 0.67840.00

SiamRPN++n1 Py | 03854262 05234351 | 052947.10 07454360 | 048147 40 0.64744.50 | 053741138 0.73748.70
(~22FPS) Py | 035241154 04724950 | 05641145 079947111 | 0488,8.90 0.67519 00| 0.50416.80 0.70313 70
(MobileNet [53]) Pyry | 03991308 0.536438.5 | 0.576416.6 08074122 | 05084134 0.697 1126 | 05371158 074149 30
N/A | 0.13640.00 0.15940.00 | 035140.00 0.59410.00| 031010.00 04341000 034910.00 0.50540.00

SiamRPN++r Py | 0.199146.53 02584 62.3 | 0449 079 0.6844155| 04044303 0.5604109.0 | 0442 066 0.627424.0
(~6FPS) Py | 01794316 0225.415| 04031148 06654120 | 03981084 05481063 | 03981140 0.559110.7
(ResNet50 [26]) Pypy | 02054507  0.256461.0 | 0.488439.0 072640055 | 04161345 0.568130.9 | 04421066 06191256
N/A | 0.24740.00 031340.00 | 0455410.00 0.70310.00 | 040510.00 0.5714+0.00 | 043640.00 0.63940.00

SiamMask Pym | 03704498 05084623 | 053141167 076018 10| 0449 10,9 0.60746.30 | 0.532422.0 07434169
(~14FPS) Pyv | 02924182 04051294 | 05321169 0.777410.5 | 043046.20 0.6014530 | 050341154 07051103
(ResNet50 [20]) Pypy | 03424095 04634479 | 05664044 07974134 | 04694158 0644, 1558 | 05364029 0749 172
N/A | 026410.00 0.34740.00| 048910.00 0.72040.00| 047540.00 0.66310.00 | 04661 0.00 0.66610 00

SiamGAT Pum | 0394500 05204499 | 05494123 077741790 | 0519419 26 07054633 | 05304137 07394110
(~16FPS) Py | 03921485 05364544 | 057541176 [08014711.3| 05034590 0.68613 50| 05141103 07131719
(GoogleNet [55]) Pypy | 04154575 05614617 | 05834192 079106 | 0519493 070816380 | 05314159 0.733410.1

stage adopts 1 x 1 convolution before depth-wise correla-

tion (DW-Corr) to produce the similarity map X?jil#l: 5 €

RF*Cvxs'>s" For temporal interaction, we apply 3D con-
volution and global average pooling.

We find directly training Py meets convergence diffi-
culty (See Section 6.3). We hypothesize this is because the
intermediate similarity map szjik“: £ fails to provide ex-
plicit motion information. To solve this, we introduce an
auxiliary branch A, which takes X?j—k+1: 5, as input to ob-
tain the corresponding motion m?jikﬂ fye
m?j—k+13fj = A(X?j—k+15fj)' @)

During training, we supervise both the auxiliary branch
and the predictive decoder, i.e, Ly = Li(myyv,my) +
£1(m(}7—k+1:fj’mfj*kJrl:fJ')'

5.4. Multi-Modality-based Predictor

The final predictor Py is constructed as a combination
of motion Py and visual predictors Py as,

gy = Puv (Mg, i X0 2 Af) © Py o
As shown in Fig. 4, the encoding and temporal interac-
tion parts of Py and Py run in parallel to form the first two
stages of Pyry. We concatenate the encoded feature vectors
to obtain the multi-modal feature. The predictive decoder
follows the same structure to obtain future motions m ¢ v .
We also tried different fusion strategy in Appendix H.

For training, we add the two additional predictive de-
coders respectively after motion and visual predictors to
help them predict my\ and my~;, which yields the loss
Ly = avLyv + avLy + El(Mf,Mv, Mf). During in-
ference, we only use the joint predictive decoder.

Remark 1: The predictors Py, Py and Pyry can be jointly
optimized with tracker 7.

6. Experiments
6.1. Implementation Details

Platform and Datasets. PVT++ is trained on VID [52],
LaSOT [18], and GOT10k [28] using one Nvidia A10 GPU.
The evaluation takes authoritative UAV tracking datasets,
UAV123, UAV20L [47], DTB70 [37], and UAVDT [16]
on typical UAV computing platform, Nvidia Jetson AGX
Xavier, for realistic robotic performance. Since the online
latency can fluctuate, we run three times and report the av-
erage performance. For simplicity, we only consider the
tracker’s processing latency during evaluation.

Metrics. Following [21], we use two basic metrics, the dis-
tance precision (DP) based on center location error (CLE)
and area under curve (AUC) based on intersection over
union. Under e-LAE, different permitted latency o cor-
responds to different DP and AUC, i.e., DP@Lao and
AUC@Lao. We use mDP and mAUC to indicate the area
under cure for DP@Lao and AUC@Lao, o € [0:0.02 : 1).
Parameters. Fore-LAE, all the evaluated trackers use their
official parameters for fairness. To represent the most com-
mon case, the image frame rate is fixed to x = 30 frames/s
(FPS) in all the online evaluation. For the PVT++ mod-
els, we use k = 3 past frames. To determine N for different
models, we pre-run the trackers 3 times and record the max-
imum number of skipped frames, so that when the latency
of one specific frame fluctuates, PVT++ can always cover
the skipped frame and make sufficient predictions. Detailed
training configurations can be found in Appendix B.

6.2. Extended Latency-Aware Evaluation

We evaluate a total of 17 SOTA trackers® under e-LAE:
SiamRPN [34], SiamRPN++y; [33], SiamRPN++y [33],
SiamMask [57], SiameseFC++ [58], DaSiamRPN [64],

2Subscripts denote the backbone used, i.e., MobileNet [53], and ResNet
18 or 50 [26].
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Table 2. Attribute-based analysis of PVT++ in UAVDT [16]. We
found different modality has their specific advantage. Together,
the joint model can utilize both and is the most robust under com-
plex UAV tracking challenges. Gray denotes best results.

Metric AUC@La0
Tracker Att. | BC CR OR SO IV OB SV LO

N/A |0.448 0450 0.438 0494 0.539 0.525 0.490 0.422
. Py | 0461 0.495 0.481 [0.549 0.578 0.542 0.505 0.521
SiamRPN++y1 by, [0.504 0.520 0.538 0.525 0.588 0.568 0.584 0.436
Puy 0505 0.535 0.549 0.545 [0.599 0.589 0.586 0.511

N/A [0.404 0.425 0.404 0.468 0.475 0.471 0.438 0.389
Pn | 0465 0.503 0.491 0.536 0.558 0.542 0.526 0.421
SiamMask Py |0.488 0.498 0.504 0.495 0.563 0.527 0.541 0.494
Pamv 0520 0522 0.541 0.540 0.596 0.560 0.566 0.520

Metric DP@La0
Tracker At. | BC CR OR SO IV OB SV LO

N/A [0.659 0.643 0.638 0.779 0.777 0.772 0.680 0.569
_ Pa | 0.666 0.684 0.681 [0.815 0.811 0.778 0.691 [0.717
SiamRPN++n; py, 0733 0720 0.753 0.793 0.835 0.822 10.796 0.585

Py | 0.727 10732 0.764 0.814 (0,848 0.846 0.794 0.694

N/A 10.628 0.620 0.612 0.803 0.743 0.756 0.650 0.571
Pwm [ 0.672 0.702 0.709 0.818 0.797 0.802 0.729 0.590
SiamMask Pv |0.718 0.696 0.723 0.787 0.817 0.801 0.763 0.696
Pumrv | 0.731 0712 0.752 0.819 0.829 0.813 0.783 0.711

Table 3. Dimension analysis of different modules in PVT++ on
DTB70 [37] and UAVDT [16]. Enc.m and Enc.v represent the
motion and visual encoders, respectively. Dec.nyv denotes the
joint decoder. * indicates our default setting. We find the chan-
nel dimension of PVT++ can be small, so that it introduces very
few extra latency on robotics platforms.

Dim. of Modules DTB70 UAVDT

Enc.,y Enc.y Dec.yy | mMAUC mDP mAUC mDP
Base Tracker 0305 0387 0494 0719

32 0359 0483  0.575 0.81
64* 64* 32% 0399 0536 0.576  0.807
128 0373 0504 0571  0.803
32 0363 0493 0554 0.784
64* 64* 32% 0399 0536 0.576  0.807
128 0364 0486 0.558  0.788
64* 64%* 32% 0399 0536 0.576  0.807
64 0373 0503  0.567  0.807

128 0362 0485 0561  0.791

SiamAPN [20], SiamAPN++ [7], HiFT [6], SiamGAT [22],
SiamBAN [10], SiamCAR [23], ATOM [12], DiMPs, [3],
DiMPg [3], PrDiMP [14], and TrDiMP [56].

As in Fig. 5, we draw curve plots to reflect their perfor-
mance in AUC and DP metrics under different permitted
latency o. We report the [online mAUC and mDP, offline
AUC and DP] in the legend. Some offfine highly accurate
trackers like SiamRPN++g [33], SiamCAR [23], SiamBAN
[10], and ATOM [12] can degrade by up to 70% in our on-
line evaluation setting.

Remark 2: e-LAE can better assess the real-time track-
ers. In DTB70, SiamAPN++ and HiFT are two real-time
trackers with HiFT more accurate in success. While since
SiamAPN++ is faster, its e-LAE performance will be better.

6.3. Empirical Analysis of PVT++

Overall Effect. To evaluate PVT++, we construct
predictive trackers with four well-known methods, i.e.,
SiamRPN++y; [33], SiamRPN++r [33], SiamMask [57],

Table 4. Ablation studies on DTB70 [37]. Official version of
PVT++ is marked out in Blackbody. The subscripts * means
predicting raw value instead of motion factor, T denotes training
without auxiliary supervision, and ¥ indicates training with tracker

fixed. Red denotes improvement and blue represents dropping.

Ablate Module ‘Motion Factor™ ‘ Auxiliary SupervisionT and Joint Trainingi

Method Base | Pvp PRy | Pv 77:[, Pg’/ Pymv PI]\L/IV 7’1%1\/
AUC@La0 0.305(0.385 0.300 [0.352 0.311 0.278|0.399 0.323 0.294

Delta%  0.00 | 26.2 -1.60 | 154 2.00 -890| 30.8 590 -3.60
DP@La0 0.387[0.523 0.383 [0.472 0.412 0.349|0.536 0.429 0.387
Delta%  0.00 | 35.1  -1.00 |22.0 6.50 -9.80| 38.5 -10.9 0.00

and SiamGAT [22]. As in Table 1, with PVT++, their on-
line performance can be significantly boosted by up to 60%,
which sometimes is better than their offline performance.
PVT++ also works for recent transformer-based trackers
[60, 11], the results can be found in Appendix F.

Remark 3: Real-time trackers [20, 7, 6, 34] perform gen-
erally better than non-real-time ones in online evaluation.
While we observe that non-real-time trackers empowered
by PVT++ can notably outperform real-time ones. E.g.,
SiamRPN++y; [33] with Py achieves an amazing 0.807
mDP in UAVDT, better than SiamFC++ [58] (0.761).
Attribute-based Analysis. For a comprehensive evalua-
tion, we follow [16] and evaluate PVT++ on various chal-
lenge attributes®. From Table 2, We found that motion and
vision have advantages in different attributes. Py improves
CR and OR, while Py is good at SO and LO. The joint
model Pprv makes use of both and is the most robust un-
der various complex aerial tracking challenges. For the full
attribute analysis, please see Appendix I.

Dimension Analysis. In addition to its promising per-
formance, PVT++ can also work with very small capacity,
which contributes to its lightweight architecture and high
efficiency on low-powered UAVs. We analyse the modules
of PVT++ with different feature channels in Table 3, where
64 channels for encoders (Enc.y;, Enc.y) and 32 channels
for the joint decoder (Dec.;) work best. We present more
efficiency and complexity comparisons with other motion
predictors [63, 24, 40] in Appendix G

Ablation Studies. We ablate the effect of motion fac-
tor prediction, auxiliary branch, and the joint training of
PVT++ on DTB70 [37] with SiamRPN++),; in Table 4.
Compared with directly predicting the motion value (7?11:/[),
using motion factor as the prediction target (Py) can yield
much better performance. Removing auxiliary branch A in
Pv and Pyrv to be P\T, and PI{/N, we observe a significant
performance drop due to the difficulty in convergence. Joint
training the tracker and the predictor (Py & Pyrv) perform
much better than fixing the tracker (P\i, and Pﬁw). Training
loss of the ablation studies are visualized in Appendix J.

3Background cluter (BC), camera rotation (CR), object rotation (OR),
small object (SO), illumination variation (IV), object blur (OB), scale vari-
ation (SV), and large occlusion (LO).
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Table 5. Averaged results comparison on four datasets [47, 16, 37].
Pu can achieve better results than prior KF-based solutions [36,
32]. Further introducing visual cues, PVT++ can acquire higher
robustness. KF' and ¥ denotes learnable baselines [50, 25].

Type Tradition Model Learning-based
Tracker Pred. N/A KF[36] PVT[32]|KFT [50] KFF [25] Pm Pv Pumv

AUC@La0
SiamRPN++y; DP@La0

043 0462 0473
0.601 0.639  0.651

0.466 0.481  0.483 0.477 0.505
0.642 0.658  0.663 0.662 0.695

AUC@La0
SiamMask DP@La0

0386 0.441  0.465
0.557 0.607  0.639

0.458 0.468  0.471 0.439 0.478
0.631 0.638  0.655 0.622 0.663

AUC@La0
SiamRPN++g  DP@La0

0.287 0.361  0.374
0423 0502  0.523

0.376 0386  0.374 0.345 0.388
0.527 0532 0.532 0.499 0.542

— Baseline —— Baseline + KF

— Baseline + Pyv

Figure 6. Prediction comparison on UAVDT [16]. Red denotes
the original trackers, green indicates KF [36] predictions, and blue
represents PVT++ prediction. Compared to KF, PVT++ is better at
handling in-plane rotation, scale variation, and view point change.

6.4. Comparison with KF-based Solutions

Quantitative Results.  Prior attempts to latency-aware
perception [36, 32] have introduced model-based approach,
i.e., KF [30], as predictors. Based on traditional KF, we
also designed stronger learnable baselines, KF' [50] and
KF?* [25], which adopt the same training as PVT++ mod-
els. Basically, KF' [50] learns the two noise matrix and
KF* denotes joint training of KF! and trackers via back-
propagation [25]. We compare these KF-based solutions
with PVT++ in Table 5, where the same base tracker models
are adopted. Compared with the KFs [36, 32], our learning
framework holds the obvious advantage in complex UAV
tracking scenes. We also observed that PVT++ is very effi-
cient and introduces very little extra latency on the trackers.
For specific results per dataset, please refer to Appendix E.
Qualitative Results. To better present the priority of
PVT++, some representative scenes are displayed in Fig. 6.
Given the same history trajectory, PVT++ holds its advan-
tage against KF-based solution [36]. Especially, when UAV
tracking challenges like in-plane rotation (sequence S0103)
and aspect ration change (sequence S0304) appear, PVT++
is capable of fully utilizing the appearance change for ro-
bust prediction while simple motion-based KF easily fails.

Remark 4: PVT++ outputs NV results in a single forward
pass instead of autoregressively like KF, resulting in its high

b -

Initialization latency

I, i
© ﬁ it o
NS Y o ey L FY N

SiamMask -
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[11.95 FPS] Frame (#)
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Figure 7. Real-world tests of PVT++. Thanks to PVT++, the non-
real-time trackers work effectively under real-world challenges
like object deformation in Test 1 and occlusion in Test 2.

efficiency (especially for the motion predictor).

Apart from the robustness priority, PVT++ is also easier
to be deployed. Once trained, no further tuning is needed
for PVT++ to fit various scenes. Differently, the noise ma-
trix of the KFs is dependent on the environment, which is
hard to tune and may not generalize well.

6.5. Real-World Tests

We further deploy SiamMask [57] (~11FPS) and
SiamRPN++y; [33] (~15FPS) with PVT++ on a UAV with
Nvidia Jetson AGX Xavier as onboard processor. The on-
board speed and center location error (CLE) results are
shown in Fig. 7. Despite that the original tracker is not real-
time, our PVT++ framework can convert it into a predictive
tracker and achieve a good result (CLE < 20 pixels) in real-
world tracking. More tests see Appendix M and the video.

7. Conclusion

In this work, we present a simple end-to-end framework
for latency-aware visual tracking, PVT++, which largely
compensates for onboard latency. PVT++ integrates a
lightweight predictor module that discovers the visual rep-
resentation from pre-trained trackers for precise and robust
future state estimation. To bridge the training-evaluation
domain gap, we propose the relative motion factor, which
yields a generalizable framework. In addition to PVT++,
we introduce extended latency-aware evaluation benchmark
(e-LAE), which assesses an any-speed tracker in the online
setting. Extensive evaluations on robotics platform from the
challenging aerial perspective show the effectiveness of our
PVT++, which improves the offline tracker by up to 60% in
the online setting. Real-world tests are further conducted to
exhibit the efficacy of PVT++ on physical robots.
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