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Abstract

Diffusion models have achieved great success in image
synthesis through iterative noise estimation using deep neu-
ral networks. However, the slow inference, high memory
consumption, and computation intensity of the noise estima-
tion model hinder the efficient adoption of diffusion models.
Although post-training quantization (PTQ) is considered a
go-to compression method for other tasks, it does not work
out-of-the-box on diffusion models. We propose a novel
PTQ method specifically tailored towards the unique multi-
timestep pipeline and model architecture of the diffusion
models, which compresses the noise estimation network to
accelerate the generation process. We identify the key diffi-
culty of diffusion model quantization as the changing output
distributions of noise estimation networks over multiple time
steps and the bimodal activation distribution of the shortcut
layers within the noise estimation network. We tackle these
challenges with timestep-aware calibration and split short-
cut quantization in this work. Experimental results show
that our proposed method is able to quantize full-precision
unconditional diffusion models into 4-bit while maintaining
comparable performance (small FID change of at most 2.34
compared to >100 for traditional PTQ) in a training-free
manner. Our approach can also be applied to text-guided
image generation, where we can run stable diffusion in 4-bit
weights with high generation quality for the first time.

1. Introduction
Diffusion models have shown great success in gener-

ating images with both high diversity and high fidelity
[43, 13, 44, 42, 6, 33, 36, 34]. Recent work [16, 15]
has demonstrated superior performance than state-of-the-
art GAN models, which suffer from unstable training. As a
class of flexible generative models, diffusion models demon-
strate their power in various applications such as image
super-resolution [37, 18], inpainting [44], shape generation
[3], graph generation [31], image-to-image translation [40],
and molecular conformation generation [47].

However, the generation process for diffusion models can
be slow due to the need for an iterative noise estimation of 50

to 1,000 time steps [13, 42] using complex neural networks.
While previous state-of-the-art approaches (e.g., GANs) are
able to generate multiple images in under 1 second, it nor-
mally takes several seconds for a diffusion model to sample
a single image. Consequently, speeding up the image gener-
ation process becomes an important step toward broadening
the applications of diffusion models. Previous work has
been solving this problem by finding shorter, more effective
sampling trajectories [42, 30, 39, 22, 1, 24], which reduces
the number of steps in the denoising process. However, they
have largely ignored another important factor: the noise esti-
mation model used in each iteration itself is compute- and
memory-intensive. This is an orthogonal factor to the repet-
itive sampling, which not only slows down the inference
speed of diffusion models, but also poses crucial challenges
in terms of high memory footprints.

This work explores the quantization [50, 8, 49, 7, 29] of
the noise estimation model used in the diffusion model to
accelerate the denoising of all time steps. Specifically, we
propose exploring post-training quantization (PTQ) on the
diffusion model. PTQ has already been well studied in other
learning domains like classification and object detection [4,
2, 20, 11, 23], and has been considered a go-to compression
method given its minimal requirement for training data and
the straightforward deployment on real hardware devices.
However, the iterative computation process of the diffusion
model and the model architecture of the noise estimation
network brings unique challenges to the PTQ of diffusion
models. PTQ4DM [41] presents an inaugural application
of PTQ to compress diffusion models down to 8-bit, but it
primarily focuses on smaller datasets and lower resolutions.

Our work, evolving concurrently with [41], offers a com-
prehensive analysis of the novel challenges of performing
PTQ on diffusion models. Specifically, as visualized in Fig-
ure 1(a), we discover that the output distribution of the noise
estimation network at each time step can be largely different,
and naively applying previous PTQ calibration methods with
an arbitrary time step leads to poor performance. Further-
more, as illustrated in Figure 1(b), the iterative inference of
the noise estimation network leads to an accumulation of
quantization error, which poses higher demands on design-
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Figure 1: Conventional PTQ scenarios and Q-Diffusion differ in (a) calibration dataset creation and (b) model inference
workflow. Traditional PTQ approaches sample data randomly [11], synthesize with statistics in model layers [4], or draw from
the training set to create calibration dataset [28, 20], which either contains inconsistency with real inputs during the inference
time or are not data-free. In contrast, Q-Diffusion constructed calibration datasets with inputs that are an accurate reflection
of data seen during the production in a data-free manner. Traditional PTQ inference only needs to go through the quantized
model θq one time, while Q-Diffusion needs to address the accumulated quantization errors in the multi-time step inference.

ing novel quantization schemes and calibration objectives
for the noise estimation network.

To address these challenges, we propose Q-Diffusion, a
PTQ solution to compress the cumbersome noise estimation
network in diffusion models in a data-free manner, while
maintaining comparable performance to the full precision
counterparts. We propose a time step-aware calibration data
sampling mechanism from the pretrained diffusion model,
which represents the activation distribution of all time steps.
We further tailor the design of the calibration objective and
the weight and activation quantizer to the commonly used
noise estimation model architecture to reduce quantization
error. We perform thorough ablation studies to verify our
design choices, and demonstrate good generation results
with diffusion models quantized to only 4 bits.

In summary, our contributions are:

1. We propose Q-Diffusion, a data-free PTQ solution for
the noise estimation network in diffusion models.

2. We identify the novel challenge of performing PTQ on
diffusion models as the activation distribution diversity
and the quantization error accumulation across time
steps via a thorough analysis.

3. We propose time step-aware calibration data sampling
to improve calibration quality, and propose a special-
ized quantizer for the noise estimation network.

4. Extensive results show Q-Diffusion enables W4A8
PTQ for both pixel-space and latent-space uncondi-
tional diffusion models with an FID increment of only

0.39-2.34 over full precision models. It can also pro-
duce qualitatively comparable images when plugged
into Stable Diffusion [34] for text-guided synthesis.

2. Related work
Diffusion Models. Diffusion models generate images
through a Markov chain, as illustrated in Figure 2. A forward
diffusion process adds Gaussian noise to data x0 ∼ q(x) for
T times, resulting in noisy samples x1, ...,xT :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt ∈ (0, 1) is the variance schedule that controls the
strength of the Gaussian noise in each step. When T → ∞,
xT approaches an isotropic Gaussian distribution.

The reverse process removes noise from a sample from
the Gaussian noise input xT ∼ N (0, I) to gradually gen-
erate high-fidelity images. However, since the real reverse
conditional distribution q(xt−1|xt) is unavailable, diffusion
models sample from a learned conditional distribution:

pθ(xt−1|xt) = N (xt−1; µ̃θ,t(xt), β̃tI). (2)

With the reparameterization trick in [13], the mean µ̃θ,t(xt)

and variance β̃t could be derived as follows:

µ̃θ,t(xt) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ,t) (3)

β̃t =
1− ᾱt−1

1− ᾱt
· βt (4)
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Figure 2: The forward diffusion process (a) repeatedly adds
Gaussian noise. The reverse diffusion process (b) uses a
trained network to denoise from a standard Gaussian noise
image in order to generate an image.

where αt = 1− βt, ᾱt =
∏t

i=1 αi. We refer readers to [26]
for a more detailed introduction.

In practice, the noise at each time step t are computed
from xt by a noise estimation model, with the same weights
for all time steps. The UNet [35] dominates the design of the
noise estimation model in diffusion models [42, 34, 33, 36],
with some recent exploration on Transformer [32]. This
work designs the PTQ method for the acceleration of the
noise estimation model, especially for the common UNet.
Accelerated diffusion process. Related methods include
simulating the diffusion process in fewer steps by gener-
alizing it to a non-Markovian process [42], adjusting the
variance schedule [30], and the use of high-order solvers
to approximate diffusion generation [22, 1, 24, 25]. Others
have employed the technique of caching and reusing feature
maps [19]. Efforts to distill the diffusion model into fewer
time steps have also been undertaken [39, 27], which have
achieved notable success but involve an extremely expen-
sive retraining process. Our work focuses on accelerating
the noise estimation model inference in each step, with a
training-free PTQ process.
Post-training Quantization. Post-training quantization
(PTQ) compresses deep neural networks by rounding el-
ements w to a discrete set of values [10], where the quanti-
zation and de-quantization can be formulated as:

ŵ = s · clip(round(w
s
), cmin, cmax), (5)

where s denotes the quantization scale parameters, cmin and
cmax are the lower and upper bounds for the clipping function
clip(·). These parameters can be calibrated with the weight
and activation distribution estimated in the PTQ process.
The operator round(·) represents rounding, which can be
either rounding-to-nearest [46, 4] or adaptive rounding [20].

Previous PTQ research in classification and detection
tasks focused on the calibration objective and the acqui-
sition of calibration data. For example, EasyQuant [46]
determines appropriate cmin and cmax based on training data,
and BRECQ [20] introduces Fisher information into the
objective. ZeroQ [4] employs a distillation technique to gen-
erate proxy input images for PTQ, and SQuant [11] uses

random samples with objectives based on sensitivity deter-
mined through the Hessian spectrum. For diffusion model
quantization, a training dataset is not needed as the calibra-
tion data can be constructed by sampling the full-precision
model with random inputs. However, the multi-time step
inference of the noise estimation model brings new chal-
lenges in modeling the activation distribution. In parallel
to our work, PTQ4DM [41] introduces the method of Nor-
mally Distributed Time-step Calibration, generating cali-
bration data across all time steps with a specific distribu-
tion. Nevertheless, their explorations remain confined to
lower resolutions, 8-bit precision, floating-point attention
activation-to-activation matmuls, and with limited ablation
study on other calibration schemes. This results in worse
applicability of their method to lower precisions (see Ap-
pendix). Our work delves into the implications of calibration
dataset creation in a holistic manner, establishing an efficient
calibration objective for diffusion models. We fully quantize
act-to-act matmuls, validated by experiments involving both
pixel-space and latent-space diffusion models on large-scale
datasets up to resolutions of 512× 512.

3. Method
We present our method for post-training quantization of

diffusion models in this section. Different from convention-
ally studied deep learning models and tasks such as CNNs
and VITs for classification and detection, diffusion models
are trained and evaluated in a distinctive multi-step man-
ner with a unique UNet architecture. This presents notable
challenges to the PTQ process. We analyze the challenges
brought by the multi-step inference process and the UNet
architecture in Section 3.1 and 3.2 respectively and describe
the full Q-Diffusion PTQ pipeline in Section 3.3.

3.1. Challenges under the Multi-step Denoising

We identify two major challenges in quantizing mod-
els that employ multi-step inference process. Namely, we
investigate the accumulation of quantization error across
time steps and the difficulty of sampling a small calibration
dataset to reduce the quantization error at each time step.

Challenge 1: Quantization errors accumulate across time
steps. Performing quantization on a neural network model
introduces noise on the weight and activation of the well-
trained model, leading to quantization errors in each layer’s
output. Previous research has identified that quantization
errors are likely to accumulate across layers [5], making
deeper neural networks harder to quantize. In the case of
diffusion models, at any time step t, the input of the denois-
ing model (denoted as xt) is derived by xt+1, the output of
the model at the previous time step t + 1 (as depicted by
Equation 2). This process effectively multiplies the number
of layers involved in the computation by the number of de-
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Figure 3: MSE between FP32 outputs and weight-quantized
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Figure 4: Effects of time steps in calibration dataset creation
on 4-bit weights quantization results with DDIM on CIFAR-
10. First n, Mid n, Last n denotes that 5120 samples are
selected uniformly from the first, middle, last n time steps.

noising steps for the input xt at time step t, leading to an
accumulation of quantization errors towards later steps in
the denoising process.

We run the denoising process of DDIM [42] on CIFAR-
10 [17] with a sampling batch size of 64, and compare the
MSE differences between the full-precision model and the
model quantized to INT8, INT5, and INT4 at each time step.
As shown in Figure 3, there is a dramatic increase in the
quantization errors when the model is quantized to 4-bit, and
the errors accumulate quickly through iterative denoising.
This brings difficulty in preserving the performance after
quantizing the model down to low precision, which requires
the reduction of quantization errors at all time steps as much
as possible.

Challenge 2: Activation distributions vary across time
steps. To reduce the quantization errors at each time step,
previous PTQ research [28, 20] calibrates the clipping range
and scaling factors of the quantized model with a small set of
calibration data. The calibration data should be sampled to
resemble the true input distribution so that the activation dis-

tribution of the model can be estimated correctly for proper
calibration. Given that the Diffusion model uses the same
noise estimation network to take inputs from all time steps,
determining the data sampling policy across different time
steps becomes an outstanding challenge. Here we start by an-
alyzing the output activation distribution of the UNet model
across different time steps. We conduct the same CIFAR-10
experiment using DDIM with 100 denoising steps, and draw
the activations ranges of 1000 random samples among all
time steps. As Figure 5 shows, the activation distributions
gradually change, with neighboring time steps being similar
and distant ones being distinctive. This is also echoed by the
visualized xt in Figure 2.

The fact that the output activations distribution varies
across time steps further brings challenges to quantization.
Calibrating the noise estimation model using only a few time
steps that do not reflect the full range of activations seen
among all time steps by the noise estimation model during
the denoising process can cause overfitting to the activation
distribution described by those specific time steps, while
not generalizing to other time steps, which hurts the overall
performance. For instance, here we try to calibrate the quan-
tized DDIM on the CIFAR-10 dataset with data sampled
from different parts of the denoising process. As shown in
Figure 4, if we simply take 5120 samples from time steps
that fall into a certain stage of the denoising process, signifi-
cant performance drops will be induced under 4-bit weights
quantization. Note that the case with samples taken from
the middle 50 time steps caused smaller drops compared to
cases with samples taken from either the first or the last n
time steps, and with n increases, the drops are also alleviated.
These results illustrate the gradual “denoising” process as
depicted in Figure 5: the activations distribution changes
gradually throughout time steps, with the middle part captur-
ing the full range to some degree, while parts of the distant
endpoints differing the most. To recover the performance of
the quantized diffusion models, we need to select calibration
data in a way that comprehensively takes into account the
distributions of the output of different time steps.

3.2. Challenges on Noise Estimation Model Quan-
tization

Most diffusion models (Imagen [36], Stable Diffu-
sion [34], VDMs [14]) adopt UNets as denoising backbones
that downsample and upsample latent features. Although
recent studies show that transformer architectures are also
capable of serving as the noise estimation backbone [32],
convolutional UNets are still the de facto choice of archi-
tecture today. UNets utilize shortcut layers to merge con-
catenated deep and shallow features and transmit them to
subsequent layers. Through our analysis presented in Fig-
ure 6, we observe that input activations in shortcut layers
exhibit abnormal value ranges in comparison to other layers.
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Figure 5: Activation ranges of xt across all 100 time steps of FP32 DDIM model on CIFAR-10.

Notably, the input activations in DDIM’s shortcut layers can
be up to 200 times larger than other neighboring layers.

To analyze the reason for this, we visualize the weight and
activation tensor of a DDIM shortcut layer. As demonstrated
in the dashed box in Figure 6, the ranges of activations from
the deep feature channels (X1) and shallow feature channels
(X2) being concatenated together vary significantly, which
also resulted in a bimodal weight distribution in the corre-
sponding channels (see also Figure 7). Naively quantizing
the entire weight and activation distribution with the same
quantizer will inevitably lead to large quantization errors.

3.3. Post-Training Quantization of Diffusion Model

We propose two techniques: time step-aware calibration
data sampling and shortcut-splitting quantization to tackle
the challenges identified in the previous sections respectively.

3.3.1 Time step-aware calibration

Since the output distributions of consecutive time steps are
often very similar, we propose to randomly sample interme-
diate inputs uniformly in a fixed interval across all time steps
to generate a small calibration set. This effectively balances
the size of the calibration set and its representation ability of
the distribution across all time steps. Empirically, we have
found that the sampled calibration data can recover most of
the INT4 quantized models’ performance after the calibra-
tion, making it an effective sampling scheme for calibration
data collection for quantization error correction.

To calibrate the quantized model, we divide the model
into several reconstruction blocks [20], and iteratively re-
construct outputs and tune the clipping range and scaling
factors of weight quantizers in each block with adaptive
rounding [28] to minimize the mean squared errors between
the quantized and full precision outputs. We define a core
component that contains residual connections in the diffu-
sion model UNet as a block, such as a Residual Bottleneck
Block or a Transformer Block. Other parts of the model
that do not satisfy this condition are calibrated in a per-layer
manner. This technique has been shown to improve the per-
formance compared to fully layer-by-layer calibration since
it address the inter-layer dependencies and generalization

better [20]. For activation quantization, since activations
are constantly changing during inference, doing adaptive
rounding is infeasible. Therefore, we only adjust the step
sizes of activation quantizers according to to [9]. The overall
calibration workflow is described in Alg. 1.

Algorithm 1 Q-Diffusion Calibration
Require: Pretrained full precision diffusion model and the
quantized diffusion model [Wθ, Ŵθ]
Require: Empty calibration dataset D
Require: Number of denoising sampling steps T
Require: Calibration sampling interval c, amount of calibra-
tion data per sampling step n

for t = 1, . . . , T time step do
if t % c = 0 then

Sample n intermediate inputs x
(1)
t , . . . ,x

(n)
t ran-

domly at t from Wθ and add them to D
end if

end for
for all i = 1, . . . , N blocks do

Update the weight quantizers of the i-th block in Ŵθ

with D and Wθ

end for
if do activation quantization then

for all i = 1, . . . , N blocks do
Update the activation quantizers step sizes of the i-th
block with Ŵθ, Wθ, D.

end for
end if

3.3.2 Shortcut-splitting quantization

To address the abnormal activation and weight distributions
in shortcut layers, we propose a “split” quantization tech-
nique that performs quantization prior to concatenation, re-
quiring negligible additional memory or computational re-
sources. This strategy can be employed for both activation
and weight quantization in shortcut layers, and is expressed
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Figure 6: Activation ranges of DDIM’s FP32 outputs across layers averaging among all time steps. We point out three shortcuts
with the largest input activation ranges compared to other neighboring layers. Figures in the dashed box illustrate concatenation
along channels. ⊕ denotes the concatenation operation.
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Figure 7: (Left) The typical UNet architecture with shortcut layers that concatenate features from the deep and shallow layers.
(Right) The ranges of activations from the deep (X1) and shallow (X2) feature channels vary significantly, which also results
in a bimodal weight distribution in the corresponding channels.

mathematically as follows:

QX(X) = QX1
(X1)⊕QX2

(X2) (6)
QW (W ) = QW1

(W1)⊕QW2
(W2) (7)

QX(X)QW (W ) =QX1(X1)QW1(W1)

+QX2(X2)QW2(W2)
(8)

where X ∈ Rw×h×cin and W ∈ Rcin×cout are the input
activation and layer weight, which can be naturally split
into X1 ∈ Rw×h×c1 , X2 ∈ Rw×h×c2 , W1 ∈ Rc1×cout , and
W2 ∈ Rc2×cout , respectively. c1 and c2 are determined by
the concatenation operation. Q(·) denotes the quantization
operator and ⊕ denotes the concatenation operator.

4. Experiments
4.1. Experiments Setup

In this section, we evaluate the proposed Q-Diffusion
framework on pixel-space diffusion model DDPM [13] and
latent-space diffusion model Latent Diffusion [34] for un-
conditional image generation. We also visualize the images

generated by Q-Diffusion on Stable Diffusion. To the best of
our knowledge, there is currently no published work done on
diffusion model quantization. Therefore, we report the ba-
sic channel-wise round-to-nearest Linear Quantization (i.e.,
Equation 5) as a baseline. We also re-implement the state-of-
the-art data-free PTQ method SQuant [11] and include the
results for comparison. Furthermore, we apply our approach
to text-guided image synthesis with Stable Diffusion [34].
Experiments show that our approach can achieve competitive
generation quality to the full-precision scenario on all tasks,
even under INT4 quantization for weights.

4.2. Unconditional Generation

We conducted evaluations using the 32 × 32 CIFAR-10
[17], 256 × 256 LSUN Bedrooms, and 256 × 256 LSUN
Church-Outdoor [48]. We use the pretrained DDIM sampler
[42] with 100 denoising time steps for CIFAR-10 experi-
ments and Latent Diffusion (LDM) [34] for the higher reso-
lution LSUN experiments. We evaluated the performance in
terms of Frechet Inception Distance (FID) [12] and addition-
ally evaluated the Inception Score (IS) [38] for CIFAR-10
results, since IS is not an accurate reference for datasets that
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Figure 8: 256 × 256 unconditional image generation results using Q-Diffusion and Linear Quantization under W4A8 precision.

Table 1: Quantization results for unconditional image gener-
ation with DDIM on CIFAR-10 (32 × 32).

Method Bits (W/A) Size (Mb) GBops FID↓ IS↑
Full Precision 32/32 143.2 6597 4.22 9.12

Linear Quant 8/32 35.8 2294 4.71 8.93
SQuant 8/32 35.8 2294 4.61 8.99
Q-Diffusion 8/32 35.8 2294 4.27 9.15

Linear Quant 4/32 17.9 1147 141.47 4.20
SQuant 4/32 17.9 1147 160.40 2.91
Q-Diffusion 4/32 17.9 1147 5.09 8.78

Linear Quant 8/8 35.8 798 118.26 5.23
SQuant 8/8 35.8 798 464.69 1.17
Q-Diffusion 8/8 35.8 798 3.75 9.48

Linear Quant 4/8 17.9 399 188.11 2.45
SQuant 4/8 17.9 399 456.21 1.16
Q-Diffusion 4/8 17.9 399 4.93 9.12

differ significantly from ImageNet’s domain and categories.
The results are reported in Table 1- 3 and Figure 8, where
Bops is calculated for one denoising step without consider-
ing the decoder compute cost for latent diffusion.

The experiments show that Q-Diffusion significantly pre-
serves the image generation quality and outperforms Linear
Quantization by a large margin for all resolutions and types
of diffusion models tested when the number of bits is low.
Although 8-bit weight quantization has almost no perfor-
mance loss compared to FP32 for both Linear Quantization
and our approach, the generation quality with Linear Quanti-
zation drops drastically under 4-bit weight quantization. In
contrast, Q-Diffusion still preserves most of the perceptual
quality with at most 2.34 increase in FID and imperceptible
distortions in produced samples.

4.3. Text-guided Image Generation

We evaluate Q-Diffusion on Stable Diffusion pretrained
on subsets of 512 × 512 LAION-5B for text-guided image
generation. Following [34], we sample text prompts from
the MS-COCO [21] dataset to generate a calibration dataset
with texts condition using Algorithm 1. In this work, we fix

Table 2: Quantization results for unconditional image gener-
ation with LDM-4 on LSUN-Bedrooms (256 × 256). The
downsampling factor for the latent space is 4.

Method Bits (W/A) Size (Mb) TBops FID↓
Full Precision 32/32 1096.2 107.17 2.98

Linear Quant 8/32 274.1 37.28 3.02
SQuant 8/32 274.1 37.28 2.94
Q-Diffusion 8/32 274.1 37.28 2.97

Linear Quant 4/32 137.0 18.64 82.69
SQuant 4/32 137.0 18.64 149.97
Q-Diffusion 4/32 137.0 18.64 4.86

Linear Quant 8/8 274.1 12.97 6.69
SQuant 8/8 274.1 12.97 4.92
Q-Diffusion 8/8 274.1 12.97 4.40

Linear Quant 4/8 137.0 6.48 24.86
SQuant 4/8 137.0 6.48 95.92
Q-Diffusion 4/8 137.0 6.48 5.32

Table 3: Quantization results for unconditional image gen-
eration with LDM-8 on LSUN-Churches (256 × 256). The
downsampling factor for the latent space is 8.

Method Bits (W/A) Size (Mb) TBops FID↓
Full Precision 32/32 1179.9 22.17 4.06

Linear Quant 8/32 295.0 10.73 3.84
SQuant 8/32 295.0 10.73 4.01
Q-Diffusion 8/32 295.0 10.73 4.03

Linear Quant 4/32 147.5 5.36 32.54
SQuant 4/32 147.5 5.36 33.77
Q-Diffusion 4/32 147.5 5.36 4.45

Linear Quant 8/8 295.0 2.68 14.62
SQuant 8/8 295.0 2.68 54.15
Q-Diffusion 8/8 295.0 2.68 3.65

Linear Quant 4/8 147.5 1.34 14.92
SQuant 4/8 147.5 1.34 24.50
Q-Diffusion 4/8 147.5 1.34 4.12
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Figure 9: Stable Diffusion 512 × 512 text-guided image synthesis results using Q-Diffusion and Linear Quantization under
W4A8 precision with prompt A puppy wearing a hat.

the guidance strength to the default 7.5 in Stable Diffusion
as the trade-off between sample quality and diversity. Qual-
itative results are shown in Figure 9. Compared to Linear
Quantization, our Q-Diffusion provides higher-quality im-
ages with more realistic details and better demonstration of
the semantic information. Similar performance gain is also
observed in other random samples showcased in Appendix,
and quantitatively reported in Appendix. The output of the
W4A8 Q-Diffusion model largely resembles the output of
the full precision model. Interestingly, we find some diver-
sity in the lower-level semantics between the Q-Diffusion
model and the FP models, like the heading of the horse or
the shape of the hat. We leave it to future work to understand
how quantization contributes to the diversity.

4.4. Ablation Study

Last 50 steps

First 50 steps

Every 20 steps
Every 100/10/50 steps

Every 20 steps Every 20 steps

Every 20 steps

Figure 10: Uniform sampling strategies which cover all time
steps are better than strategies that cover only a part of the
time steps, as in Fig. 4. Furthermore, adjusting the sampling
techniques within uniform sampling, such as tuning the sam-
pling interval and the number of samples, has a marginal
effect on the performance of the quantized model.

Effects of Sampling Strategies To analyze the effects of
different sampling strategies for calibration in detail, we
implemented multiple variants of our method using differ-
ent sampling strategies. We then evaluated the quality of
the models quantized by each variant. We experimented

with varying numbers of time steps used for sampling and
samples used for calibration. In addition to calibration sets
from uniform timestep intervals, we also employed sampling
at the first 50 and last 50 steps. As in Figure 10, uniform
sampling that spans all time steps results in superior perfor-
mance compared to sampling from only partial time steps.
Furthermore, adjusting the sampling hyperparams, includ-
ing using more calibration samples, does not significantly
improve the performance. Therefore, we simply choose to
sample uniformly every 20 steps for a total of 5,120 samples
for calibration, resulting in a high-quality quantized model
with low computational costs during quantization.

We also conduct ablation experiments to explore the ef-
fectiveness of several non-uniform calibration data sampling
schemes, such as using Unsupervised Selecting Labeling
(USL) [45] to select both representative and diverse calibra-
tion samples. We present the results in Appendix.

Effects of Split Previous linear quantization approaches
suffer from severe performance degradation as shown in
Figure 11, where 4-bit weight quantization achieves a high
FID of 141.47 in DDIM CIFAR-10 generation. Employing
additional 8-bit activation quantization further degrades the
performance (FID: 188.11). By splitting shortcuts in quanti-
zation, we significantly improve the generation performance,
achieving an FID of 4.93 on W4A8 quantization.

5. Conclusion

This work studies the use of quantization to accelerate
and reduce the memory usage of diffusion models. We pro-
pose Q-Diffusion, a novel post-training quantization scheme
that conducts calibration with multiple time steps in the de-
noising process and achieves significant improvements in the
performance of the quantized model. Q-Diffusion models
under 4-bit quantization achieve comparable results to the
full precision models.
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