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Abstract

Post-training quantization (PTQ), which only requires a
tiny dataset for calibration without end-to-end retraining,
is a light and practical model compression technique. Re-
cently, several PTQ schemes for vision transformers (ViTs)
have been presented; unfortunately, they typically suffer
from non-trivial accuracy degradation, especially in low-
bit cases. In this paper, we propose RepQ-ViT, a novel PTQ
framework for ViTs based on quantization scale reparame-
terization, to address the above issues. RepQ-ViT decouples
the quantization and inference processes, where the former
employs complex quantizers and the latter employs scale-
reparameterized simplified quantizers. This ensures both
accurate quantization and efficient inference, which dis-
tinguishes it from existing approaches that sacrifice quan-
tization performance to meet the target hardware. More
specifically, we focus on two components with extreme dis-
tributions: post-LayerNorm activations with severe inter-
channel variation and post-Softmax activations with power-
law features, and initially apply channel-wise quantization
and log

√
2 quantization, respectively. Then, we reparame-

terize the scales to hardware-friendly layer-wise quantiza-
tion and log2 quantization for inference, with only slight
accuracy or computational costs. Extensive experiments
are conducted on multiple vision tasks with different model
variants, proving that RepQ-ViT, without hyperparameters
and expensive reconstruction procedures, can outperform
existing strong baselines and encouragingly improve the ac-
curacy of 4-bit PTQ of ViTs to a usable level. Code is avail-
able at https://github.com/zkkli/RepQ-ViT.

1. Introduction
With the powerful representational capabilities of the

self-attention mechanism, vision transformers (ViTs) have
recently demonstrated surprising potential in a range of vi-

*Corresponding author.

sion applications, including image classification [5, 23], ob-
ject detection [2, 38], semantic segmentation [28], etc., and
are thus being widely investigated as new vision backbones
[8]. However, ViTs rely on heavy and intensive computa-
tions, resulting in intolerable memory footprint, power con-
sumption, and inference latency, which hinders their de-
ployment on resource-constrained edge devices [10, 29].
Consequently, compression techniques for ViTs are essen-
tial in real-world applications, particularly where low-cost
deployment and real-time inference are desired.

Model quantization, which reduces model complexity by
decreasing the representation precision of weights and acti-
vations, is an effective and prevalent compression approach
[7, 12]. A notable research line is based on quantization-
aware training (QAT) [3, 6], which relies on end-to-end re-
training to compensate for the accuracy of the quantized
model. Despite the good performance, such retraining re-
quires gradient backpropagation and parameter updates on
the entire training dataset, which brings undesirably large
time and resource costs [20, 33]. Fortunately, another fam-
ily of methods, referred to as post-training quantization
(PTQ), can overcome the above challenges [32, 16, 26]. It
simply takes a tiny unlabeled dataset to calibrate the quan-
tization parameters without retraining and thus is regarded
as a promising and practical solution.

Although various PTQ methods for convolutional neu-
ral networks (CNNs) have been proposed in previous works
with good performance, they produce disappointing results
on ViTs, with more than 1% accuracy drop even in 8-bit
quantization [35]. To this end, several efforts identify the
key components that limit the quantization performance of
ViTs, such as LayerNorm, Softmax, and GELU, and pro-
pose PTQ schemes accordingly [22, 24]. Nevertheless,
when performing ultra-low-bit (e.g., 4-bit) quantization, the
performance of these schemes is still far from satisfactory
[4]. The core reason for their low performance is that they
invariably follow the traditional quantization paradigm, in
which the initial design of the quantizers must account for
the future inference overhead. This forces previous meth-
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ods to carefully design simple quantizers to accommodate
the characteristics of the target hardware, even at the cost of
remarkably sacrificing accuracy.

Is the traditional quantization-inference dependency
paradigm the only option? To answer this question, we ex-
plore the feasibility of decoupling the quantization and in-
ference processes, and reveal that complex quantizers and
hardware standards are not always antagonistic; instead,
the two can be explicitly bridged via scale reparameteri-
zation. This potentially derives an interesting quantization-
inference decoupling paradigm, in which complex quantiz-
ers are employed in the initial quantization to adequately
preserve the original parameter distributions, and then they
are transformed to simple hardware-friendly quantizers via
scale reparameterization for actual inference, resulting in
both high quantization accuracy and inference efficiency.

With the above insights, we propose a novel PTQ frame-
work for ViTs, called RepQ-ViT, in this paper. In RepQ-
ViT, we focus on two components with extreme distribu-
tions in ViTs that challenge the direct use of simple quan-
tizers. Specifically, for post-LayerNorm activations, we ini-
tially apply channel-wise quantization to maintain their se-
vere inter-channel variation, and then reparameterize the
scales to layer-wise quantization to match the hardware,
which is achieved by adjusting the LayerNorm’s affine fac-
tors and the next layer’s weights; for post-Softmax acti-
vations, since our study shows that their power-law distri-
butions and the properties of attention scores prefer log

√
2

quantizers, we are interested in reparameterizing the scales
to change the base to 2 to enable bit-shifting operations in
inference. The overview of the RepQ-ViT framework is il-
lustrated in Figure 1. Note that the scale reparameteriza-
tion methods presented in this paper enjoy theoretical sup-
port, with only a slight accuracy drop compared to complex
quantizers or a slight computational overhead compared to
simple quantizers, and thus have the potential to ensure in-
terpretability and robustness.

Our main contributions are summarized as follows:

• We propose a novel PTQ framework for ViTs that es-
capes from the traditional paradigm by decoupling the
quantization and inference processes, with the former
employing complex quantizers and the latter employ-
ing scale-reparameterized simplified quantizers, which
has great potential in quantizing components with ex-
treme distributions in ViTs.

• For post-LayerNorm and post-Softmax activations, we
initially apply channel-wise and log

√
2 quantization,

respectively, to maintain the original data distribution,
and then transform them to simple quantizers via in-
terpretable scale reparameterization to match the hard-
ware in inference.

• We evaluate RepQ-ViT on various vision tasks, includ-
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Figure 1. Overview of the RepQ-ViT framework. Building on the
quantization-inference decoupling paradigm, for post-LayerNorm
and post-Softmax activations, complex quantizers are employed in
the quantization process and simple quantizers are employed in the
inference process, with scale reparameterization bridging the two.

ing image classification, object detection, and instance
segmentation, and RepQ-ViT, without hyperparame-
ters and expensive reconstruction procedures, can en-
couragingly outperform existing baselines.

2. Related Works
2.1. Vision Transformers

ViTs, which exploit the self-attention mechanism to ex-
tract global information, have recently achieved excellent
performance on a variety of computer vision tasks, show-
ing great potential as general-purpose vision backbones [8].
ViT [5] attempts to remove all convolutions and apply a
pure transformer-based model to the image classification
task for the first time and achieves competitive results. Af-
terwards, several variants are proposed to further improve
the performance. DeiT [30] introduces an efficient training
strategy to reduce the dependency on large-scale training
data, and Swin [23] applies a hierarchical architecture with
shifted windows to enhance the modeling power of the self-
attention mechanism. In addition, ViTs have also been suc-
cessfully applied to high-level applications, such as object
detection [2, 38] and semantic segmentation [28].

Despite the promising performance, the massive large
matrix multiplications in ViTs incur huge memory foot-
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prints and computational overheads in real-world applica-
tions, which are intolerable in resource-constrained edge
scenarios [29, 10]. Several works, such as MobileViT
[25] and MiniViT [36], attempt to address the above issues
through lightweight architecture design, while they still pro-
vide substantial room for further compression as they keep
floating-point parameters.

2.2. Model Quantization

Model quantization, which represents the original
floating-point parameters with low-bit values, is an effec-
tive approach for compressing neural networks [7, 12]. To
achieve competitive quantization performance, lots of meth-
ods follow the QAT pipeline and perform retraining on the
entire training dataset [3, 6, 31, 37]; however, such re-
training is resource-intensive and time-consuming. Thus,
PTQ, which is free from retraining, is believed to be a
more promising solution for low-cost and rapid deployment.
Several impressive PTQ methods have been proposed with
great success on CNNs, such as DFQ [27], AdaRound [26],
and BRECQ [16], yet they have poor performance on ViTs
with substantially different structures.

As a result, designing PTQ methods for ViTs has re-
cently received widespread interest. Ranking loss [24] is
utilized to maintain the relative order of attention scores
before and after quantization. FQ-ViT [22] introduces
Powers-of-Two Scale and Log-Int-Softmax to quantize
LayerNorm and Softmax operations to obtain fully quan-
tized ViTs. PSAQ-ViT [19, 17] designs a relative value
metric to invert images and pushes PTQ for ViTs to data-
free scenarios. PTQ4ViT [35] presents twin uniform quan-
tization to cope with the unbalanced distributions of post-
Softmax and post-GELU activations and uses a Hessian-
guided metric to search for quantization scales. APQ-ViT
[4] works on preserving the Matthew effect of post-Softmax
activations and proposes a calibration scheme that perceives
the overall quantization disturbance in a block-wise manner.
Unfortunately, the above methods produce non-trivial ac-
curacy drops or even crashes in ultra-low-bit quantization.
The main performance bottleneck stems from their direct
use of simple hardware-oriented quantizers that cannot rep-
resent the extreme distributions well; in contrast, the novel
paradigm proposed in this paper can potentially eliminate
these issues.

3. Methodology
Overview Figure 1 illustrates the overview of the pro-
posed RepQ-ViT framework. In the quantization-inference
decoupling paradigm, the main challenge is to convert the
initial complex quantizers to the simple quantizers for infer-
ence. Thus, we propose scale reparameterization methods
for post-LayerNorm and post-Softmax activations, respec-
tively, as detailed in Sections 3.2 and 3.3. Moreover, their

Algorithm 1 Pipeline of RepQ-ViT framework.
1: Input: Pretrained full-precision model, Calib data
2: Initialize the quantized model with calib data and Eq. 9, where

post-LayerNorm activations X ′ apply channel-wise quantiza-
tion (s, z) and post-Softmax activations A apply log

√
2 quan-

tization (s);
# Scale reparam for post-LayerNorm activations

3: Update the quantizer of X ′ via s̃ = E[s] and z̃ = E[z];
4: Calculate r1 = s/(s̃ · 1) and r2 = z − (z̃ · 1);
5: Update LayerNorm’s affine factors β̃ and γ̃ based on Eq. 15;
6: Update next layer’s weights W̃ qkv and b̃qkv based on Eq. 17;
7: Re-calibrate W̃ qkv with calib data;

# Scale reparam for post-Softmax activations
8: Update quantization procedure based on Eq. 18;
9: Update s̃ in de-quantization procedure based on Eq. 20;

10: Output: Quantized model

flows are described in Algorithm 1.

3.1. Preliminaries

ViTs’ standard structure First, the input image is re-
shaped into N flatted 2D patches, and they are subsequently
projected by the embedding layer to a D-dimensional vec-
tor sequence, which is denoted as X0 ∈ RN×D 1. Then,
X0 is fed into a stack of transformer blocks, where each
block consists of a multi-head self-attention (MSA) module
and a multi-layer perceptron (MLP) module. With Layer-
Norm applied before each module and residuals added after
each module, the transformer block is formulated as:

Yl−1 = MSA(LayerNorm(Xl−1)) +Xl−1 (1)
Xl = MLP(LayerNorm(Yl−1)) + Yl−1 (2)

where l = 1, 2, · · · , L, and L is the number of the trans-
former blocks.

The MSA module learns inter-patch correlations of the
input X ′ ∈ RN×D through the following processes:

[Qi,Ki,Vi] = X ′W qkv + bqkv i = 1, 2, · · · , h (3)

Attni = Softmax
(
Qi ·KT

i√
Dh

)
Vi (4)

MSA(X ′) = [Attn1,Attn2, . . . ,Attnh]W
o + bo (5)

where W qkv ∈ RD×3Dh , bqkv ∈ R3Dh , W o ∈ Rh·Dh×D,
bo ∈ RD, and h is the number of the attention heads and
Dh is the feature size of each head.

The MLP module projects the features into a higher Df -
dimensional space to learn representations. Denoting the
input to the MLP module as Y ′ ∈ RN×D, the calculation
is as follows:

MLP(Y ′) = GELU(Y ′W 1 + b1)W 2 + b2 (6)

1To simplify the formulation, we ignore the batch dimension.
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where W 1 ∈ RD×Df , b1 ∈ RDf , W 2 ∈ RDf×D, and
b2 ∈ RD.

As one can see, the large matrix multiplications con-
tribute the most computational costs; hence, following pre-
vious works [24, 35], we quantize all the weights and inputs
of matrix multiplications, leaving LayerNorm and Softmax
operations as floating-point types. Also, for efficient in-
ference, we employ the hardware-friendly quantizers dis-
cussed below in the inference process.

Hardware-friendly quantizers The uniform quantizer is
one of the most popular choices that is well supported by
the hardware, which is defined as:

Quant : x(Z) = clip
(⌊x

s

⌉
+ z, 0, 2b − 1

)
(7)

DeQuant : x̂ = s
(
x(Z) − z

)
≈ x (8)

where x and x(Z) are the floating-point and quantized val-
ues, respectively, ⌊·⌉ denotes the round function, and b ∈ N
is the quantization bit-width. In the de-quantization proce-
dure2, the de-quantized value x̂ approximately recovers x.
Importantly, s ∈ R+ is the quantization scale and z ∈ Z is
the zero-point, both of which are determined by the lower
and upper bounds of x as follows:

s =
max(x)−min(x)

2b − 1
, z =

⌊
−min(x)

s

⌉
(9)

The log2 quantizer is another common and hardware-
oriented choice. Since it is only applied on post-Softmax
activations in this paper, we just consider the quantization
of positive values as follows:

Quant : x(Z) = clip
(⌊

− log2
x

s

⌉
, 0, 2b − 1

)
(10)

DeQuant : x̂ = s · 2−x(Z)
≈ x (11)

where both the log2 function and the base-2 power function
can be implemented using the fast and efficient bit-shifting
operations [14, 22].

For the application granularity of the above quantizers,
channel-wise quantization for weights and layer-wise quan-
tization for activations can balance accuracy and efficiency
[7, 12], and are well supported by both hardware and soft-
ware [11, 34, 18], and thus have become a consensus in
previous works [35, 4]. In this paper, we follow the above
quantization granularity in the inference process.

3.2. Scale Reparam for LayerNorm Activations

In ViTs, LayerNorm is applied to normalize the input
X ∈ RN×D in the hidden feature dimension, and its calcu-

2In actual inference, the floating-point multiplication with s is replaced
by re-quantization to implement integer arithmetic.
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Figure 2. Boxplot of the 300th to 350th channels of the first mod-
ule’s post-LayerNorm activations in DeiT-S. As is evident, there is
a severe inter-channel variation.

lation process is as follows:

LayerNorm(Xn,:) =
Xn,: − E[Xn,:]√

Var[Xn,:] + ϵ
⊙ γ + β (12)

where n = 1, 2, · · · , N , E[Xn,:] and Var[Xn,:] are the
mean and variance, respectively, and γ ∈ RD and β ∈ RD

are the row vectors3 of linear affine factors. Here, ⊙ denotes
Hadamard product.

Looking into the post-LayerNorm activations, we find
that they have a severe inter-channel variation, which is a
critical limitation to the quantization performance. More
intuitively, the distribution boxplot of the 300th to 350th
channels of the first module’s post-LayerNorm activations
in DeiT-S is illustrated in Figure 2, where the minimum,
mean, and maximum ranges are 3.94, 7.11, and 22.2, re-
spectively. In this case, layer-wise quantization that simply
applys a unified quantization scale to each channel cannot
accommodate such severe inter-channel variation, result-
ing in significant accuracy degradation. As an alternative,
channel-wise quantization can address the above challenge.
However, channel-wise quantization for activations requires
the support of the dedicated hardware and incurs additional
computational overhead.

To address the above issues, we apply the quantization-
inference decoupling paradigm and propose a scale repa-
rameterization method for post-LayerNorm activations that
transforms channel-wise quantization to layer-wise quan-
tization, achieving both the accuracy of the former and
the efficiency of the latter. Specifically, given the post-
LayerNorm activations X ′, we first perform channel-wise
quantization to obtain the quantization scale s ∈ RD and
zero-point z ∈ ZD. Our goal is to reparameterize them to
s̃ = s̃·1 and z̃ = z̃ ·1, where 1 is a D-dimensional row vec-
tor of all ones, and the scalars s̃ ∈ R1 and z̃ ∈ Z1 are ready
for layer-wise quantization. Here, s̃ and z̃ are pre-specified
and we set them to the corresponding mean values in this

3In this paper, we make the convention that all vectors serve as row
vectors by default to facilitate the formulation.

17230



paper, i.e., s̃ = E[s], z̃ = E[z]. Defining the variation fac-
tors r1 = s/s̃ 4 and r2 = z − z̃, the following equations
hold:

z̃ = z − r2 =

−
[
min(X ′

:,d)
]
1≤d≤D

+ s⊙ r2

s

 (13)

s̃ =
s

r1
=

[
max(X ′

:,d)−min(X ′
:,d)

]
1≤d≤D

/r1

2b − 1
(14)

Eq. 13 shows that adding s ⊙ r2 to each channel of X ′

can yield z̃, and Eq. 14 shows that dividing each channel of
X ′ by r1 can yield s̃. These operations can be achieved by
adjusting the LayerNorm’s affine factors as follows:

β̃ =
β + s⊙ r2

r1
, γ̃ =

γ

r1
(15)

The above procedure accomplishes the reparameteriza-
tion of s̃ and z̃, while this results in a distribution shift of ac-
tivations, i.e., X̃ ′

n,: = (X ′
n,:+s⊙r2)/r1. Fortunately, such

distribution shift can be eliminated by the inverse compen-
sation of the next layer’s weights. To be specific, through
equivalent transformations we have that:

X ′
n,:W

qkv
:,j + bqkvj =

X ′
n,: + s⊙ r2

r1

(
r1 ⊙W qkv

:,j

)
+
(
bqkvj − (s⊙ r2)W

qkv
:,j

)
(16)

Where j = 1, 2, · · · , 3Dh. Thus, to align the next layer’s
outputs before and after the reparameterization, the weights
can be adjusted as follows:

W̃ qkv
:,j = r1 ⊙W qkv

:,j

b̃qkvj = bqkvj − (s⊙ r2)W
qkv
:,j

(17)

Since the inter-channel variation factor r1 ∈ RD works
in different dimensions from the quantization scale sqkv ∈
R3Dh and zero-point zqkv ∈ R3Dh of W qkv , the explicit
solutions of the corresponding parameters of W̃ qkv can-
not be directly derived and need to be re-calibrated. It is
worth noting that since the weights are inherently applied
channel-wise quantization, the quantization performance is
not sensitive to compensating r1 on the weights, making the
re-calibration of W̃ qkv incur only a slight accuracy loss.

In this way, by interpretable adjustment of the Layer-
Norm’s affine factors β̃ and γ̃ as well as the next layer’s
weight W̃ qkv and b̃qkv , we confidently reparameterize the

4In this paper, division between vectors is an element-wise operation
like Hadamard product.
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Figure 3. Histogram of the first MSA module’s post-Softmax acti-
vations in DeiT-S. As one can see, it is extremely unbalanced, with
the majority concentrated in small values (in green) and a few scat-
tered in large values (in orange).

channel-wise quantization of X ′ with s and z to the layer-
wise quantization with s̃ and z̃. And the adjustment strategy
also works for the input Y ′ to the MLP module. This easy-
to-implement process allows us to fully benefit from the ef-
ficient inference of layer-wise quantization while featuring
a robust characterization of the inter-channel variation that
has only a slight performance drop compared to channel-
wise quantization.

3.3. Scale Reparam for Softmax Activations

In ViTs, the Softmax operation converts the attention
scores of the MSA module into probabilities, bounding the
values to the (0, 1) interval. However, these probabilities,
termed as post-Softmax activations, have a power-law dis-
tribution far from the Gaussian and Laplace distributions,
which is extremely unbalanced and thus is identified as an-
other key obstacle to quantization. For instance, Figure
3 shows the distribution histogram of the first MSA mod-
ule’s post-Softmax activations in DeiT-S. It can be observed
that the majority of activations are concentrated in relatively
small values, and only a few activations are discretely scat-
tered in large values (close to 1). Statistically, even 99.2%
of the activations are smaller than 0.3. It should be noted
that the remaining 0.8% of activations cannot be viewed as
outliers to be naively clipped; instead, these values reflect
important correlations between patches that guide the MSA
module to give more attention, thus we have to preserve
them well in the quantization process.

To deal with the above power-law distribution, previous
work [22] directly applies the log2 quantizer depending on
hardware efficiency considerations. Despite the better per-
formance than the uniform quantizer, the log2 quantizer still
fails to provide a reliable and robust description of the dis-
tribution in practice. Taking the simple case of s = 1 as an
example, the log2 quantizer takes values at levels {20, 2−1,
2−2, · · · }, and according to Eq. 10, the values in the rela-
tively large interval [2−1.5, 2−0.5], i.e., [0.354, 0.707], are
in principle rounded to 2−1. This overly sparse description
of important attention scores greatly weakens the represen-
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tational power of the MSA module. In contrast, the log
√
2

quantizer, which provides a higher quantization resolution
for large values, can describe the distribution in a more ac-
curate fashion. Nevertheless, it is unfriendly to hardware
and fails to benefit from efficient bit-shifting operations in
inference as the log2 quantizer does.

Inspired by the quantization-inference decoupling
paradigm, we are motivated to explore how to convert the
log

√
2 quantizer to log2 quantizer. With it, we can enjoy

both the high accuracy of the former and the bit-shifting op-
erations of the latter. To this end, the base changing methods
are designed for the quantization and de-quantization pro-
cedures, respectively. First, given the post-Softmax activa-
tions A and the log

√
2 quantizer’s scale s ∈ R1, according

to the base changing formula of the log function we have:

A(Z) = clip
(⌊

− log√2

A

s

⌉
, 0, 2b − 1

)
= clip

(⌊
−2 log2

A

s

⌉
, 0, 2b − 1

) (18)

Thus, for the quantization procedure, the conversion to
the log2 quantizer can be achieved by simply multiplying
by a constant factor. Similarly, in the de-quantization pro-
cedure, the base changing formula of the pow function is
utilized to obtain the base-2 form; however, the new expo-
nential term −A(Z)

2 is not guaranteed to be an integer that is
necessary to perform the bit-shifting operations. Therefore,
we discuss the parity of −A(Z)

2 by case as follows:

Â = s ·
√
2
−A(Z)

= s · 2−A(Z)
2

=

{
s · 2−A(Z)

2 A(Z) = 2k, k ∈ Z
s · 2−A(Z)+1

2 ·
√
2 A(Z) = 2k + 1, k ∈ Z

= s · 2
⌊
−A(Z)

2

⌋
·
[
1(A(Z)) · (

√
2− 1) + 1

]
(19)

where ⌊·⌋ denotes the floor function,
⌊
−A(Z)

2

⌋
is consis-

tently an integer, and 1(·) is a parity indicator function that
is 0 at even numbers and 1 at odd numbers.

The above parity indicator function and its coefficients
can be merged into s to obtain the reparameterized scale s̃
as follows:

s̃ = s ·
[
1(A(Z)) · (

√
2− 1) + 1

]
(20)

Eventually, thanks to the reparameterization of s̃, the de-
quantization procedure is also able to benefit from the effi-
cient bit-shifting operations. Note that compared to the pre-
vious scale s, the reparameterized scale s̃ only introduces
a slight additional computational overhead in the inference
process, due to the fact that the parity indicator function can
be computed with great efficiency, e.g., by simply querying
the least significant bit of A(Z) on FPGAs.

4. Experiments
4.1. Experimental Setup

Models and datasets For the image classification task,
RepQ-ViT is evaluated on ImageNet [13] dataset with dif-
ferent model variants: ViT [5], DeiT [30], and Swin [23].
For the object detection and instance segmentation tasks,
RepQ-ViT is evaluated on COCO [21] dataset using two
typical frameworks: Mask R-CNN [9] and Cascade Mask
R-CNN [1] with Swin [23] as the backbone.

Implementation details All pretrained full-precision
models are obtained from Timm5 library. For a fair com-
parison with the previous works [35, 4], we randomly se-
lect 32 samples from ImageNet dataset for image classifica-
tion and 1 sample from COCO dataset for object detection
and instance segmentation to calibrate the quantization pa-
rameters. For the calibration strategy, we apply the preva-
lent Percentile [15] method, with channel-wise quantiza-
tion for weights and layer-wise quantization for activations
in the inference process. Scale reparameterization is ap-
plied to post-LayerNorm activations in all blocks (including
those in PatchMerging layers of Swin) and to post-Softmax
activations in all MSA modules. Note that our proposed
RepQ-ViT is free of any hyperparameters and thus offers a
high ease of implementation and generality, which is signif-
icantly superior to existing methods.

4.2. Quantization Results on ImageNet Dataset

We start by comparing the quantization results of the
proposed RepQ-ViT and existing methods on ImageNet
dataset for image classification, as reported in Table 1. It is
worth noting that hyperparameters and reconstruction pro-
cedures are also explicitly presented in the Table as condi-
tional indicators. Thanks to the non-dependence on these
two indicators, RepQ-ViT is believed to be more practi-
cal and general in real-world applications. We focus on
the performance of low-bit quantization, including W4/A4
and W6/A6 quantization, to highlight the advantages of
RepQ-ViT. In W4/A4 quantization, previous works all suf-
fer from non-trivial performance degradation. For instance,
FQ-ViT becomes infeasible with only 0.1% accuracy, while
PTQ4ViT and APQ-ViT improve accuracy with the help
of reconstruction but remain far from practical usability.
Fortunately, RepQ-ViT can maintain the data distribution
through the design of complex quantizers to achieve ro-
bust and substantial improvement of the quantization per-
formance, with encouraging 27.07% and 25.48% improve-
ment over APQ-ViT in ViT-B and DeiT-S quantization, re-
spectively. When quantizing DeiT-B, Swin-S, and Swin-B,
RepQ-ViT consistently obtains an interesting decrease in

5https://github.com/rwightman/pytorch-image-models
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Method No HP No REC Prec. (W/A) ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-S Swin-B

Full-Precision - - 32/32 81.39 84.54 72.21 79.85 81.80 83.23 85.27

FQ-ViT [22] × ✓ 4/4 0.10 0.10 0.10 0.10 0.10 0.10 0.10
PTQ4ViT [35] × × 4/4 42.57 30.69 36.96 34.08 64.39 76.09 74.02
APQ-ViT [4] × × 4/4 47.95 41.41 47.94 43.55 67.48 77.15 76.48

RepQ-ViT (ours) ✓ ✓ 4/4 65.05 68.48 57.43 69.03 75.61 79.45 78.32

FQ-ViT [22] × ✓ 6/6 4.26 0.10 58.66 45.51 64.63 66.50 52.09
PSAQ-ViT [19] × ✓ 6/6 37.19 41.52 57.58 63.61 67.95 72.86 76.44
Ranking [24] × × 6/6 - 75.26 - 74.58 77.02 - -

PTQ4ViT [35] × × 6/6 78.63 81.65 69.68 76.28 80.25 82.38 84.01
APQ-ViT [4] × × 6/6 79.10 82.21 70.49 77.76 80.42 82.67 84.18

RepQ-ViT (ours) ✓ ✓ 6/6 80.43 83.62 70.76 78.90 81.27 82.79 84.57

Table 1. Quantization results of image classification on ImageNet dataset, where each data presents the Top-1 accuracy (%) obtained
by quantizing each model. Here, we abbreviate “No Hyperparameters” as “No HP” and “No Reconstruction” as “No REC”, and “Prec.
(W/A)” indicates that the quantization bit-precision of the weights and activations are W and A bits, respectively.

Method No HP No REC Prec. (W/A)
Mask R-CNN Cascade Mask R-CNN

w. Swin-T w. Swin-S w. Swin-T w. Swin-S
APbox APmask APbox APmask APbox APmask APbox APmask

Full-Precision - - 32/32 46.0 41.6 48.5 43.3 50.4 43.7 51.9 45.0

PTQ4ViT [35] × × 4/4 6.9 7.0 26.7 26.6 14.7 13.5 0.5 0.5
APQ-ViT [4] × × 4/4 23.7 22.6 44.7 40.1 27.2 24.4 47.7 41.1

RepQ-ViT (ours) ✓ ✓ 4/4 36.1 36.0 44.2 40.2 47.0 41.4 49.3 43.1

PTQ4ViT [35] × × 6/6 5.8 6.8 6.5 6.6 14.7 13.6 12.5 10.8
APQ-ViT [4] × × 6/6 45.4 41.2 47.9 42.9 48.6 42.5 50.5 43.9

RepQ-ViT (ours) ✓ ✓ 6/6 45.1 41.2 47.8 43.0 50.0 43.5 51.4 44.6

Table 2. Quantization results of object detection and instance segmentation on COCO dataset. Here, “APbox” is the box average precision
for object detection, and “APmask” is the mask average precision for instance segmentation.

accuracy of less than 7%. To the best of our knowledge,
we are the first to break the limit of 4-bit PTQ of ViTs
to the usable level. In addition, in W6/A6 quantization,
RepQ-ViT can achieve an accuracy comparable to that of
the full-precision baseline with a model size compressed by
5.3 times. In DeiT-B and Swin-S quantization, RepQ-ViT
achieves 81.27% and 82.79% accuracy, respectively, with
only 0.53% and 0.44% accuracy loss.

4.3. Quantization Results on COCO Dataset

The object detection and instance segmentation experi-
ments are conducted on COCO dataset, and the quantiza-
tion results are shown in Table 2. As before, we also explic-
itly list whether hyperparameters and reconstruction proce-
dures are required. Due to the more complex model archi-
tectures in high-level tasks, PTQ4ViT’s twin-scale search
loses its viability, leading to disappointing quantization per-
formance. APQ-ViT is not robust to different backbones;
it yields good results with Swin-S as the backbone while it
causes severe performance degradation when Swin-T serves
as the backbone, for instance, in W4/A4 quantization of

Cascade Mask R-CNN framework with Swin-T, box AP
and mask AP are degraded by 23.2 and 19.3, respectively.
This greatly limits the practical deployment and application
of the quantized models. Compared with previous meth-
ods, our proposed RepQ-ViT achieves more advanced per-
formance with high robustness. When performing W4/A4
quantization in the case of Swin-T backbone, for Mask R-
CNN framework, RepQ-ViT improves over APQ-ViT by
12.4 box AP and 13.4 mask AP; for Cascade Mask R-CNN
framework, RepQ-ViT yields a boost of 19.8 box AP and
17.0 mask AP over APQ-ViT. Moreover, in W6/A6 quanti-
zation, RepQ-ViT produces only a slight accuracy loss over
the full-precision baseline. When quantizing Cascade Mask
R-CNN framework with Swin-T, RepQ-ViT reached 50.0
box AP and 43.5 mask AP, which is just 0.4 box AP and
0.2 mask AP lower than the full-precision baseline. Simi-
lar results can also be obtained when Swin-S serves as the
backbone, achieving 51.4 box AP and 44.6 mask AP.
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Model Method Hardware Top-1 (%)

DeiT-S

Full-Precision - 79.85

Layer-Wise Quant. ✓ 33.17
Channel-Wise Quant. × 70.28
Scale Reparam (ours) ✓ 69.03

Swin-S

Full-Precision - 83.23

Layer-Wise Quant. ✓ 57.63
Channel-Wise Quant. × 80.52
Scale Reparam (ours) ✓ 79.45

Table 3. Ablation studies of different quantizers (W4/A4) for post-
LayerNorm activations. Here, “Hardware” indicates whether the
obtained quantized model is hardware-friendly and can be effi-
ciently computed in inference.

Model Method Hardware Top-1 (%)

DeiT-S

Full-Precision - 79.85

Log2 Quant. ✓ 67.71
Log

√
2 Quant. × 69.03

Scale Reparam (ours) ✓ 69.03

Swin-S

Full-Precision - 83.23

Log2 Quant. ✓ 77.87
Log

√
2 Quant. × 79.45

Scale Reparam (ours) ✓ 79.45
Table 4. Ablation studies of different quantizers (W4/A4) for post-
Softmax activations.

4.4. Ablation Studies

To validate the effectiveness of the main components
of the proposed RepQ-ViT framework, we perform two
ablation studies of the scale reparameterization methods
for post-LayerNorm and post-Softmax activations, respec-
tively, as shown in Tables 3 and 4.

Table 3 reports the ablation study results of different
quantizers (W4/A4) for post-LayerNorm activations. Tak-
ing DeiT-S as an example, direct layer-wise quantization
cannot represent the data distribution well and achieves only
33.17% accuracy. Applying channel-wise quantization can
solve the above issue with 70.28% accuracy; however, it
fails to satisfy the hardware characteristics to enable effi-
cient calculations in the inference process. Therefore, the
scale reparameterization method, which converts channel-
wise quantization to layer-wise quantization, can allow for
both high accuracy and efficient inference. Note that due
to the recalibration of W̃ qkv , the scale reparameterization
method produces a slight performance drop (1.25%) com-
pared to channel-wise quantization.

The results of different quantizers (W4/A4) for post-
Softmax activations are reported in Table 4. Log

√
2 quan-

tizers can better fit the extreme distributions of attention
scores, and in particular, has better a representation of

Model Method Top-1 (%) Calib Data GPU Min.

DeiT-S

Full-Precision 79.85 - -

FQ-ViT [22] 0.10 1000 0.5
PTQ4ViT [35] 34.08 32 3.2

RepQ-ViT (ours) 69.03 32 1.3

Swin-S

Full-Precision 83.23 - -

FQ-ViT [22] 0.10 1000 1.1
PTQ4ViT [35] 76.09 32 7.7

RepQ-ViT (ours) 79.45 32 2.9
Table 5. Comparison of the data quantity and time consumption
(in minutes) during the quantization (W4/A4) calibration.

scattered large values, thus providing a 1.58% improve-
ment in accuracy over simple log2 quantizers in the case
of Swin-S quantization. To solve the inefficiency problem
of log

√
2 quantizers, scale reparameterization is applied to

accomplish the conversion to log2 quantizers. Here, the
scale reparameterization method for post-Softmax activa-
tions employs exactly equivalent transformations and thus
yields the same accuracy as log

√
2 quantizers, at the cost of

only a slight additional computational overhead in inference
compared to log2 quantizers.

4.5. Efficiency Analysis

We also compare the efficiency of different methods, in-
cluding the data quantity and time consumption required
for quantization calibration, as shown in Table 5. Here,
time consumption is measured on a single 3090 GPU. Since
there is no reconstruction in FQ-ViT, the quantized models
can be obtained rapidly, however, the performance drops
severely even with 1000 samples for calibration. Our RepQ-
ViT requires only 32 samples as PTQ4ViT, while it is free
of reconstruction and thus can yield quantized models with
higher accuracy more quickly compared to PTQ4ViT.

5. Conclusions
In this paper, we propose RepQ-ViT, a novel post-

training quantization framework for vision transformers.
RepQ-ViT applies the quantization-inference decoupling
paradigm, where complex quantizers are employed in the
quantization process and simple hardware-friendly quantiz-
ers are employed in the inference process, and both are ex-
plicitly bridged by scale reparameterization. More specif-
ically, RepQ-ViT resolves the extreme distributions of two
components: for post-LayerNorm activations with severe
inter-channel variation, channel-wise quantization is ini-
tially applied and then is reparameterized to layer-wise
quantization; for post-Softmax activations with power-law
features, log

√
2 quantization is initially applied and then

is reparameterized to log2 quantization. Exhaustive exper-
iments are performed to fully validate the superiority of

17234



RepQ-ViT, showing that it significantly outperforms exist-
ing methods in low-bit quantization.

In the future, one can extend the reparameterization of
channel-wise to layer-wise quantization to more activations.
One can also try to combine log

√
2 and log2 quantization to

better describe the power-law distribution.
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