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Abstract

Diverse visual stimuli can evoke various human affec-
tive states, which are usually manifested in an individual’s
muscular actions and facial expressions. In lab-controlled
emotion datasets, such a critical component (i.e., stimu-
lus) was commonly designed in a limited way, making re-
searchers incapable of generalizing the universal correla-
tion and causation of stimulus-reaction as well as predict-
ing possible emotions from context, timing, and relation. In
this paper, we collected a large-scale spontaneous facial
behavior database ReactioNet, which contains 1.1 million
coupled stimulus-reaction tuples (visual/audio/caption from
both stimuli and subjects). We introduce a new facial behav-
ior detection scenario, Dyadic Relation Reasoning (DRR),
which aims to detect facial actions by reasoning their re-
lations with stimuli. By aggregating the dyadic informa-
tion, our method essentially forms a relation prototype Uni-
versal Stimulus Reaction (U-SR), which encodes the low-
order and high-order relationships between stimulus agents
and facial reactions. A framework with both non-graph and
graph modules is further developed to evaluate DRR-based
facial action unit detection, facial expression recognition,
and scene classification. Specifically, to learn “what”
arouses a facial reaction, the non-graph module associates
and projects the fine-grained stimulus-reaction features into
common subspaces using cross-domain contrastive learn-
ing. To learn “how” stimulus-reaction pairs are mutually
related, the graph module adopts Graph Convolution Net-
work to represent, converge, and infer the dyadic U-SR re-
lation under two relation assumptions (i.e., homophily and
heterophily [68]). Extensive experiments demonstrate the
effectiveness of the proposed work. The new dataset will be
available for the research community.

1. Introduction

Human perception [10] is the transformation of external
stimuli into an accessible, subjective, and reportable expe-
rience [15], which in consequence arouses human emotions
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Figure 1. A hypothetical graph of the common embedding
space. AU 12 reactions v,.? are triggered by the corresponding
stimuli v}2 (e.g., harmless and attractive animals). AU 4 reactions
v are triggered by the stimuli v? (e.g., fierce and aggressive crea-
tures). Arrows with distinct colors represent “four types” relations

between the nodes. The samples are one-to-one corresponded.

that are reflected in behavioral responses e.g., face, gesture,
and voice [23, 24]. Various emotions can be elicited by
distinct stimuli, making the selection of appropriate stim-
uli crucial for creating affective databases. However, most
current spontaneous emotion databases are restricted to lab-
controlled environments without real-life experiences, such
as, BPAD [77] with only 10 stimulus activities moderated
by an interviewer, MPED [62] with 28 video stimuli, DEAP
[26] with 40 music videos, BUEEG [37] with mixed stim-
uli of 6 videos, 11 still pictures, 2 physical experience, and
RML [8] with 10 different emotion sentences. With limited
variety of stimulus scenes, it is difficult to scrutinize the
connection between external stimuli and human reactions
(e.g., via face and voice), neither to generalize the connec-
tion statistically.

To overcome this limitation, we created a facial behav-
ior database called ‘“ReactioNet”” which includes 2,486 reac-
tion video clips and 1.1 million reaction images in the wild,
along with corresponding stimuli. Each reaction video con-
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Figure 2. A snapshot of ReactioNet. For each sample on the left, the top image is the untrimmed reaction scene. The bottom data triplet
contains: a) the subject’s face; b) the stimulus scene; and c) a textual summary of the stimulus scene. GT indicates the facial action unit
(AU) labels of FACS [52]. The WordCloud is generated based on the 8049 different words in textual descriptions by frequency.

tains well-synchronized dyadic data of both stimulus and
subject. A “Reaction” video captures the subject’s sponta-
neous expressions and vocalizations in response to contents
on video platforms [64]. It is a unique user-generated text
that reflects the overlapping complexities of the emotional,
embodied, virtual, and offline performances of authenticity
and social engagement [63]. We densely populate synsets
in WordNet [2] according to categories of popular reaction
videos for collecting a corpus with multiple scenes, includ-
ing animation, film, game, object, show, sports, inter-
view/public speech, and self-made video. Fig. 2 displays
a snapshot of ReactioNet.

Three aspects distinguish ReactioNet from existing
databases: First, it enables the learning of facial behav-
ior associated with the explicit stimuli an individual per-
ceives. As shown in Sample 3 of Fig. 2, the man sees a
cartoon panda swallowing food. By forming a consensus
between his cognition and the stimulus scene’s semantics,
his internal feeling “funny” is activated. This, in turn, trig-
gers a smile reaction combined with a series of facial action
units (AUs). However, without stimulus scenes as context,
a smile on a man’s face becomes ambiguous and less mean-
ingful. For instance, a smile in the real world is a multi-
faceted dynamic expression that can signal much more than
“happy”, e.g., rapport, polite disagreement, sarcasm, frus-
tration, pain, and more [21]. Some recent context-aware
work suggests to use spatial surroundings of a subject as an
auxiliary clue for emotion recognition [30, 76]. However,
the facial expressions of subjects in context-aware datasets
are mostly non-spontaneous (e.g., posed facial expressions
from actors) [48], and lack adequate quantity and diver-
sity in terms of stimuli types, reaction types, reactions per

stimuli, and synchronized annotations of both sides across
multiple modalities. These issues are well addressed by
the dyadic views of subjects and stimuli in our ReactioNet.
Second, ReactioNet allows for new exploration on cross-
domain tasks, such as stimulus and reaction domain adapta-
tion [5] and generalization [81]. Third, it derives a new
facial behavior detection scenario Dyadic Relation Rea-
soning (DRR). DRR aims to detect high-level facial be-
haviors by reasoning their relations with stimuli and vice
versa. In low-level facial behavior detection tasks, an ac-
tion on a face can be recognized, yet what causes the ac-
tion and how it triggers the behavior remain unknown. The
lack of such a reasoning ability makes the current studies
less informative in terms of interpretability and logicality.
DRR, in contrast, is intended to utilize the methods (e.g.,
relation reasoning [54], causality inference [74]) to parse
what and how the stimulus influences the corresponding re-
action. In this work, we apply DRR for facial action unit
detection (AUD), facial expression recognition (FER), and
scene classification (SC). Note that all diagrams presented
in this paper use AUD as an example.

ReactioNet is well-grounded in multi-modal data, such
as visual faces, visual stimuli, and textual descriptions of
stimuli. We bring these crucial information into a DRR-
based framework consisting of non-graph and graph mod-
ules. (1) To learn “what” elicits a specific reaction, the non-
graph module leverages cross-domain contrastive learning
to associate and map stimulus-reaction features into differ-
ent AU-related embedding subspaces. As shown in Fig. 1,
the AU 12 (lip corner puller) and AU 4 (brow lowerer) re-
lated stimulus/reaction are divided into two clusters sep-
arately. The stimulus photos of cute animals (e.g., pup-
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pies, kittens, turtles) arouse people’s desire to protect, care,
and smile (AU 12). Thus, the dependency between cute-
ness perception [80] and AU 12 can be built. On the con-
trary, the fierce and aggressive creatures trigger more seri-
ous facial expressions that are often accompanied by AU
4. In this way, the non-graph module identifies the coupled
regions of interest (ROIs) for stimulus-reaction pairs, and
groups their feature nodes for the graph module with knowl-
edge from only one domain (e.g., reaction domain). (2) To
learn “how” stimuli and reactions are related, we present
a relation prototype “Universal Stimulus Reaction” (U-
SR). As shown in Fig. 1, it consists of one first-order
Reaction-Reaction (i.e., both have the AU ground-truth)
(blue), two second-order direct Stimulus-Reaction; (i.e.,
one may deviate from the AU ground-truth, and stimulus-
reaction are directly related) (green), two second-order indi-
rect Stimulus-Reaction,, (i.e., one may deviate from the AU
ground-truth, and stimulus-reaction are indirectly related)
(red), and one high-order Stimulus-Stimulus (i.e., both may
deviate from the ground-truth) (purple). U-SR differs from
prior relation models [57, 40, 31] that only encode low-
order/inter-class relations (e.g., AU co-occurred or mutu-
ally exclusive relation); instead, it builds a more complex
yet robust graph by encoding both low-order and high-order
relations. More details are elaborated in Sec. 3 and Fig. 3.
The contribution of this work lies in four-fold: (1) To
our best knowledge, ReactioNet is the first spontaneous
facial behavior database with well-synchronized stimulus-
reaction data, diverse stimulus-reaction types, and annota-
tions across multi-modalities. It can serve as a benchmark
for broader visual/linguistic understanding applications. (2)
We systematically investigate the relationships that exist be-
tween facial reactions and stimuli, and introduce a high-
level facial behavior detection scenario that reasons about
their dyadic relation. (3) We devise a unified framework
that utilizes cross-domain contrastive learning, and a hy-
brid GCN with low-order/high-order relation encoded un-
der homophily/heterophily assumptions to simultaneously
addressing two questions in DRR-based tasks: a) learning
which stimulus triggers a specific facial behavior; and b)
reasoning how stimulus-reaction are related. (4) We provide
three benchmarks for DRR-based facial action unit detec-
tion, expression recognition, and scene classification on Re-
actioNet. Extensive experiments demonstrate the general-
ization ability and flexibility of the proposed framework un-
der different settings across ten existing affective datasets.

2. New database - ReactioNet

The content-wise diversity is an essential factor for gen-
eralizing the universal relation between stimulus and hu-
man reaction. Apart from inheriting some advantages of
previous emotion datasets (e.g., spontaneous facial behav-
ior [46], multi-modal data sources [79], temporal dynamics

[78], large-scale data pool, diverse meta-data), ReactioNet
offers novel and inspiring features including coupled data
from dyadic domains, diversity and hierarchy in multi-scene
[70], linguistic meta-data, and cross-domain learning sup-
portability.

ReactioNet comprises 1168 long reaction videos (ap-
prox. 61.3 million frames) from YouTube. We carefully
selected and edited 2486 short clips (around 1.1 million
frames) with highlighted facial responses and unique stim-
ulus scenes. It provides 8 types of stimulus scenes (in-
cluding animation, film, game, object, show, sports, self-
made video, interview/public speech) and 59 types of finer-
grained sub-scenes. Multi-modal data from different do-
mains in ReactioNet includes visual/audio/caption from
stimulus, subject, and the global view. Deepface [55] is
employed to roughly analyze the demographics of Reac-
tioNet by predicting subjects’ facial attributes (e.g., age,
ethnicity). The proposed dataset contains around 1566 sub-
jects with ages ranging from 20 to 70 years old. Ethnic
ancestries include Asian, Black, Hispanic/Latino, Indian,
Middle-Eastern, and White. A large set of metadata is cre-
ated, including type tags of stimulus videos, facial land-
marks, head pose tracking, gaze tracking, FACS coding,
facial expression coding, and textual descriptions of stim-
uli. The rich meta-data in ReactioNet can potentially ben-
efit a wide range of visual/linguistic understanding tasks,
such as image captioning [29, 20], scene graph genera-
tion [14], text-video retrieval [16], and visual/textual ques-
tion answering [18], etc. 50,000 key frames are sparsely
selected to generate a compact data collection for getting
high-quality annotations. Both AU occurrence and intensity
(including AU 1, 2,4, 5,6,7,9, 10, 12, 14, 15, 17, 20, 23,
25, 26, and 45), and seven primary facial expressions are
manually encoded by three expert FACS coder. Deepface
[55] is employed to roughly analyze the demographics of
ReactioNet by predicting their facial attribution (e.g., age,
ethnicity). The proposed dataset contains around 1566 sub-
jects, with ages ranging from 20 to 70 years old. Ethnic
ancestries include Asian, Black, Hispanic/Latino, Indian,
Middle-Eastern, White, and others (e.g., Native American).

Three highlighted features of ReactioNet include: (1)
Coupled data from dyadic domains. As shown in Fig. 2,
the global views of samples are all based on split-screen dis-
play, which allows multiple screens to be projected onto the
same one. Each reaction image usually contains one view
of the stimulus scene and one (or multiple) views of the
subject’s faces. For each video clip, we randomly choose
one major subject. For subjects’ faces, we employ a semi-
automatic cropping method. Initially, we manually crop the
target face in the first frame and then use an Boosting-based
face tracking model to extract the remaining frames. Since
the location of stimulus scenes is generally fixed, no track-
ing method is employed after setting the first frame. By
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semi-automatic cropping the subject’s face and the stimu-
lus scene, we extract one-to-one corresponding data pairs
from dyadic domains. These cropped and aligned data
pairs serve as crucial metadata in our dataset, as fully au-
tomatic segmentation of such complex images is impracti-
cal. (2) Diversity and hierarchy in multi-scene. By refer-
ring to the WordNet, Wikipedia, and other online resources,
we densely populate synsets of the common video scenes
to form a hierarchical keyword pool (e.g., ImageNet[7]).
About 1000 keywords are collected and fed to the search
engine for finding the best-matched videos. Thus, these
videos can cover a large variety of reaction scenes, provid-
ing both impressive stimulus diversity and reaction diver-
sity. Please refer to the supplementary materials for all of
the fine-grained scenes and searching keywords. (3) Tex-
tual metadata. We generated the textual description of
stimulus scenes using the caption generator from BLIP [32]
with both beam search and nucleus sampling. However, the
models cannot generalize well to every fine-grained scene,
such as animation and game. Thus, we manually checked
and corrected the generated textual descriptions to get more
credible textual metadata.

The protocol of data collection, processing, and release
has been approved by the Institutional Review Board (IRB).
All collected videos were provided under Creative Com-
mons license, granting us permissions and defining the
terms of use, sharing, and modification. Our data collec-
tion and dissemination efforts abide by platform guidelines.
Adequate caution was taken to not store any user informa-
tion, videos, or metadata on permanent storage outside the
computing infrastructure of the social media platform. We
aim to disseminate the data upon request and log all access
to the dataset, which will only be available for research pur-
poses. Please refer to the supplementary material for more
details of ReactioNet.

3. Relation prototype

In this section, we elaborate on the design philosophy of
Universal Stimulus-Reaction (U-SR).

Non-graph module: U-SR builds upon insights from
Contrastive Domain Adaptation (CDA) [59, 67] and Con-
trastive Language-Image Pretraining (CLIP) [51]. CLIP’s
contrastive learning on (image, text) pairs yields powerful
semantic representations, but it lacks fine-grained under-
standing and contextual comprehension. Domain adapta-
tion addresses this by leveraging source domain annotations
for adaptation but struggles to bridge the text-image gap.
To overcome these limitations, we propose triplet pairings
of samples (including stimuli image, stimuli text, reaction
image) under the fine-grained supervision (e.g., individual
AUs) from the source domain. This bridges facial reactions
with visual stimuli while capturing the rich linguistic se-
mantics derived from the real world. In addition, unlike
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Figure 3. Four types in U-SR relation prototype under two as-
sumptions. Green arrows are connected and red arrows are not. s
indicates stimulus, ¢ indicates the textual description of stimulus,
and r indicates the visual reaction.

aforementioned cross-domain and multi-modal tasks where
samples from source domain and target domain belong to
the same or similar categories, the stimuli and facial reac-
tion domains in U-SR exhibit lesser category-wise resem-
blance. The samples in target domain serve as the empiri-
cal context for inferring the predictions of source domain.
Thus, we harness the potential of these triplet sample pair-
ings to identify fine-grained ROIs that serve as reflective
markers of causal relations across both the source and tar-
get domains.

Graph module: As the Non-graph module lacks abil-
ity in casual relation reasoning, U-SR incorporates graph
convolutions networks with domain adaptation to derive
high-order cross-domain relationships from low-order uni-
domain relations. (1) Node definition. In Fig. 2, compli-
cated stimulus scenes contain various entities (e.g., object,
object’s action, interaction between objects, and the con-
text), making it impractical to identify specific entities as
independent nodes. To simplify the graph structure and
reduce the annotation cost, we treat all stimuli that elicit
a behavioral response as the same node. For example,
ROIs that trigger AU6 are AUG6-specific stimulus nodes,
and ROIs of AU6 on subjects’ faces are AU6-specific re-
action nodes. This allows extracting dyadic node features
with labels only from one domain. (2) Relation defini-
tion. Stimulus-reaction data share the same supervision
information but belong to different domains, resulting in
features that exhibit both homogeneity and heterogeneity
in the representational space. Thus, we define U-SR un-
der two assumptions (including homophily and heterophily
[68]). We explain the “four types” relation with three sam-
ples in Fig. 3: (1) “a parrot is attacking a person” triggers a
smile and AU 6; (2) “a goose is attacking a person’ arouses
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the subject’s smile and AU 12; and (3) “a wolf is going to
attack a person” elicits the subject’s concern and AU 4. Un-
der the heterophily assumption [68], nodes with homolo-
gous semantic expressions tend to form edges, regardless
of whether they are similar or not in feature-wise. The
“four types” relations in U-SR are: (1) First-order Reaction-
Reaction (R-R). In this case, all reaction features v%, v}2, v
have the ground-truth. According to the inter-AU relation,
AU 6 and AU 12 are usually co-occurred in a smiling face,
whereas AU 4 is frequently found in negative expressions
(e.g., concern, fear, sad). Thus, vf and vP are connected,
while v!2 and v are unconnected. (2) Second-order direct
Stimulus-Reaction; (S-Ry). As the stimulus (i.e., a parrot
is attacking a person) is the direct trigger of AU 6, we as-
sume the visual stimulus v¢, textual stimulus v¢ and face
reaction v¢ are all positively connected. (3) Second-order
indirect Stimulus-Reactions (S-Rs). The stimulus of AU 12
v}? (i.e., a goose is attacking a person) is an indirect trig-
ger of AU 6 v¢. However, considering that AU6 and AU12
always appear together, they can be assumed to be related
indirectly. Likewise, the visual stimulus AU 12 'U;Q and the
reaction AU 4 v} are unrelated because AU 12 and AU 4
are mutually excluded. (4) High-order Stimulus-Stimulus
(S-S). Even if all of the stimulus features may deviate the
AU ground truth, their relationship can still be reasoned.
For instance, both two subjects feel it funny to see the non-
lethal and small-sized animals (e.g., parrot, goose) attack a
people. Thus, the stimulus nodes v% and v!? that elicit AU
6 and AU 12 should be positively connected. Yet, if the
attacker is a wolf, it may lead to the death of the woman,
eliciting the subject’s the concern expression and AU 4. In
this way, the AU 4 stimulus v* and AU 12 stimulus v}? are
defined to be unrelated, even if their visual semantics tend
to be similar, i.e., animals are attacking people. Note that,
under this assumption, all three higher-order relations are
derived from the basic pre-define first-order AU relation by
following Eq. (4). Under the homophily assumption, nodes
with similar feature expressions prone to connect to each
other. The homophily degree [68] describes the extent to
which two nodes belong to the same class. The nodes in a
homophily graph are fully connected, and takes their rep-
resentational similarity as the edge weights. In Fig. 3, the
intensity of green indicates the similarity of two nodes, and
the examples are for reference only. In this way, the two as-
sumptions are compatible with both semantic-wise homo-
geneity and feature-wise heterogeneity in order to achieve
better balance in this special cross-domain task.

4. Framework

In this section, we present the details of DRR-based
framework. Let @ = (R, S, T) denote the dataset, where
R, S, T is the set of face reaction, visual stimulus, and tex-
tual descriptions of stimuli respectively. The input triplet
consists of a face image =, € R, a stimuli image z; € S,

and a stimulus text x; € 7. The textual description serves
as a valuable source of coarse-grained prompt for effec-
tively locating ROIs within the stimulus scenes. Our pro-
posed framework, shown in Fig. 4, includes two modules:
a non-graph module and a graph module. The non-graph
module projects stimulus-reaction data into multiple AU-
related embedding subspaces, each containing unique fea-
tures for learning which stimulus associates with a specific
AU. The graph module aims to converge the U-SR un-
der homophily and heterophily assumptions to explore how
stimuli and reactions are related.

4.1. Non-graph module

This section outlines the framework’s process for encod-
ing visual and textual features, addressing domain shifts in
visual stimuli, activating local AU areas, associating them
with relevant stimuli, and projecting and clustering them
into shared embedding subspaces.

Visual and textual encoder The visual features of face
and stimulus are extracted by the base models with shar-
ing weights. We adopt ResNet-18 [19] pre-trained on Im-
ageNet [53] as the visual encoder fsg(-), obtaining two
feature maps from the last convolution layer. Let z; =
fSR(CUs) c RHxWxC, and 2 = fSR(CUr) c RHXWXC
where H x W x C'is 7 x 7 x 512 in this work. We adopt a
standard transformer pre-trained on CLIP [51] as the textual
encoder fr(-), obtaining a feature map z; = f7(x;) € R,
where C'is 512.

Universal domain adaptor To adapt domain shifts across
various stimuli (e.g., animation, film, game, self-made
video) and reactions, we insert a domain-sensitive attention
component into the visual backbone network fsz(-). Note
that even stimuli from the same scene may exhibit multi-
ple domain style. For instance, animation scenes may fea-
ture distinctive visual styles (e.g., 2D, 3D, motion graph-
ics, cut-out). To handle this, we adopt a light-weighted at-
tention module known as universal domain adapter (UDA)
[69]. UDA employs a channel-wise domain attention that
learns to assign weights to SE adapters (i.e., spatial attention
modules), each of which corresponds to an underlying un-
known domain pattern. The attention module dynamically
increases the weight of relevant adapters based on the do-
main pattern of a feature, while suppressing the influence of
unrelated adapters, thus inferring domain information with-
out requiring specific domain labels. A self-diversified at-
tention design [35, 38] is applied to increase the pattern di-
versity of domain adapters and avoid attention redundancy.
S-R associating To locate, associate, and align the stimulus
features with local AUs, we apply the conventional multi-
head design [36]. The global average pooling (GAP) is em-
ployed to flatten the feature maps z;, z,, and z;. For each
feature, it is duplicated and fed into N small MLP projec-
tion heads, where N represents the number of AUs. Let v,
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v?, and v € R to be the nth AU-related feature triplet
in Fig. 4, where the feature dimension C'is 12. These fea-
tures are forwarded to independent fully-connected layers,
getting the estimated AU occurrence probability §7;, where
n is the nth AU, and d is the dth domain in D = (R, S, T).
Each output is supervised with a binary AU label for activat-
ing the most related region of interest (ROI) in different do-
mains. Note that each AU-related stimulus shares the same
supervision information with corresponding AU-related re-
action. We chose weighted BCE with logits as the multi-
label classification loss. The non-graph AU loss function is
defined as:

D N
Lav =YY wilyiloggy + (1 —yi)log (1 — §3)]
d=1n=1
(D

where w}; is calculated by the nth AU’s occurrence ratio
[56] in the dth domain, and less likely occurred AU is as-
signed with higher weights to address imbalance issue for
the multi-label classification. Note that the nth AU’s occur-
rence ratios in different domains are the same. In this way,
the stimulus-reaction features are well associated according
to different AUs.

S-R common embedding space For the AU-related fea-
tures triplet (v?, v, v"), we build cross-domain contrastive
learning to further summarize and represent the common
features of AU-related stimuli and reactions. To be specific,
we encourage AU-related embeddings from domains R, S,
and 7 to be close to each other, while ensuring that em-
beddings of different AU classes are far apart, regardless of
the domain they belong to. Here, bringing the AU-related
features in S and 7 closer is aimed at activating the corre-
sponding stimulus ROIs through textual prompt, while en-
couraging the proximity of features in S and R serves to
further associate mutually related regions for the stimulus-

reaction pairs. Formally, we consider the mth AU related
feature v;" from the ith domain as an anchor, and it forms
a positive pair with the features vj" in the same AU area
from other domains. For each sample in a mini-batch, the
cross-domain contrastive loss is formulated as:

exp(csim(v™, v}”)/T)

Lope = —log N D
Zlkz ]]-[n#mV.An.mZO]eXp(CSim(rU;n7 U]ZL)/T)
n=1k=1

2
where 7 is a temperature parameter, ¢,j,k € D is the

domain number, m,n € N is the AU number, and
Lin#m, A, .=0] 18 an indicator function evaluating to 1 iff

n # mand A,, = 0. 7HUWT””” de-
21IPll2
notes the cosine similarity between v and p. It is worth
noting that, unlike the original NEC loss [3], we explic-
itly select the negative samples using an AU relation ma-
trix A, € RV*N. Considering the overlapping regions
among some Action Units (AUs), it’s not appropriate to
maximize the distance between all negative pairs without
any constrains. For instance, there exists a shared area (e.g.,
orbicularis oculi) between AU6 cheek raiser and AU7 lid
tightener. We utilize the adjacency matrix A, established
by [40], as a prior to identify and exclude related negative
pairs. A, ,, = 1 indicates that the two AUs are related.

csim(u, p)

4.2. Graph module

In this section, the graph module constructs the repre-
sentational features in a non-Euclidean space. We encode
low/high-order relations of the “four types” in U-SR. This
strategic approach ensures our model versatile enough to
compatibilize both homophily and heterophily.

Overview The cross-domain graph is defined as G =
{V,€}, where V = {v{,v}, -+ , v} } represents the set of
N x D node features across different domains, and £ is the
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edge set representing the relationship between the nodes.
The inputs of the graph module v are the AU-related fea-
tures from non-graph module.

Homophily U-SR relation In this section, we utilize the
feature similarity to construct a dynamic adjacency matrix
that represents the homophily relation between the nodes.
The dynamic graph [61] [12] is designed to capture the con-
tinuously changing of relations between individual’s facial
appearance and stimuli entities. The homophily adjacency

matrix Ap, € R3V>3N ig formulated as:
csim(v!™, v7) + 1
A = Ay = SEESIITS )

where 7,7 € D, m,n € N. The homophily adjacency
matrix is dynamically updated in each mini-batch, and each
edge is assigned with a weight (i.e., the homophily degree)
that indicates the strength of the node connection.
Heterophily U-SR relation defines the static method of ex-
tending low-order pre-defined relations to high-order rela-
tions in U-SR. The heterophily adjacency matrix Ap. €
R3N>3N s formulated as:
mn _ J1 ifA,,=1

Ane = Aij" = {0 if A =0 @
where the basic adjacent matrix A is pre-defined using the
widely adopted probability statistics [40] and FACS defini-
tion. It serves as the initial inter-AU relation for formulat-
ing the extended matrix Ape. A, indicates the relation
between AU m and AU n, with 1 meaning related and 0
denoting unrelated.
GCN encoder The homophily and heterophily relation are
encoded with the two-layer GCN fg with sharing weights.
The Ith layer of the two branch GCN is denoted as:

Z}, =ReLU(A! P Z-twi—t) (5)

Zhe = ReLU(A} ' Z3 ' W) (6)
where W!~! denotes the learnable weight matrix, the inputs
of the first layer Z" are the features v, v, and v} getting
from non-graph module. ReLU(") is the activation function.
Finally, the two output features of GCN are fused to one
with their mean values, and forwarded to a fully connected
layer to obtain the estimated AU occurrence probability 1/9.
The loss function of the graph module is denoted as:

N
Lo =) wnlyaloghh + (1 —yn)log(1—35)] (D
n=1
The overall loss function is expressed as follow:
L= L+ ML+ ALepe (®)
where A\; and Ay are the trading-off hyper-parameters. In
this paper, all experiments are conducted with A\ = Ao = 1.

Table 1. Comparison with baselines and benchmarks in three de-
tection tasks on ReactioNet. Bold numbers indicate best perfor-
mance, and underlined numbers indicate sub-optimal results.

Model Domain | AUD(F1) | FER(Acc) | SC(Acc)
ResNetl8 [19] RorS 54.8 69.6 51.6
ResNet50 [19] RorS 55.3 70.3 52.8
ViT [9] RorS 53.7 68.5 50.5
GCN [25] RorS 55.9 71.7 52.1
Feature fusion [6] RST 54.6 67.8 50.7
UDA [69] RST 56.5 70.6 52.9
DA-GCN [17] RST 57.1 71.2 53.6
SEV-Net [73] RST 57.7 74.1 53.0
without CDC RST 58.9 73.9 54.5
without HO RST 59.1 74.3 53.2
without HE RST 59.3 73.5 56.1
DRR static RST 60.6 76.2 58.7
DRR dynamic RST 61.3 78.5 60.2
DRR dyadic RST 61.1 71.9 60.9

5. Experiment
5.1. Quantitative evaluation

-Evaluation on ReactioNet-

Our method was compared with substantial baselines and
state-of-the-art (SOTA) algorithms on ReactioNet for three
DRR-based tasks, including action unit detection (AUD),
facial expression recognition (FER), and scene classifi-
cation (SC). Scene classification categorizes scenes from
photos based on object layout and ambient context. In
our case, we use stimulus video types as labels for scene
classification. Among them, AUD and FER leverage data
from the reaction domain, while SC relies on data from the
stimulus domain. In this study, we evaluated our approach
across 12 AUs, 7 primary expressions, and 24 selected fine-
grained sub-scene categories. To facilitate a comprehensive
evaluation, we introduced three variants of the DRR-based
model: (1) DRR static, a basic model for assessing a single
task; (2) DRR dynamic, a temporal model using sequen-
tial frames; and (3) DRR dyadic, a bidirectional reason-
ing model based on multi-task learning, which includes all
three tasks. DRR dyadic is achieved by simultaneously in-
ferring AU and FE reactions induced by the stimulus scene,
and inferring the stimulus type that can cause relevant re-
actions from the other domain. To evaluate the effective-
ness and contribution of the key components in our pro-
posed method, we conducted an ablation study in the lower
part of Tab. 1, where we removed the following variants:
(1) cross-domain contrastive learning (CDC); (2) the ho-
mophily relation module (Ho); and (3) the heterophily re-
lation module (He). Refer to the supplementary material
for more implementation details.

In Tab. 1, our model and its variants demonstrate supe-
rior quantitative performance across all three tasks. No-
tably, for baselines such as ResNet18, ViT, and GCN, which
lack dyadic knowledge of stimulus-reaction domain, our

proposed base model, DRR dynamic, outperforms these
models by 6.5%, 7.6%, and 5.4% in AUD and 8.9%, 10%,
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and 6.8% in FER, and achieves 8.6%, 9.7%, and 8.1% im-
provements in SC. While cross-domain methods such as
Feature Fusion, UDA, DA-GCN, and SEV-Net can integrate
Stimuli-Reaction knowledge, our model maintains an out-
standing advantage in performance. These results suggest
that stimulus-reaction based tasks does not rely solely on
learning low-level features or representations, but also ben-
efits from learning high-level semantic relation and effec-
tive cross-domain adaptation. The experiments also reveal
that DRR dynamic and DDR dyadic improve the model’s
performance by enhancing the ability to learn temporal con-
text, and the interdependent relationships among multiple
tasks. Note that the performance outcomes presented for
ReactioNet have been based on partial annotations. It is
essential to acknowledge that the official evaluation results
may undergo fluctuations in tandem with the revisions and
updates to our annotation procedures.

-Evaluation on Benchmark Datasets-

Table 2. Comparison with SOTAs on ten affective datasets.

tuned it for downstream tasks, including AUD and FER.
The pre-trained model is based on the DRR Dyadic trained
on the entire database for AUD and SC.

We compared our model with state-of-the-art methods
on five AUD and five FER datasets, and our DRR variants
achieved the best performance on seven of ten, as shown in
Tab. 2. The results of DRR PR demonstrate that transferring
the high-order stimulus-reaction relation can benefit general
low-level facial behavior detection tasks. The preeminent
performance of DRR MM illustrates the flexibility of our
proposed framework. It demonstrates that addressing is-
sues of feature-wise homogeneity and heterogeneity, as well
as learning high-order action relation can benefit not only
cross-domain problems, but also multi-modal tasks. We
also performed experiments on the official Aff-Wild2 [28]
validation set, and achieved impressive F1 scores for both
AU detection and FER respectively. Note that we leveraged
both temporal and multi-modal (including visual and audio)
information in the downstream task, adapting the setup of
Aff-Wild2 accordingly. Since the labels for the test set are
not available, only training and validation sets were used in

AUD (FI) EmotioNe( 11] | CK+[#2] | DISFA [46] | BP4D [77] | BP4D+ /7]

Ran[50] - 60.7 - - - :

EACL3] . ” 485 559 . our experiments.

VT[] 432 589 58.7 603 59.6 - i ine-srai -

S pE P » 693 B! Evaluation on Fine-grained Scenes

JAA[56] - - 56.0 60.0 -

?g}’;’e St{ } - - 251;3 gzé ol Table 3. Evaluate the performance of DRR based AUD in terms
FAUDT[2?] 473 6L.5 64.2 - of scene types. S1-8 is eight basic scenes: animation, film, game,
Q“QFF_[RF][ ] ) : 631 22;‘7‘ 627 object, show, sports, interview/public speech, and self-made video.
Baseline GCN 427 57.0 56.8 5072 58.5 Scenes/Models S1 S2 S3 S4 S5 S6 S7 S8 AVG
DRR UM 489 644 623 645 62.9 ResNet-18 508 539 472 533 574 522 565 572 547
DRR MM - - - 665 647 ViT 5001 440 505 538 570 506 567 577 537
DRR PR 485 64.7 62.9 64.9 63.1 DRR Static 61.6 504 486 566 588 524 594 594 559
FER (Acc) FER+ [1] | RAFDB [33] | AffectNet [ MMI [10] | BU3D [/5] Change / N N / / / / / /
VGG-FACE[27] - 715 60.0 - -

RAN[66] 88.5 86.9 59.5

vy ! 5.0 a3 PO - We evaluated our model’s performance for AU detection in
FDMgﬂ[ ]J - - 615 827 wi eight basic scenes to assess the difficulty for dyadic relation
FERat[45] - - - 832 77.9 reasoning. Models were trained with 66% data samples and
SMA-Net[35] - - - 82.7 85.4

DMSRL[39] - - 523 721 617 tested on the rest. In Tab. 3, the proposed model outper-
B%%?l ]J ga gad 648 : : formed baselines in most cases, but faced challenges with
Ad-Corre[13] - 86.9 63.3 - - _

A - ot e s S film and spor.t scenes due to the lack of long te.rm temporal
ggg %44 87.5 88.4 657 831 ggi context. Unlike other scenes, where users get instant feed-
DRR PR 88.1 89.6 659 82.9 85.8 back, it often takes a longer time for users to react when

Unlike ReactioNet, existing affective datasets fall short in
establishing frame-wise correspondence between stimulus-
reaction, making it difficult to validate the proposed method
on a comparable database. To address this limitation, we
extend DRR with three settings to assess our method us-
ing only the reaction domain: (1) DRR UM, a basic rela-
tion model for assessing uni-modal (i.e., reaction) tasks; (2)
DRR MM, a high-order relation model for assessing multi-
modal tasks; and (3) DRR PR, a pre-trained model based
on DRR dyadic. For multi-modal learning, we replace the
stimulus data with face images from other modalities (e.g.,
thermal face and 3D depth). For DRR PR, we initialized
only the visual encoder with pre-trained weights and fine-

watching a movie, which makes it difficult to establish di-
rect correlations between stimuli and reactions in the cur-
rent frame. This highlights the need to investigate the role
of long-term dependencies and reaction delay in stimulus-
reaction tasks in the future.

5.2. Qualitative evaluation

In this section, we explore two advantages of our model,
including context-aware ability and perception of high-
order stimulus-reaction relation.

Context-aware detection As depicted by sample 46 in
Fig. 5 (a), our DRR model is capable of inferring a posi-
tive emotion by learning from stimulus events, such as “a
man lying in bed with a cat”, even if subject’s face is invis-
ible due to self-occlusion. Moreover, the model effectively
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Figure 5. Comparisons of predictions for samples in Reac-
tioNet. We sampled 48 test data with active AU 12 (a) and inactive
AU 12 (b), and represented their estimated probabilities on radar
charts. For active AU12 in (a), correct predictions are points on the
periphery with values above 0.5. For inactive AU12 in (b), correct
predictions are points in the center with values below 0.5.

mitigates the mis-classification of negative samples as pos-
itives, as evident in Fig. 5 (b), by inferring reactions when
perceiving serious stimuli such as “soldiers running through
a burning area”. Overall, the DRR based method offers en-
hanced detection capability by interpreting reactions within
the context of external knowledge.

Happy with AU6 and AUT2

/

:

Two adorable kittens playing on the bed

Figure 6. Comparison of the paired attention heatmaps.

High-order relation In Fig. 6, we visualize dyadic atten-
tion maps to compare DRR with a SOTA cross-modality
attention model, SEV-Net. We observe that our method can
concentrate more on semantic regions. For instance, it fo-
cuses on the activity of two kittens playing in the stimulus
domain, and discerns the triggered smiling face with AU6
(i.e., the orbicularis oculi muscle that raises the cheeks) and
AU 12 (i.e., the zygomaticus muscle that pulls the corners
of the mouth upward and outward) on the reaction side. In
contrast, SEV-Net appears to primarily encode low-order
AU relations and tends to fixate on limited components
within the stimulus scene (e.g., only one cat is highlighted).
On the other hand, our model excels in capturing multiple
meaningful regions and effectively linking relevant stimuli

= ReactioNet to BP4D @ BP4D to ReactioNet

= ReactioNet to EmotioNet @ EmotioNet to ReactioNet

100.00%

so0%

s000%,

2500%
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000w
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Figure 7. Cross-database validation with benchmarks.

with their corresponding reactions. This disparity in perfor-
mance can be attributed to the high-order semantic relation-
ships encoded by our model.

5.3. Cross-dataset evaluation

We conducted cross-database validation to assess the
annotation quality of ReactioNet and its generalizabil-
ity across multiple domains. Four benchmark databases,
BP4D, DISFA, EmotioNet, and AffectNet, were selected
for comparison using Vanilla ResNet-18. The results in
Fig. 7 show that ReactioNet-to-others outperformed others-
to-ReactioNet by up to 23% in F1 score and accuracy for
AUD and FER. This is attributed to ReactioNet’s diverse
data in context, identity, individual variations (e.g., gender,
ethnicity, and age), head movements, and lighting condi-
tions. This rich variety mirrors the distribution of facial ex-
pressions in real-world scenarios and underscores the high-
quality annotations.

6. Conclusion and Future work

This work introduces a large-scale human reaction
database (ReactioNet) with the presence of synchronized
stimuli and human reactions for the research community.
Our study delves into the understanding of facial behav-
iors through the systematic exploration of dyadic relation-
ships between stimuli and reactions, and forms a relational
prototype encoded with low-order/high-order connections.
We develop a new framework to learn “what” arouses spe-
cific facial reactions, and understand “how” the stimulus-
reaction are related, and demonstrate the advancement in
improving the performance over the traditional facial be-
havior detection approaches. We plan to perform more in-
tricate object annotations within the stimuli domain, aiming
to broaden the applicability of dyadic relation reasoning in
future research.
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