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Abstract

Thriving underwater applications demand efficient ex-
treme compression technology to realize the transmission
of underwater images (UWIs) in very narrow underwater
bandwidth. However, existing image compression meth-
ods achieve inferior performance on UWIs because they
do not consider the characteristics of UWIs: (1) Multifari-
ous underwater styles of color shift and distance-dependent
clarity, caused by the unique underwater physical imaging;
(2) Massive redundancy between different UWIs, caused
by the fact that different UWIs contain several common
ocean objects, which have plenty of similarities in struc-
tures and semantics. To remove redundancy among UWIs,
we first construct an exhaustive underwater multi-scale fea-
ture dictionary to provide coarse-to-fine reference features
for UWI compression. Subsequently, an extreme UWI com-
pression network with reference to the feature dictionary
(RFD-ECNet)1 is creatively proposed, which utilizes feature
match and reference feature variant to significantly remove
redundancy among UWIs. To align the multifarious un-
derwater styles and improve the accuracy of feature match,
an underwater style normalized block (USNB) is proposed,
which utilizes underwater physical priors extracted from
the underwater physical imaging model to normalize the
underwater styles of dictionary features toward the input.
Moreover, a reference feature variant module (RFVM) is de-
signed to adaptively morph the reference features, improv-
ing the similarity between the reference and input features.
Experimental results on four UWI datasets show that our
RFD-ECNet is the first work that achieves a significant BD-
rate saving of 31% over the most advanced VVC.

1. Introduction
Recently, underwater exploration attracts great atten-

tion from governments, scientists, and the public due to

* Corresponding Author.
1Code is available at https://github.com/lilala0/RFD-ECNet
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Figure 1: Key ideas of our work. Different UWIs have sim-
ilarities in texture, structure and semantic, which can be in-
cluded in an underwater feature dictionary to provide refer-
ence for UWI compression. E/D indicates encoder/decoder.

the growing underwater applications. For example, mine
search, nuclear-reactors detection, and underwater power
inspection [1] are parts of homeland security operations. In
addition, marine biology [2] and archaeology [3] are im-
portant scientific research for ocean resource development.
Moreover, underwater entertainment [4] such as underwater
live broadcasts is becoming greatly popular with the public.

In these underwater applications, images taken underwa-
ter play an essential role. To be transmitted from the deep
sea to the board or ground, underwater images (UWIs) must
be compressed at extremely low bitrates due to the very
narrow underwater wireless acoustic bandwidth of about 20
kbps [5]. However, existing image compression approaches
severely degrade the pixel fidelity (e.g., MSE) of UWIs at
extremely low bitrates (<0.1bpp), which greatly impairs the
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broad application of UWIs. Hence, it is highly urgent to de-
sign a more powerful extreme UWI compression algorithm.

Different from general images, UWIs present two unique
underwater characteristics: (1) UWIs present multifarious
underwater styles of color shift and distance-dependent
clarity. This is because the underwater imaging process is
quite different from that in the open air [6]. When light
travels through water, it suffers from absorption and scatter-
ing. Specifically, the blueish/greenish color shift is caused
by the fact that the red light of the shortest wavelength is
absorbed first, and then the green and blue light are fol-
lowed [7]. In addition, light is scattered by the particles in
water, which change the direction of light propagation [8],
resulting in the spatially varying distance dependencies of
clarity, i.e., the image clarity decreases as the distance to the
objects increases. (2) Different UWIs contain some com-
mon underwater objects at diverse morphologies and
sizes. Due to the special underwater natural environment,
there are some common underwater objects such as fish,
corals, and rocks that widely exist in different UWIs in di-
verse morphologies and sizes. Hence, there are plenty of
similar representations between UWIs. As shown in Fig. 1
(b), although the UWIs are captured at different times and in
various underwater scenes, they contain some same under-
water objects such as water, corals, and rocks, which share
plenty of similarities in textures, structures, and semantics.

Given the characteristics of UWIs, there are two main
drawbacks for existing image compression methods [9–21]:
(1) They only remove redundancy within an image and
do not consider redundancy between UWIs. Conven-
tional image compression codecs such as JPEG2000 [9],
BPG [10] and the latest VVC-intra [11] reduce the intra-
redundancy through transform and intra-prediction. Re-
cently, learnt image compression methods [12–18] have
shown greater potential than conventional codecs. Based
on variational autoencoder (VAE), [12] designs a hyper-
prior model to remove the statistic redundancy within an
image. After that, [13] proposes an autoregressive model to
further remove the local context redundancy. However, all
of them are limited to removing redundancy in only an im-
age. (2) They utilize a unitary compression that cannot
handle the multifarious underwater styles of color shift
and distance-dependent clarity. It is reasonable to use the
unitary compression for the general terrestrial images be-
cause the colors (r, g, b) of terrestrial images are evenly dis-
tributed [22] and the internal clarity is steady broadly. How-
ever, it limits their performance on UWIs because the UWIs
are full of multifarious color shift and distance-dependent
clarity. To design an efficient extreme UWI compression
method, it needs to both remove redundancy between UWIs
and align the multifarious underwater styles.

Accordingly, we creatively propose to compress UWIs
by referencing a dictionary to remove redundancy between

UWIs. First, we construct an exhaustive underwater multi-
scale feature dictionary to provide from coarse to fine ref-
erence information for the UWI compression. Specifically,
the features in the dictionary are extracted from plenty of
representative UWIs, which are strictly selected according
to various underwater scenes, including different underwa-
ter objects, water types, and water depths. As such, our
dictionary could cover a wide range of underwater com-
mon objects, assisting the UWI compression to fully re-
move redundancy between UWIs. Subsequently, we design
a novel extreme UWI compression network with reference
to the underwater feature dictionary (RFD-ECNet), shown
in Fig 2, where the features of input UWI are matched with
the dictionary to select the reference features, and then the
residuals between the input and reference features are com-
pressed, significantly reducing the coding bits of UWIs.

Additionally, an underwater styles normalization block-
based feature match (USN-FMM) is proposed to ensure
that the match is not interfered by the multifarious under-
water styles and focuses on selecting the references that
have the most similar texture to the input. To be specific,
the USNB utilizes the underwater physical priors (UPPs)
extracted from the underwater imaging physical model [6]
to normalize the underwater style of reference features to-
wards that of the input. Moreover, to improve the similarity
between the reference and input features, a reference feature
variant module (RFVM) is designed to adaptively morph
the reference features based on their dependency relevance
to the input feature. Extensive experimental results show
that our RFD-ECNet outperforms state-of-the-art (SOTA)
compression methods. Overall, our main contributions are
summarized as follows:

• We make the first attempt to remove the massive redun-
dancy between UWIs, and the proposed dictionary-
based compression network RFD-ECNet is the first
work that achieves significantly better BD-rate/PSNR
than the latest VVC and other learnt methods.

• We construct an exhaustive underwater feature dic-
tionary from representative UWIs manually selected
based on various underwater scenes, water types, and
water depths. Besides, detailed analyses are conducted
to verify the comprehensiveness and compactness of
the dictionary.

• To eliminate the effect of underwater styles on feature
match, we utilize the underwater physical priors to de-
sign USNB to improve feature match accuracy. More-
over, we design RFVM to adaptively morph the refer-
ence features based on the dependency map, improv-
ing their similarity.

2. Related Works
Learnt Image Compression. Recently, learnt im-

age compression approaches have developed rapidly and
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achieved great breakthroughs, which can be divided into
VAE-based and GAN-based. Generally, VAE-based meth-
ods [12–18] utilize an encoder, which includes some para-
metric linear and nonlinear transforms, to compress image
to compact latent features. After quantization and entropy
coding, the latent features are compressed into bit-stream.
Then a decoder, which usually has a symmetrical structure
with the encoder, is used to reconstruct the image.

To improve the rate-distortion (R-D) performance, some
works focus on designing more efficient learnt model
to capture redundancy in an image. [13] proposes auto-
regressive model to combine the context model with the
hyperprior model [12] for entropy estimation. [18] pro-
poses window-based local attention block to capture local
redundancy such as non-repetitive textures. [17] proposes
Gaussian Mixture Model to estimate likelihoods of latent
features more accurately. Although VAE-based methods
achieve admirable R-D performance, they often present un-
pleasing artifacts at extremely low bitrates.

To this end, some works [19–21] combine VAE with the
generative adversarial network (GAN) to generate visually
pleasing textures to counteract compression artifacts. Nev-
ertheless, the pixel fidelity (e.g., MSE) of the image recon-
structed by the GAN-based methods is quite low because
the generated content is fake and deceptive. Hence, it is
difficult for existing methods to achieve high pixel fidelity
UWI reconstruction at extremely low bitrates by only re-
moving redundancy within an image.

Image Set Compression. This direction aims to com-
press a batch of images captured at the same place from

different view angles and focal distances [23], which can
be divided into local-based and cloud-based. The local-
based methods [24–26] construct the reference by first pre-
processing all the images in a set. For example, [25] creates
a new low frequency template as reference image by av-
eraging the low frequency components of all images. The
cloud-based methods such as [27] select reference images
from the massive images in the cloud.

Obviously, the local-based methods must obtain all im-
ages before compression, which limits their usage flexibil-
ity. The cloud-based methods rely on the wide transmission
channel to access the cloud disk, which cannot be achieved
by the very narrow underwater wireless acoustic channel.
Moreover, since these methods can only be applied to the
small image subset captured at the same place, they cannot
deal with UWIs captured at different underwater scenes and
depths in the vast underwater world.

Reference-based Model. To the best of our knowl-
edge, there exists no image compression method based
on image/feature reference. The closest area to our work
is reference-based super-resolution (RefSR), which utilizes
the high-frequency information in high-resolution (HR) ref-
erence image/patch to rich the details of low resolution (LR)
image. Given an arbitrary HR image, [28] uses the VGG
network to simultaneously extract the referenced HR and
LR features, and swaps the most similar features of ref-
erence and the LR. To overcome the inherent information
deficit of a single reference, [29] uses multiple reference
images to provide a more diverse pool of image features.
Besides, [30] builds a face dictionary from HR face images
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Figure 3: Construction of underwater multi-scale feature
dictionary. B is the number of the representative UWIs.

to provide the high-frequency reference to construct more
and richer features for the LR image.

The differences between our work and the RefSR works
are as follows: (1) The RefSR task aims to learn more/richer
features from the HR reference, which is a process of in-
creasing information. In contrast, our compression task
aims to learn fewer/more compact features, a process of re-
moving redundant information. To our best knowledge, we
are the first image compression work referring to the fea-
ture dictionary. (2) In [30], their dictionary only contains
face images with eyes, nose and mouth, which are relatively
more simple and similar than the vast UWI domain. In-
stead, UWIs contain multifarious underwater styles, where
the common underwater objects are at diverse morphologies
and sizes. To construct an exhaustive underwater dictionary,
we manually select the representative UWIs based on vari-
ous underwater scenes, water types, and water depths. (3)
We design USNB to align the underwater styles of dictio-
nary features and input, improving feature match accuracy.
Additionally, we design RFVM to adaptively morph the ref-
erence features, further improving their similarity.

3. The Proposed Method
3.1. Exhaustive Underwater Feature Dictionary

To achieve extremely low bitrate UWI compression, we
propose RFD-ECNet, a novel image compression network
referring to underwater feature dictionary, to remove redun-
dancy between UWIs. First of all, an exhaustive dictionary
is constructed, which is offline and shared at the encoder
and decoder. The pipeline of the construction of underwa-
ter multi-scale feature dictionary is shown in Fig. 3.

To build the feature dictionary, a series of representative
UWIs are selected from the largest public underwater im-
age dataset UGWI 2. UGWI contains 2150 various UWIs,
which are collected during oceanic explorations, human-
robot collaborative experiments, or from websites such as
Google and YouTube. To select representative UWIs that
cover the richest and most comprehensive common contents

2UGWI is a public underwater image dataset and is available online at
https://github.com/Underwater-Lab-SHU
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Figure 4: SI and CF of images used to build the dictionary.

of UWIs, we manually divided the two thousand images
into 300 groups according to two rules. 1) Different Ob-
jects. Based on [8], the common objects in UWIs can be
divided into marine faunas of fish, turtles, sharks, snails and
shellfish, etc.; marine plants of corals, seaweed, fringing
reefs, etc.; non-biology of rocks, wreckage and sculpture,
etc. 2) Different water types and depths. The water type
is distinguished from clear to turbid, and the water depth is
distinguished from shoal water, deep sea and seabed. UWIs
captured in clear and shoal water present lighter color shift
and better clarity, and vice versa.

After grouping the UGWI manually, 1-2 images from
each group are selected to build our dictionary, which is
then cropped into non-overlapping 128×128 image patches
P . For each image patch, we use the pre-trained popular
deep image compression network DICN [12] to extract its
compression features at multi-scales, shown in Fig. 3. The
generation process of dictionary can be described as,

Ds = F(P ; θsDICN ) (1)

where s ∈ {2, 3, 4} is the scale and θsDICN is the parame-
ters of the pre-trained DICN at scale s.

To verify the diversity of these representative UWIs, the
Spatial Information (SI) and Colorfulness (CF) indices are
computed respectively for the content variation along the
spatial and color dimensions. Higher SI / CF indicates more
complex image content / colorful. The CF versus SI distri-
bution is plotted in Fig. 4. As shown, the distribution range
is quite broad, which indicates that the content of these
patches is diverse. Additionally, some points are distributed
closely, which also verifies that there are many similar com-
mon content between UWIs.

To compact the features in dictionary, we adopt K-means
to create K clusters. Considering the high computational
complexity of directly performing K-means on massive fea-
tures of multifarious UWIs, we first perform principal com-
ponents analysis (PCA) on the features of per UWI to re-
duce their dimension. Finally, K typical features at each
scale are preserved, constructing our multi-scale feature
dictionary. The effect of cluster number K on the compres-
sion performance is shown in the supplementary materials.

12983



Linear Flow in Eq. (4)

USNB

Conv

LReLU

Conv

LReLU

Conv

Conv

Conv

LReLU

Conv

LReLU

Conv

LReLU

Conv

LReLU

Conv

Conv

Conv

LReLU

Conv

LReLU Share

Weights

Figure 5: The structure of the proposed USNB.

3.2. Overall of the proposed RFD-ECNet

The framework of our RFD-ECNet is shown in Fig.
2, which performs feature match at multiple scales (s ∈
{2, 3, 4}) in a progressive manner to remove the underwa-
ter common redundancy from coarse to fine. Let Fs be the
input features at scale s, and Ds,i denotes the i-th dictio-
nary features at scale s. In the encoder, the input UWI is
down-sampled by two convolutional sampling layers to ob-
tain its features F2, which are matched with the dictionary
D to select its reference features D2,i. To guarantee the
input features F2 and D in the same feature space, the first-
two sampling layers of RFD-ECNet are filled with that of
the pre-trained DICN, which are fixed during the training of
our RFD-ECNet.

For more accurate feature match, USNB is proposed to
normalize the dictionary features based on the underwater
style of the input, eliminating the effect of the underwa-
ter styles diversity on feature match. Specifically, USNB
utilizes the UPPs extracted from an UPPs extractor [7] to
simulate the underwater imaging process [6], which dic-
tate the underwater styles of UWIs. Moreover, the selected
D2,i is further refined by the proposed RFVM to obtain
RD2,i based on the similarity map W2 between F2 and
D2,i, greatly improving their similarity.

After removing redundancy on three scales, the latent
features z and the dependency maps (W2,W3,W4) are
quantized by the uniform noise approximated method [12],
and then entropy coded by the Gaussian mixture entropy
model [17] to the bit-stream.

3.3. USNB-based Feature Match (USN-FMM)

Feature match aims to select the reference features that
have the most similar textures to the input features. How-
ever, the UWIs sharing similarity may have multifarious un-
derwater styles of color shift and distance-dependent clarity.
Hence, it is necessary to normalize the underwater styles of
dictionary features toward that of the input before the fea-
ture match.

Underwater Style Normalize. By studying the process

Dependency Map Calculator

Spatial Variant Block

C Crate = 1

rate = 2

rate = 3

SVRNN Conv Dilated Conv Sigmoid

Figure 6: The structure of the proposed RFVM.

of underwater imaging, it can be observed that the under-
water styles are dictated by underwater physical priors such
as ambient light and imaging transmission map, which can
be described by the underwater physical scattering model:

J = I × T +A× (1− T )

T = e−αd
(2)

where I denotes the clear scene without underwater style
and J is the captured UWI with multifarious underwater
styles. Under the effect of underwater physical priors, in-
cluding T and A, I is evolved to J . T and A respectively
represent the transmission map and the global ambient light,
and their visual examples are presented in the supplemen-
tary materials. T is calculated by α and d, which respec-
tively refer to light attenuation coefficient and the distance
between camera and object, which leads to the distance-
dependent clarity. Derived from Eq. (2), the clear scene
can be modeled as:

I =
J −A× (1− T )

T
(3)

Based on Eq. (2) and Eq. (3), the dictionary features can be
normalized towards the underwater style of input by

Jdic input = Idic × T input +Ainput × (1− T input)

=
Jdic −Adic × (1− T dic)

T dic
× T input

+Ainput × (1− T input)

(4)

Based on the above analysis, we propose the USNB to
parametrically implement Eq. (4), as shown in Fig. 5,
which is used before the feature match to normalize the un-
derwater styles of dictionary features toward the input. In
Fig. 5, Ds and NDs respectively correspond to Jdic and
Jdic input in Eq. (4). Underwater physical priors of dictio-
nary features (T dic and Adic) and that of the input (T in and
Ain) are fed to several convention layers to normalize Ds

to NDs by following the data flow in Eq. (4). Notably, the
network parameters for processing T dic and Adic are shared
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Figure 7: R-D curves of different image compression methods on UGWI, EUVP [31], UFO [32], and UIEB [8] datasets.

with that for T dic and Adic to guarantee that all underwater
physical priors are in the same feature space. As such, the
proposed USNB is able to normalize the underwater styles
of the dictionary features toward the input for more accurate
feature match. The effectiveness of USNB is verified in the
ablation studies.

Feature Match. To select the reference features Ds,i

from the dictionary features Ds for input features Fs, we
adopt the widely used inner product to measure the similar-
ity score between Fs and Ds. The similarity scores between
Fs and Ds is defined as:

Ss =

〈
Fs,

Ds

∥Ds∥

〉
(5)

Following the procedure in [33], Eq. (5) is implemented by
a convolution operation, where the kernel weights are set as
Ds, to accelerate the similarity calculations. The i-th dic-
tionary feature with the highest similarity score is selected
as the reference feature Ds,i.

3.4. Reference Feature Variant Module (RFVM)

Although the reference features Ds,i and the input fea-
tures Fs share some similarities, the relative position and
shape of the similar areas in Ds,i and Fs may be dramat-
ically different. To achieve the highest possible similarity,
we develop the RFVM to adaptively morph the Ds,i based
on Fs, shown in Fig. 6. RFVM utilizes the spatial vari-
ant recursive convolution (SVRConv) [34] to implement the
feature variant on a large receptive field, which is able to
facilitate the dramatic spatial variant by the long-distance
information propagation of recurrent convolution and the
learned weights for different locations. The weights of
SVRConv are learned by exploring the dependency between
Ds,i and Fs. To obtain the global dependency map W , di-
lated convolutions with different dilation rates are used to
exploit the spatial information at different receptive fields.
As such, our RFVM is able to morph the reference features
in a large receptive field to improve the similarity with the
input features.

4. Experiments
Extensive experiments are conducted to evaluate the ex-

treme compression performance of our RFD-ECNet. First,
we test RFD-ECNet on four different UWI datasets objec-
tively and subjectively to verify our excellent generaliza-
tion. After that, a series of ablation studies are presented to
respectively verify the effectiveness of our multi-scale man-
ner, USNB and RFVM.

4.1. Experimental Settings

Datasets. We perform experiments on four public UWI
datasets, including the UGWI dataset, EUVP dataset [31],
UFO dataset [32], and UIEB dataset [8]. These UWI
datasets are collected during different oceanic explorations
and hence include various underwater scenes and rich ocean
species. As stated in Section 3.1, some representative UWIs
selected from UGWI dataset are utilized to construct our un-
derwater multi-scale feature dictionary. The rest of UGWI
are divided into 1550 UWIs for training and 300 UWIs for
testing. Additionally, we randomly select 100 images re-
spectively from EUVP [31], UFO [32], and UIEB [8] to
test the pre-trained RFD-ECNet to verify the generalization
of our RFD-ECNet.

Training. As the most VAE-based methods, our RFD-
ECNet is optimized by the rate-distortion trade-off loss
function, which can be described as:

L = λ ·D +R, (6)

where λ is a trade-off parameter to balance bitrate R and
distortion D. In our work, MSE is used as the D, and λ
belongs to the set {512, 256, 128, 64, 32} for 5 different
compression ratios. The channel width of RFD-ECNet is
set as 192, and the bottleneck layer is set as 64. Detailed
network architecture is introduced in the the supplementary
materials. All model are trained using the Adam optimizer
[35] with standard parameters and learning rate of 1×10−4.

Evaluation. The compression performance is measured
by bitrate R and distortion D, which are respectively calcu-
lated by bits-per-pixel (bpp) and Peak Signal to Noise Ratio
(PSNR). Lower bpp and higher PSNR indicate better com-
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Table 1: Comparison of BD-rate and BD-PSNR on UGWI, EUVP [31], UIEB [8], and UFO [32] testsets. The BD-rate and
BD-PSNR are calculated from PSNR-BPP curve over data points with bpp<0.1, when BPG [10] is set as the anchor. The
performance of SOTA compression codec VVC is marked in red. The best performance is bolded.

Methods
BD-rate ↓ (%) BD-PSNR ↑ (dB) Computation complexity

UGWI EUVP UIEB UFO Avg. UGWI EUVP UIEB UFO Avg. Param. (M) FLOPs (G)

VVC-intra [11] -19.0 -16.2 -16.0 -16.1 -16.8 0.69 0.43 0.52 0.47 0.53 / /
JPEG2000 [9] 61.7 68.4 67.2 66.9 66.1 -1.62 -1.71 -1.84 -1.56 -1.68 / /

BPG [10] 0 0 0 0 0 0 0 0 0 0 / /
Minnen (NIPS’18) [13] -3.8 14.8 9.8 19.0 9.9 0.16 -0.36 -0.33 -0.59 -0.28 14.1 27.2
Cheng (CVPR’20) [17] -12.8 -8.4 -1.3 -8.3 -7.7 0.43 0.20 0.04 0.24 0.23 20.5 61.3

Zou (CVPR’22) [18] -13.8 -10.3 -12.4 -14.7 -12.8 0.48 0.25 0.36 0.43 0.38 75.0 33.3
Ours-slim -50.2 -44.6 -42.6 -34.7 -43.0 1.73 1.01 1.11 0.65 1.12 15.4 40.7

Ours -53.7 -50.3 -52.9 -37.3 -48.5 1.97 1.18 1.56 0.99 1.43 35.8 86.7
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Figure 8: Visual examples of the reconstructed images. The examples in two rows are respectively from UGWI and EUVP
[31] testset. The metrics are bpp (↓) and PSNR (↑). At extremely low bpp, our reconstructed images have more details and
higher pixel fidelity (measured by PSNR) than others.

pression performance. Notably, our bpp is calculated by,

bpp =
bitsz + bitsW + bitsindex

Npixels
(7)

where bitsz and bitsW respectively represent the bits of la-
tent features z and dependency map W . bitsindex denotes
the bits for coding the index numbers of reference features,
which are directly coded by Huffman coding. In addition
to R-D curves, the widely used Bjøntegaard delta rate (BD-
rate) and BD-PSNR are also evaluated. Lower BD-rate and
higher BD-PSNR indicate more efficient compression.

For the comparative methods, we compare our RFD-
ECNet with influential and SOTA image compression
networks, including Minnen (NIPS’18) [13], Cheng
(CVPR’20) [17], and Zou (CVPR’22) [18]. For fair com-
parisons, all networks are trained on the UGWI dataset. Ad-
ditionally, some conventional codecs are compared, includ-

ing popular JPEG2000 [9], BPG (HEVC-intra) [10] and the
latest VVC-intra (VTM 11.0) [11]. For BPG and VVC, the
highest PSNR setting (4:4:4) is tested.

4.2. Comparison against SOTA methods

R-D Performance. Fig. 7 presents the R-D curves on
four UWI testsets of UGWI, EUVP [31], UIEB [8], and
UFO [32]. As shown, the R-D curves of our RFD-ECNet
are above the curves of all comparative methods on four
testsets, which demonstrates that our method achieves bet-
ter compression performance than all comparative methods
and our excellent generalization and robustness. Notably, as
bpp decreases, our RFD-ECNet achieves higher PSNR im-
provements than comparative methods. This indicates that
the reference features provided by our underwater feature
dictionary are very efficient for the reconstruction, espe-
cially at extremely low bitrates.

12986



Table 2: BD-rate (%) and BD-PSNR (dB) of VVC/HEVC
at inter/intra modes, where Minnen [13] is set as the anchor.

Methods VVC-inter VVC-intra HEVC-inter HEVC-intra Ours

BD-rate ↓ -22.1 -21.0 0.2 3.2 -59.5
BD-PSNR ↑ 0.85 0.82 -0.10 -0.12 2.25

The BD-rate of different image compression methods
with BPG [10] as the anchor is presented in Table 1. As
shown, our method achieves the best BD-rate and BD-
PSNR results on four testsets, which indicates that we use
the smallest amount of bits to achieve the highest PSNR
among all methods. Specially, our average BD-rate of -48.5
% and BD-PSNR of 1.43 dB are much better than the most
advanced codec VVC-intra’ -16.8 % and 0.53 dB. More in-
tuitively, when VVC is set as the anchor, our RFD-ECNet
achieves breakthrough BD-rate saving of 31.7 % and BD-
PSNR of 0.90 dB, demonstrating the advanced performance
of our RFD-ECNet on UWI extreme compression.

Visual Quality. Fig. 8 shows visual examples of recon-
structed images by our RFD-ECNet, Cheng (CVPR’20), the
most advanced VVC-intra, and the widely used JPEG2000.
As shown, our reconstructed images retain more de-
tails, while the reconstructed images of VVC-intra and
JPEG2000 present obvious blurring and blocking effects at
extremely low bpp. As shown in the second row, when
bpp=0.049, VVC-intra, Cheng (CVPR’20) and JPEG2000
completely loss the common object of sand, while our RFD-
ECNet can roughly reconstruct the sand by referencing our
dictionary. Overall, our pixel fidelity is higher than oth-
ers at the similar extremely low bpp, which can be verified
by our higher PSNR. More visual results tested on under-
water videos are provided at https://github.com/
lilala0/RFD-ECNet.

Comparison with video codecs. To verify that the re-
dundancy between UWIs cannot be efficiently removed by
video codecs, our RFD-ECNet is compared with the lat-
est video codecs of VVC-inter and HEVC-inter. Their per-
formance on UGWI testset measured by BD-rate and BD-
PSNR with the Minnen [13] as the anchor is shown in Table
2. As shown, we achieve better results than both VVC-inter
and HEVC-inter, verifying that our RFD-ECNet referenc-
ing to dictionary is more efficient than video codecs to re-
move the redundancy between UWIs. Moreover, both video
codecs at inter-mode only achieve tiny improvement of BD-
rate/PSNR than the intra-mode. This verifies that there is
redundancy between UWIs indeed.

Comparison of complexity. The trainable parameters
and FLOPs of all approaches are compared in Table 1. As
shown, our parameters (35.8 M) is much less than that (99.8
M) of compression network [18]. Additionally, we also
provide a slim version of Our RFD-ECNet by narrowing
our network channels of 192 to 128 (denoted as Ours-slim),
which only have 15.4M parameters and 40.7G FLOPs. No-

Table 3: BD-rate (%) and BD-PSNR (dB) of ablation stud-
ies about our USNB and RFVM, where BPG [10] is set as
the anchor.

Setting Ours w/o USNB w/o RFVM w/o USNB&RFVM

BD-rate ↓ -53.7 -33.6 -43.1 -24.6
BD-PSNR ↑ 1.97 1.14 1.49 0.83

Table 4: BD-rate (%) and BD-PSNR (dB) of ablation stud-
ies about the multi-scale manner, where BPG [10] is set as
the anchor.

Scale setting Scale-{2} Scales-{2, 3} Scales-{2, 3, 4}
BD-rate ↓ -46.1 -49.8 -53.7
BD-PSNR ↑ 1.67 1.83 1.97

tably, ours-slim still achieves better performance than all
SOTA methods with lower complexity, illustrating our ex-
cellent UWI extreme compression performance.

5. Ablation Study

Effectiveness of USNB and RFVM. To verify the ef-
fectiveness of the proposed USNB and RFVM, a series of
ablation experiments are conducted, where the USNB and
RFVM are removed from our RFD-ECNet in sequence. The
performance of each ablation is measured by the BD-rate
and BD-PSNR with the BPG as the anchor, shown in Table
3. w/o USNB indicates the network that directly performs
feature match by inner product without using our USNB to
normalize the dictionary features. w/o RFVM is the net-
work where the matched reference features are not fed into
our RFVM and therefore cannot be varied adaptively based
on the input features. w/o USNB&RFVM is the network
without both USNB and RFVM. As can be seen from Table
3, the removal of either USNB or RFVM degrades the per-
formance of our RFD-ECNet. Moreover, the performance
degrades most when USNB and RFVM are removed simul-
taneously, verifying the effectiveness of USNB and RFVM.

Effectiveness of multi-scale reference. In our RFD-
ECNet, the input features are matched with the feature dic-
tionary at three scales (s = 2, 3, 4), considering that the
similarity between UWIs is reflected on the textures, struc-
tures, and semantics. Here we conduct ablations to verify
the effectiveness of the multi-scale manner, and provide the
results in Table 4. Since the features on scale-1 contain
more noise less semantic information, we perform feature
match starting from scale-2. As shown, our RFD-ECNet re-
ferring dictionary at scales-{2, 3, 4} achieves the best per-
formance, followed by scales-{2, 3} and scale-{2}, which
verifies that it is efficient to remove the underwater com-
mon redundancy at multiple scales from coarse to fine.
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6. Discussion

This work creatively removes redundancy between
UWIs and proposes a novel reference-based image com-
pression framework. Actually, the redundancy between im-
ages exists not only in UWIs but also in other image do-
mains where independent images contain some common
objects specific to the image domain. For example, all
Martian images [36] contain rocks and sand; all face im-
ages [37] contain eyes, nose and mouth; most remote sens-
ing images [38] contain buildings, road and so on. How-
ever, existing image compression works neglect this nature
and only remove redundancy in an image, which may limit
the development of image compression.

To validate our hypothesis, we additionally conduct pre-
liminary experiments on Martian images [36] by adjusting
our network. Experimental results presented in the supple-
mentary materials show that we also achieve better perfor-
mance than VVC and Ding (VCIP’22) [36], illustrating the
efficiency and feasibility of removing redundancy between
images in other image domains.

7. Conclusion

In this paper, we explore the characteristics of UWIs
and find that UWIs present multifarious underwater styles
and different UWIs share some common ocean objects
at diverse morphologies and sizes, resulting in plenty
of redundancy between UWIs. Hence, we construct an
exhaustive and compact underwater multi-scale feature
dictionary from the manually selected representative
UWIs, which provides coarse-to-fine reference for our
RFD-ECNet to fully remove redundancy between UWIs.
Meanwhile, to eliminate the effect of underwater styles
on feature match, we utilize UPPs to design the USNB
to align the multifarious underwater styles of dictionary
towards that of input features. Moreover, to improve the
similarity between the input and reference features, we
propose RFVM to perform adaptive reference feature
variant. Finally, extensive comparisons are conducted to
verify our significant performance improvement than SOTA
methods including the latest VVC, and comprehensive
ablation studies verify the effectiveness of each module in
our RFD-ECNet.
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