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Abstract

We propose UHDNeRF, a new framework for novel view
synthesis on the challenging ultra-high-resolution (e.g., 4K)
real-world scenes. Previous NeRF methods are not specifi-
cally designed for rendering on extremely high resolutions,
leading to burry results with notable detail-losing problems
even though trained on 4K images. This is mainly due to the
mismatch between the high-resolution inputs and the low-
dimensional volumetric representation. To address this is-
sue, we introduce an adaptive implicit-explicit scene repre-
sentation with which an explicit sparse point cloud is used
to boost the performance of an implicit volume on model-
ing subtle details. Specifically, we reconstruct the complex
real-world scene with a frequency separation strategy that
the implicit volume learns to represent the low-frequency
properties of the whole scene, and the sparse point cloud is
used for reproducing high-frequency details. To better ex-
plore the information embedded in the point cloud, we ex-
tract a global structure feature and a local point-wise fea-
ture from the point cloud for each sample located in the
high-frequency regions. Furthermore, a patch-based sam-
pling strategy is introduced to reduce the computational
cost. The high-fidelity rendering results demonstrate the su-
periority of our method for retaining high-frequency details
at 4K ultra-high-resolution scenarios against state-of-the-
art NeRF-based solutions.

1. Introduction

Novel view synthesis, which aims to generate images at

new views given a sparse set of observed images, is a long-

standing problem in computer graphics and vision. Very

recently, Neural Radiance Fields (NeRF) [28] have demon-

strated great success in this task for learning to represent

3D scenes with implicit volumetric representation. Several

following works [29, 10, 3, 18, 23, 54, 33] then improve

this method in different aspects. However, previous NeRF-

based methods are typically designed for training images up
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Figure 1. Visualization of our result with resolution 4032 × 3024
(a). We zoom in on the fine-grained details to compare our method

with a modern NeRF-based method, i.e., Instant NGP [29] (b)-(d).

to 1K resolution. With the development of modern display

devices, ultra-high-resolution, e.g., 4K high-definition for-

mat, has become a standard for recording/displaying images

and videos. Unfortunately, even though trained on 4K im-

ages, these methods cannot reproduce fine-grained details,

leading to burry results with severe detail-losing problems,

as shown in Fig. 1 (c).

The main difficulty preventing a NeRF model to gener-

ate ultra-high-resolution images is the mismatch between

the high-resolution inputs and the low-dimensional volu-

metric representation (determined by the density of sam-

ples). NeRF needs to increase the sampled locations over

the whole scene to produce higher-resolution renderings.

For instance, to generate a high-quality result of resolution

4032 × 3024, more than 12 million pixels need to be ren-

dered. Besides, thousands of MLP evaluations should also

be conducted for each camera ray, which requires several

hours to render a single image. Obviously, achieving 4K

renderings by simply increasing the number of samples is

impractical, considering the intolerable rendering time.

To reduce the long training and inference time, some fast

rendering methods are proposed [10, 15, 52]. These meth-

ods commonly adopt a hybrid scene representation by uti-

lizing explicit data structures, such as voxel grids [8, 24] or

point clouds [50], to cache the scene properties and synthe-

size novel views by the fast query. However, reconstructing

dense voxels/points to store an extremely high-resolution

3D scene requires a huge memory cost, which is also unac-

ceptable. In short, it is not trivial to convert a NeRF model

into its ultra-high-definition version by either dense sam-
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Figure 2. Overview of UHDNeRF. We sample locations over the implicit-explicit scene representation with a patch-based ray sampling

strategy (a). A sample is adaptively fed into different branches according to the surrounding scene composition (whether there exist point

clouds or not) (b). We leverage volume rendering techniques to integrate these samples into patches (c).

pling or utilizing a dense data cache.

In this paper, we introduce UHDNeRF, a novel NeRF-

based framework that supports ultra-high-resolution view

synthesis, realizing high-frequency reproduction as shown

in Fig. 1 (a) and (b). We achieve this with an adaptive
implicit-explicit scene representation by combining the im-

plicit neural radiance fields with a sparse point cloud ini-

tialized from COLMAP [36]. Unlike previous methods

utilizing explicit data structure to cover the whole scene,

we adjust the point cloud by placing more points at high-

frequency regions while less at low-frequency areas. The

use of the sparse point cloud significantly reduces the mem-

ory overhead. Furthermore, as the generation of the sparse

point cloud is independent of the NeRF volume, the implicit

and explicit representations in our framework are comple-

mentary. On the one hand, the implicit volume learns to

represent the low-frequency properties of the whole scene.

On the other hand, the sparse point cloud is treated as a

series of anchor points indicating fine-grained details. With

the high-frequency information provided by the point cloud,

we boost the representational ability of a NeRF model in

preserving subtle details during ultra-high-resolution ren-

dering.

As shown in Fig. 2, our UHDNeRF consists of two

branches based on a frequency separation strategy. We

adaptively feed a sample into one of the branches according

to the composition of the surrounding scenes. That is, given

any sampled location, if it lies in regions without a point

cloud (the green sample), the low-frequency branch is se-

lected, and our UHDNeRF goes back to the purely implicit

volumetric representation. Otherwise, the sample is fed into

the high-frequency branch (the red sample), where we addi-

tionally consider the surrounding point cloud to regress the

scene properties at that location. To better explore the high-

frequency information embedded in the sparse point cloud,

we generate a global structure feature and a local point-

wise feature for each sample in this branch. Moreover, to

reduce the computational cost, we introduce a patch-based

ray sampling strategy which notably reduces the number of

investigated points in a batch. Combining the implicit vol-

ume and the sparse point cloud lead to ultra-high-definition

renderings with rich details.

To summarize, our main contributions are:

• an ultra-high-definition NeRF-based framework to

achieve high-fidelity 4K rendering results with an

adaptive implicit-explicit scene representation,

• a frequency separation strategy by using a two-branch

configuration to significantly reduce memory and com-

putational costs during extremely high-resolution ren-

dering, and

• a global structure feature, a local point-wise feature,

and a patch-based ray sampling strategy to efficiently

explore the high-frequency information embedded in

the sparse point cloud.

2. Related work
Novel view synthesis has been extensively studied in the

past decades. One popular class of methods uses geometry-

based solutions by reconstructing a 3D proxy, which in-

cludes meshes [42, 14, 38], point clouds [1, 35, 17, 26, 43],

volumes [13, 16, 32], multiplane images [22, 27, 40, 55,

44], and depth maps [7, 34, 49], and then rendering im-

ages from target views. However, the accuracy of the re-

constructed geometry limits these methods. Another cate-

gory leverages image-based techniques [6, 19, 11, 42, 9] for

view synthesis but often requires a large amount of training

data. With the emergence of neural radiance fields [28], the

implicit neural representation has demonstrated remarkable
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success in representing complex 3D scenes, even on sparse

training images.

There is a rich literature on NeRF extensions to improve

NeRF’s performance in different aspects, including accel-

erating rendering speed [10, 12, 15, 18, 33, 52], reducing

training costs [4, 41], achieving anti-aliasing [2, 3], recon-

struction without camera poses [23, 47], etc. NeRF has also

been extended to enable various applications such as re-

lighting [54, 39, 20], 3D reconstruction [5, 48, 53], editing

[51, 25], dynamic scenes [21, 31], and generation [37, 30].

Among them, some works also explore the use of the hybrid

scene representation. Liu et al. [24] proposed the neural

sparse voxel fields that learn to encode local properties of

the scene into a set of voxels. Plenoxels [8] used a sparse

voxel grid to store opacity and spherical harmonic coeffi-

cients of the scene. Muller et al. [29] constructed a multires-

olution hash table of trainable feature vectors to encode the

scene properties. Nevertheless, these methods are designed

for fast rendering, and the explicit component is just used to

store the features provided by the NeRF model. Besides, all

the above methods are developed on low-resolution train-

ing images, which is far not enough to meet the demand for

ultra-high-resolution rendering.

Relevant to our work, Point-NeRF [50] also utilizes point

clouds to model a neural radiance field. However, this ap-

proach relies heavily on the dense point cloud that it has to

add new points to cover all the missing areas in the original

point cloud. During regression, Point-NeRF treats all the

samples equally by aggregating a fixed number of neigh-

boring points for each sampled location to obtain the fi-

nal estimates. This method is impractical for ultra-high-

resolution scenarios since it requires intolerable memory

and computational costs. In contrast, our method only re-

quires a sparse point cloud to achieve high-fidelity results

by using the adaptive implicit-explicit scene representation

with a frequency separation strategy, which is much more

efficient in training and inference.

Image super-resolution, i.e., recovering a high-resolution

image from a single low-resolution, has been widely stud-

ied recently [58, 59, 60]. Inspired by the 2D single image

super-resolution approaches, some methods [45, 46] adopt

the super-resolution strategy by combining the NeRF repre-

sentation with the convolutional neural networks (CNNs).

That is, a NeRF model is used to reconstruct the low-

resolution result, and a CNN model then resolves the re-

sult to a higher resolution. However, these methods still

struggle with reproducing fine-grained details at ultra-high

resolutions when the details are already lost in the relatively

low-resolution inputs. Instead, the proposed UHDNeRF is

directly trained on ultra-high-resolution images that there is

no information decay at the input side.

3. UHDNeRF
In this section, we detail our framework to reconstruct

the ultra-high-definition neural radiance fields. We start

with some preliminaries of NeRF and discuss its limitation

in representing extremely high-resolution scenes (Sec. 3.1).

Then, we introduce the novel adaptive implicit-explicit

scene representation for modeling scenes at ultra-high reso-

lutions (Sec. 3.2). To better explore information embedded

in the sparse point cloud, we extract the global structure

and local point-wise features from the queried 3D points for

each sampled location (Sec. 3.3). The network architectures

and training details are introduced in Sec. 3.4.

3.1. Background

Review of NeRF. NeRF represents a 3D scene as a con-

tinuous volumetric function that maps a 5D coordinate,

i.e., the 3D location x = (x, y, z) and 2D viewing di-

rection d = (θ, φ), to the properties of a scene, i.e., the

volume density σ(x) and view-dependent emitted radiance

c(x,d) = (r, g, b). NeRF is typically parameterized by

multilayer perceptrons (MLPs) f : (x,d) �→ (c, σ). To

render the color C(r) of an image pixel, NeRF samples a

set of locations along the camera ray r = r + td from the

camera center o through the pixel. The predicted densities

and colors are then used to approximate the volume ren-

dering integral with the numerical quadrature discussed in

Max’s work [61]:

C =

N∑
i=1

Ti(1− exp(−σiδi))ci, (1)

where Ti = exp(−∑i−1
j=1 σjδj) denotes the accumulated

transmittance along the ray before reaching i, and δi =
ti+1− ti represents the distance between two adjacent sam-

ples. The NeRF model is optimized by minimizing the

mean squared errors (MSE) between predicted pixel colors

and ground truths.

Limitation on high-resolution inputs. Previous NeRF

methods struggle with handling ultra-high-resolution sce-

narios mainly due to the mismatch of the high-resolution

input images and the low-dimensional volumetric represen-

tation. The volume resolution is determined by the density

of samples. For convenience, we assume that the volume’s

resolution (i.e., the voxel size) is roughly equal to the mini-

mum distance δmin between two samples, and the resolution

to support 4K synthesis is δexp. During inference, samples

located in the same voxel would regress to the same scene

properties, which are then used to integrate the pixel values

in 2D images. Consequently, when δmin > δexp, a sample

would regress to the low-frequency properties even though

it locates in a high-frequency region (see the sample with
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Figure 3. Comparison among different scene representations. We

visualize a 3D voxel grid as a 2D square for simplification. We

use the triangle to represent a sampled location and the circle to

denote a 3D point.

blue edges in Fig. 3 (a)). This is because the low-frequency

component dominates this voxel.

A simple strategy is to increase the sampling number to

make δmin ≤ δexp so that the high-frequency component

occupies a separate voxel as shown in Fig. 3 (b). However,

this is relatively expensive when dealing with extremely

high-resolution scenarios. For instance, NeRF [28] typi-

cally renders a 1008 × 756 image for around 1 minute.

Hence, for rendering a 4032 × 3024 image (16× in 2D

space) to achieve the comparable visual quality as its 1K

format, NeRF empirically needs to sample at least 64× lo-

cations (in 3D space) over the scene, which may take more

than one hour to reconstruct a single image. This ineffi-

ciency impedes the practical applications of NeRF.

3.2. Adaptive implicit-explicit scene representation

One option to reduce the long rendering time mentioned

above is to utilize explicit data structures, such as the dense

point cloud to enable fast rendering as shown in Fig. 3

(c). Though high-frequency information can be preserved

in this way, the huge memory overhead makes this approach

struggle with ultra-high-resolution scenarios. Out of this

consideration, we model a complex real-world scene with

the adaptive implicit-explicit scene representation, i.e., the

combination of an implicit volume and a sparse point cloud.

As illustrated in Fig. 3 (d), the sparse point cloud only

covers the high-frequency regions instead of the whole

scene, greatly reducing the memory cost. To achieve this,

we initialize the point cloud with COLMAP [36] taking

multiview images as input. Besides, we calculate the edge

maps of the observed images. Then, we project the point

cloud to each view and only retain the points around the

edges. It is practical to realize ultra-high-resolution render-

ing using the sparse point cloud. On the one hand, the subtle

details can be conveniently preserved in a point cloud for-

mat. Compared to the volumetric representation, which is

limited by the voxel size, a 3D point can locate at an ar-

bitrary position. On the other hand, though struggling with

reproducing fine-grained details, the implicit volume can re-

construct low-frequency properties without the information

provided by the point cloud.

Under the implicit-explicit scene representation, a sam-

pled location adaptively regresses to the scene properties

according to the surrounding scene composition. As shown

in Fig. 2 (b), given any sampled location x, we query its

neighboring points Px within a certain radius R. Note that

Px might be empty since the point cloud only covers the

high-frequency regions. In this case, we believe that x lo-

cates in low-frequency areas, and we predict the scene prop-

erties of x with only the implicit volumetric representation.

Otherwise, the surrounding region of x may probably con-

tain high-frequency details that both x and the surrounding

point cloud are used for regression.

In particular, the regression module Φ of our framework

contains two branches ΦH and ΦL. A sampled location x
is adaptively fed into one of the branches depending on Px,

i.e., whether Px is empty or not. We first use an MLP Φσ to

estimate the volume density σ at x by

(σ,Fσ) = Φσ(x), (2)

where Fσ is a 64-dimensional feature vector encoding the

geometry information.

The two branches are then used to regress the view-

dependent radiance c defined as

c =

{
ΦH(Fσ,d,Fx) if Px �= ∅
ΦL(Fσ,d) otherwise,

(3)

where d is the viewing direction and Fx is the point cloud

feature of x. Finally, the estimated densities σ and radi-

ances c are used to render the color C of a pixel with vol-

ume rendering [28]. With the adaptive regression process,

our UHDNeRF avoids the time consuming dense sampling

and the expensive dense point cloud reconstruction.

3.3. Point feature generation

To fully explore the information embedded in the sparse

point cloud, we divide the point cloud feature Fx into

a global structure feature Fg,x that represents 3D-aware

structure information, and a local point-wise feature Fl,x

that encodes the neighboring point features to the sampled

location.

Global structure feature. We extract the global feature

from all the points P investigated in a training epoch. As

P may contain several groups of points representing differ-

ent scene structures, it is unreasonable to generate a unified

global feature from P . Therefore, we cluster P according

to the distance among all the points. For any sampled lo-

cation x, x belongs to one of the clusters determined by its

nearest neighboring point. We denote all the points in this

cluster as P ′. As shown in Fig. 4, we first conduct neu-

ral processing for each 3D point in P ′ with a PointNet-like
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Figure 4. Pipeline of generating the global structure feature and

the local point-wise feature.

neural network [56], generating a group of neural point fea-

tures Fp. A global maxpooling operation is then performed

on Fp to obtain the global structure feature Fg . Finally, we

use a global MLP that takes Fg and x as input to predict a

specific global feature Fg,x at this location.

Local point-wise feature. We extract the local point-wise

feature Fl,x of x from its k neighboring points Px within a

radius R. One straightforward way to generate Fl,x is ag-

gregating the features regressed from Px using weighted av-

eraging methods such as standard inverse distance weight-

ing. However, by doing so, the high-frequency features

may be weakened or erased. Considering this, we learn

to directly predict the re-weighted point feature F i∈[1,k]
l,x of

each neighboring point pi with a conditional feature trans-

fer (CFT) module defined as

F i
l,x = CFT(F i

p,p
i,x|γ,β) (4)

= γ(x,x− pi)⊗F i
p ⊕ β(x,x− pi),

where F i
p denotes the point feature of pi, γ is the scaling

operation vector and β is the shifting operation vector, ⊗
and ⊕ represent the element-wise multiplication and addi-

tion operation, respectively. Specifically, we leverage x and

the relative position x − pi to estimate the weighted oper-

ators, i.e., γ and β. These operators are then applied to the

original point feature F i
p, generating the re-weighted fea-

ture F i
l,x. The usage of x−pi, instead of pi directly, makes

the CFT module invariant to point translation for better gen-

eralization. After that, we utilize a maxpooling operation to

obtain the local point-wise feature Fl,x. Fig. 4 illustrates

the whole pipeline.

To reduce the computational cost, we introduce a patch-

based ray sampling strategy to replace the pixel-wise ran-

dom sampling in NeRFs. By doing so the neighbours of dif-

ferent sampled locations are highly overlapping and hence

the number of queried 3D points is notably reduced. We

detail this in the ablation study (Sec. 4.3).

3.4. Implementation

Network architectures. Our framework is comprised of

a series of MLPs. Each hidden layer is followed by a

ReLU activation. The point processing network contains

4 fully connected layers with 256 channels to encode the

6-channel points (3D location and the 3-channel color) into

the 64-dimensional point features. The global MLP has 2

fully connected layers with 64 channels. The CFT mod-

ule contains three sub-MLPs, each containing 2 fully con-

nected layers with 64 channels. The first MLP outputs a

64-dimensional feature. This feature is then fed into the

subsequent MLPs to predict the 64-dimensional γ and β,

respectively. Both the global structure feature and the local

point-wise feature are 64-dimensional. The regression mod-

ule Φ also contains three sub-MLPs with the same structure

as the CFT module. We use positional encoding [28] to ex-

pand the 3D locations from 3 to 63 and the viewing direc-

tions from 3 to 27. The MLPs ΦH and ΦL use the sigmoid

function as the output activation. Except for ΦH and ΦL,

other networks have no output activation.

Training details. To enable stable training and conver-

gence, we first optimize the implicit volumetric representa-

tion separately with random sampling to initialize the scene

geometry and reconstruct the low-frequency radiance of

the scene. We utilize the bitfield [29] to skip ray march-

ing steps in empty space. The pre-trained neural radiance

field is also used to prune outliers in the point cloud by

masking out the points with low estimated densities. After

that, the neural radiance field is combined with the sparse

point cloud for joint optimization. We train the adaptive

implicit-explicit scene representation in a patch-based man-

ner. We split the observed images into 100 × 100 patches

and randomly selected a patch for training in each epoch.

The whole framework is trained with the reconstruction loss

Lrec = |C − C∗| between the predicted color C and the

ground truths C∗.

We implement UHDNeRF with PyTorch and train it on

a single NVIDIA V100 GPU. We use the Adam optimizer,

and the learning rate is 5e-4. We first train the implicit

NeRF model for 50k epochs, which takes approximately 1

hour. After training, we optimized the adaptive implicit-

explicit scene representation for 300k epochs, which takes

5 ∼ 6 hours. We query 4 nearest neighboring points for

each sampled location within the radius R = 1e−4L where

L is the maximum distance of the given scene.

4. Results
In the following, we evaluate our UHDNeRF on complex

real-world scenes with 4K ultra-high-resolution captured

images. We select the LLFF dataset [62] which consists

of 8 forward-facing scenes with training views between 20
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(a) Input (c) MipNeRF-360 (d) Instant NGP (e) NeRF-SR (f) Ours(b) GT
Figure 5. Comparison with state-of-the-art methods on the facing-forward fortress, orchids, and fern datasets (the first three rows) and the

realistic 360◦ vasedeck dataset (the last row).

and 62. Furthermore, we conduct experiments on the more

challenging realistic 360◦ vasedeck dataset [28], which cov-

ers the whole upper hemisphere with only 116 images. All

the image resolution is 4032× 3024.

4.1. Comparison with previous methods

We compare our method with three classes of methods.

The first category represents scenes with purely implicit

neural representation, in which we choose MipNeRF-360

[3] as a representative. For a fair comparison, we experi-

ment on it with two settings: the original configuration of

the method and an enhanced configuration by doubling the

sample number of each ray. The second category adopts a

hybrid scene representation. We compare with Instant NGP

[29], which utilizes a voxel grid to indicate occupied spaces

and a hash table to store scene properties. Similarly, we

conduct experiments on it with the original and enhanced

configurations by doubling both the voxel grid dimension

and the hash table size. The third class combines NeRF with

super-resolution techniques by upscaling the NeRF outputs

with CNNs, in which NeRF-SR [45] is selected. We train

all the methods on 4K resolution.

Fig. 5 compares all the methods (the enhanced versions

are applied for visualization if used). While NeRF-based

methods naturally support novel view synthesis at arbitrary

scales, they struggle with ultra-high-resolution reconstruc-

tions even though trained on 4K images due to insuffi-

cient representational ability. As seen, although we enhance
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Table 1. Quantitative comparison on LLFF and vasedeck datasets. We use MipNeRF-360+ and Instant NGP+ to denote the corresponding

enhanced versions. The best metrics are highlighted in bold.

Dataset Method
Metric

Inference times (s) Cache memory (GB)
PSNR↑ SSIM↑ LPIPS↓

LLFF

MipNeRF-360 [3] 24.73 0.777 0.409 119.75 31.49

MipNeRF-360+ 24.79 0.784 0.393 245.98 31.49

Instant NGP [29] 27.05 0.815 0.365 5.83 11.51

Instant NGP+ 27.63 0.821 0.357 8.11 20.68

NeRF-SR [45] 23.67 0.726 0.574 240.88 29.36

Ours 29.03 0.834 0.325 12.17 13.32

Ours (w/o global) 28.52 0.823 0.341 11.06 12.42

Ours (w/o local) 27.98 0.825 0.352 10.50 12.31

Vasedeck

MipNeRF-360 [3] 24.02 0.692 0.520 623.33 31.48

Instant NGP [29] 24.93 0.690 0.547 7.28 11.74

Instant NGP+ 25.39 0.703 0.535 11.98 21.03

NeRF-SR [45] 23.15 0.641 0.629 301.30 30.11

Ours 25.76 0.712 0.508 20.61 15.23

Ours (w/o global) 25.60 0.699 0.517 18.40 13.35

Ours (w/o local) 25.52 0.705 0.526 13.03 12.71

4.5

Point-NeRF
Ours

~ln(140)

1K 1.5K 4K
1.5

2.5
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Figure 6. Comparison with Point-NeRF on cache memory and in-

ference time at different image resolutions. We use logarithm of

each value to draw curves for better visualization.

MipNeRF-360 and Instant NGP, many subtle details are still

lost in the rendering results, such as the structures on the

fortress and the textures on the orchids. The detail-losing

problem becomes more visible when handling the realis-

tic 360◦ vasedeck dataset. NeRF-SR also tends to produce

burry results since the super-resolution strategy cannot re-

produce fine-grained details already lost in the low resolu-

tions. In comparison, our method achieves high-fidelity ren-

dering on ultra-high-resolution scenarios, successfully gen-

erating results of resolution 4032 × 3024 and preserving

fine-grained details as much as possible.

We further conduct a quantitative analysis of these meth-

ods in Table 1. We adopt PSNR, SSIM, and LPIPS as the

metrics, as in [3, 28]. The inference time and cache memory

are also provided as references for a comprehensive evalu-

ation. As seen, our method ranks first among these meth-

ods on all the evaluation metrics. Note that by doubling

the number of samples, the performance of MipNeRF-360

is improved slightly. However, its inference time also in-

creases significantly (more than 2× slower). Besides, the

enhanced MipNeRF-360 would lead to memory limit ex-

Table 2. Quantitative comparison with Point-NeRF on 1K LLFF

dataset.

PSNR↑ SSIM↑ LPIPS↓
Point-NeRF 20.11 0.486 0.550

Ours 30.17 0.893 0.172

ceeded if applied to the vasedeck dataset. Obviously, it is

impractical to improve the model’s representational ability

with only the dense sampling strategy. As for Instant NGP,

the improvement of the enhanced version by doubling the

grid dimension and hash table size is negligible compared

to the huge increase of cache memory (nearly 2× overhead).

Thanks to the proposed adaptive implicit-explicit represen-

tation and the frequency separation strategy, our UHDNeRF

achieves superior performance on synthesizing 4K ultra-

high-resolution results with acceptable memory cost and in-

ference speed, and outperforms existing methods both qual-

itatively and quantitatively.

4.2. Comparison with Point-NeRF

Point-NeRF [50] also combines NeRF with the point

cloud to realize high-quality rendering. However, this

method is built upon a dense point cloud which is not

achievable for the 4K ultra-high-resolution scenarios. To il-

lustrate this, we train Point-NeRF and our method with a se-

ries of downscaling images in the vasedeck dataset. The in-

put resolutions for training are 504×378 (0.5K), 1008×756
(1K), and 1344× 1008 (∼1.5K), respectively.

In Fig. 6 we report the cache memory and the infer-
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(a) Point-NeRF (b) Ours

Figure 7. Qualitative comparison with Point-NeRF on 1K fern and

room datasets.

ence time at different resolutions. According to the growing

trend of the curves, Point-NeRF requires intolerable mem-

ory overhead for current devices if it is applied to 4K im-

ages. Thanks to the use of the sparse point cloud and the

patch-based sampling strategy, our method needs much less

cache memory. Furthermore, our method achieves a much

faster rendering speed with the frequency separation strat-

egy. That is, most of the samples locate in low-frequency re-

gions (The ratio of samples with/without neighbors is about

1 : 5) without the need for point cloud processing.

We further conduct quantitative and qualitative compar-

isons on the downscaled 1K LLFF dataset. Unlike synthesis

datasets, real-world scenarios always contain backgrounds.

However, it is impractical to densely reconstruct both the

foreground and background with limited views of images.

As Point-NeRF only samples in the regions containing a

point cloud, there are large holes in the rendered results

where the point cloud is missing, as pointed out by green

arrows in Fig. 7 (a). Furthermore, Point-NeRF relies heav-

ily on the dense point cloud that each sampled location must

query 8 nearest point neighbors for prediction. As the point

cloud for a complex real-world scene is always imperfect

(contains noises and outliers), the rendering quality is also

decreased (see the red boxes in Fig. 7). As shown in Table 2,

our method achieves much better metrics than Point-NeRF

on the downscaled LLFF dataset (we mask out the holes

in Point-NeRF when computing PSNR for a fair compari-

son). These experiments also demonstrate that our method

is general to low-resolution scenarios (e.g., 1K resolution)

even though we focus on ultra-high-definition rendering.

4.3. Ablation studies

Effectiveness of the point cloud features. We verify the

effectiveness of the point cloud features by removing the
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Figure 8. Comparison between our complete model (c) and two

variants (b), i.e., the model trained without the global structure

feature or the local point-wise feature.
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Figure 9. Comparison between two sampling strategies. All the

samples are guaranteed to have neighboring points.

global structure feature and the local point-wise feature

from our complete method, respectively. As shown in

Fig. 8, without using the global structure feature, some arti-

facts may occur around the boundaries of the objects. This

is because the point cloud is so sparse that a sampled loca-

tion cannot obtain reliable boundary information with only

the neighboring points. With the global feature providing a

much larger field-of-view 3D-aware information, our com-

plete method produces clearer and more plausible results in

object boundaries.

As for the variant model removing the local point-wise

feature, the fine-grained details are lost in the rendering re-

sults. The reason is that the global structure feature cannot

provide high-frequency information for reproducing sub-

tle details. Our complete method demonstrates that the

local point-wise feature plays an important role in detail-

preserving when dealing with extremely high-resolution

rendering.

We further conduct a quantitative evaluation of different

variants of our method. The quantitative results of Table 1

show that our complete model surpasses other variant mod-

els in all the metrics.
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Sampling strategy. During training, NeRF selects cam-

era rays randomly to optimize the radiance fields in every

epoch. This random sampling strategy makes samples far

away from each other. Consequently, the number of inves-

tigated 3D points in a batch is extremely large, and it would

be highly burdened to process these point features.

Out of this consideration, we opt for the patch-based

ray sampling strategy. By doing so, all the samples in a

batch are constrained within a conical frustum. As a result,

their neighbors are highly overlapping. As shown in Fig. 9

(a), we sample 200K locations with the random and patch-

based sampling strategies, respectively. For each sample,

we query its k neighboring points with k from 1 to 64.

As shown in Fig. 9 (b), the number of investigated points

is greatly reduced with the patch-based sampling strategy.

Furthermore, there is no significant increase in the point

number with k increased from 1 to 64, which means a small

k value is already enough to provide complete information

about the surrounding point clouds. This avoids the high

computational cost of handling a large amount of neighbor-

ing points for each sample.

5. Conclusion and future work

We have proposed UHDNeRF for novel view synthesis

on 4K ultra-high-resolution real-world scenes. The key to

our work is an adaptive implicit-explicit scene representa-

tion with a frequency separation strategy. The scene rep-

resentation is comprised of an implicit volume that learns

to reconstruct the low-frequency properties over the whole

scene and an explicit sparse point cloud for generating high-

frequency details. A sample adaptively regresses to its

scene properties based on the surrounding scene composi-

tion. To efficiently extract high-frequency information em-

bedded in the sparse point cloud, we adopt a patch-based

ray sampling strategy in each batch and generate a global

structure feature and a local point-wise feature from the in-

vestigated points for any sample located in high-frequency

regions. Extensive experiments on 4K scenarios demon-

strate the superiority of our method in providing extremely

high-resolution rendering results with rich texture details.

While our method achieves state-of-the-art performance,

it suffers from some limitations. Notably, as our method

relies on a sparse point cloud for subtle detail reproduc-

tion, it requires more cache memory than the original NeRF

model. Besides, despite preserving much more details than

the state-of-the-art NeRF solutions, our method still cannot

retain all the details in the original captured images, espe-

cially for the challenging realistic 360◦ scenes. This is prob-

ably due to the excessively sparse training views. We hope

this would be solved in the future by incorporating few-shot

techniques [63, 64] into our framework.
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