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Abstract

Automatic radiology report generation has attracted enor-
mous research interest due to its practical value in reducing
the workload of radiologists. However, simultaneously es-
tablishing global correspondences between the image (e.g.,
Chest X-ray) and its related report and local alignments
between image patches and keywords remains challenging.
To this end, we propose an Unify, Align and then Refine
(UAR) approach to learn multi-level cross-modal alignments
and introduce three novel modules: Latent Space Unifier
(LSU), Cross-modal Representation Aligner (CRA) and Text-
to-Image Refiner (TIR). Specifically, LSU unifies multimodal
data into discrete tokens, making it flexible to learn common
knowledge among modalities with a shared network. The
modality-agnostic CRA learns discriminative features via a
set of orthonormal basis and a dual-gate mechanism first and
then globally aligns visual and textual representations under
a triplet contrastive loss. TIR boosts token-level local align-
ment via calibrating text-to-image attention with a learnable
mask. Additionally, we design a two-stage training proce-
dure to make UAR gradually grasp cross-modal alignments
at different levels, which imitates radiologists’ workflow:
writing sentence by sentence first and then checking word
by word. Extensive experiments and analyses on IU-Xray
and MIMIC-CXR benchmark datasets demonstrate the supe-
riority of our UAR against varied state-of-the-art methods.

1. Introduction

Automatic radiology report generation, as a potential

intelligent assistant to relieve radiologists from the heavy

workload, has attracted a surge of research interests in re-

cent years [19, 30, 18, 24, 7, 35, 61, 67]. Mainstream

methods adopt the de facto encoder-decoder framework,

where a medical image (e.g., chest X-ray) is first encoded

as latent representations via convolutional neural networks
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Figure 1. Challenges of modeling cross-modal alignments in radi-

ology report generation. At the encoding stage, it is intractable to

globally align visual and textual semantics due to (a) their different

characteristics (i.e., continuous signals vs. discrete data) and (b) the

lack of cross-modal interactions. (c) During decoding, capturing

the fine-grained alignment between keywords and image patches is

difficult because of the data deviation problem.

(CNNs) [50, 15], and then further decoded into a radiology

report comprised of natural language sentences by recurrent

neural networks (RNNs) [16, 10] or fully-attentive networks

like Transformer [55]. The key problems in this task are

twofold: 1) how to obtain comprehensive information asso-

ciated with the input medical image and 2) how to accurately

establish cross-modal alignments (CMA), e.g., matching

generated words with their corresponding image regions.

This paper targets at improving CMA in automatic ra-

diology report generation, which however, is hindered by

three factors shown in Figure 1. First of all, continuous
visual signals and discrete text data have the very differ-

ent characteristics, resulting in semantic inconsistency and

modality-independent encoding pipelines in common prac-

tices. Secondly, as illustrated in Figure 1 (b), the vision and

text modalities are usually encoded via different backbones

without cross-modal interactions [7, 67, 43], leading to dis-

parities in the representation space. Thirdly, as shown in Fig-

ure 1 (c), there exists the so-called “data deviation” problem,
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where important details in the report (e.g., abnormalities) are

sparse. As a result, the above three factors pose challenges

to learning global and local CMA between radiographs and

related reports. To this end, although there has emerged pro-

gresses for improving either global CMA [7, 61, 67, 43] or

local CMA [19, 60, 68, 8], how to exploit multi-level CMA

to enhance radiology report generation is underexplored.

Considering the above issues, we propose a Unify, Align

and Refine (UAR) framework to facilitate multi-level CMA

for generating faithful and believable radiology reports.

Within UAR, we design a Latent Space Unifier (LSU) to

tokenize images into discrete visual tokens with a discrete

variational autoencoder (dVAE) [44]. By doing so, LSU uni-

fies vision and text modalities into discrete tokens, making

it flexible to design a shared network that seamlessly pro-

cesses both modalities to learn common knowledge [59, 66].

Next, we introduce a modality-agnostic Cross-modal Rep-

resentation Aligner (CRA) to learn global CMA. In imple-

mentation, CRA not only learns discriminative visual and

textual features based on a set of orthonormal basis and

a dual-gate mechanism, but also globally aligns both type

of features under the supervision of a triplet contrastive

loss [48]. What’s more, we improve local CMA by inte-

grating Transformer [55] with our proposed Text-to-Image

Refiner (TIR). Different from the vanilla attention mecha-

nism in Transformer, TIR additionally contains a learnable

mask to re-calibrate text-to-image attention activations. TIR

constrains the learnable mask with an auxiliary loss to focus

word prediction on useful visual information. Last but not

least, we design a two-stage training procedure to make the

full model grasp CMA at different levels gradually.

We conduct experiments on two widely-adopted radiol-

ogy report generation benchmarks, i.e., IU-Xray [12] and

MIMIC-CXR [20]. The results demonstrate that our UAR

outperforms state-of-the-art methods by a large margin, e.g.,

with up to 1.9% and 15% absolute improvements in terms

of BLEU-4 [42] and CIDEr [56] on IU-Xray, respectively.

Ablation study is also carried out to understand the effect of

each module of our approach.

In brief, our contributions are three-fold:

• To facilitate multi-level cross-modal alignments, we

propose a Unify, Align and Refine framework with three

modules: Latent Space Unifier (LSU), Cross-modal Repre-

sentation Aligner (CRA), and Text-to-Image Refiner (TIR).

• LSU unifies vision and text modalities into discrete to-

kens, based on which CRA learns to align the global seman-

tics of both modalities whereas TIR encourages the token-

level text-to-image alignment.

• Extensive experiments and analyzes on IU-Xray and

MIMIC-CXR datasets validate the superiority and effective-

ness of our approach, which sets state-of-the-art performance

and generates radiology reports accurately.

2. Related Work

2.1. Visual Captioning

As a member of cross-modal task [28, 9, 26, 29, 27, 49,

65], neural-network-based visual captioning methods [57,

58, 21, 64, 6] are rapidly emerging due to the boom in AI-

generated content [69, 46, 53, 25, 54]. Mainstream works

use CNNs to extract global [13, 41, 13], grid [63, 39, 45]

or region [22, 1, 40] features, and utilize RNNs [58, 13]

with varied attention mechanisms [51, 1, 17, 40] to cap-

ture cross-modal interactions and generate descriptions in

an auto-regressive manner. In recent years, a growing num-

ber of methods leverage the potential of the fully-attentive

Transformer [55] in capturing long-range dependencies to

boost captioning performance [11, 71, 33, 14]. However,

these methods are designed to generate a one-sentence de-

scription, which is brief and could lack details. Although

several works [23, 31] use hierarchical models to generate

long paragraphs, they may fail to capture accurate concepts

and keywords, which limits application of such models in

radiology report generation.

2.2. Chest X-ray Report Generation

To adapt the conventional visual captioning framework

to radiology report generation, various improvements has

been proposed. HRGR [30] designs a retrieval-generation

method, which decides to either generate a new sentence or

retrieve an existing template for different topics. CMAS [18]

utilizes two writers to describe the abnormal and normal

regions respectively. PPKED [35] incorporates the posterior-

and-prior knowledge for alleviating the data deviation prob-

lem. CA [36] compares the current input image with normal

images to obtain discriminative abnormal features. Further-

more, for generating more coherent and consistent reports, re-

inforcement learning [30, 37, 18, 43] is employed to directly

optimize desired metrics, graph-based methods [70, 24] are

used to construct relationships between diseases, and cur-

riculum learning [34] as a training strategy simulates the

writing pattern of “easy first, then difficult”.

Moreover, a portion of works [19] focus on improving

cross-modal alignments (CMA) in radiology report gener-

ation. CoAtt [19] utilizes semantic information produced

by an auxiliary tag prediction task to improve fine-grained

CMA. Self-boosting [61] extracts the text-correlated vi-

sual feature via coupling the image-text matching branch.

TieNet [60] employ a multi-level attention for highlight-

ing the meaningful words and regions. R2GenCMN [7],

CMM+RL [43] and JPG [67] treat trainable memory net-

works as the intermediary of vision and text modalities to

enhance global CMA. However, these methods achieve CMA

implicitly, which could result in insufficient and inaccurate

semantic matching. By contrast, our approach uses explicit

constraints to gradually grasp multi-level CMA.
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3. Method
3.1. Overview

As shown in Figure 2, our proposed UAR is built upon

the encoder-decoder framework and contains three novel

modules: Latent Space Unifier (LSU), Cross-modal Repre-

sentation Aligner (CRA), and Text-to-Image Refiner (TIR).

Given a radiograph I , our UAR aims to generate a descrip-

tive report R = {r1, r2, . . . , rT } of T words automatically.

During training, we formulate our approach as follows:

E(I),E(R) = LSU(I, R); (1)

F (I),F (R) = CRA(E(I),E(R)); (2)

ht = TransformerTIR(F
(I),F

(R)
<t ); (3)

pθ(rt|R<t, I) = softmax(Head(ht)). (4)

Specifically, LSU(·) unifies I and R into discrete tokens

and produces their embeddings E(I) and E(R) respectively.

CRA(·) takes embeddings as the input and outputs discrim-

inative features F (I) and F (R), which will be used to con-

trast and align with each other to enhance global cross-modal

alignment (as introduced next). Next, TransformerTIR(·), a

standard Transformer [55] integrated with our proposed TIR

to improve fine-grained cross-modal alignment, calculates

the hidden state at the t-th time step (ht) based on the vi-

sual features F (I) and the preceding textual features F
(R)
0:t−1.

Finally, the hidden state ht is mapped into the distribution

over the vocabulary by Head(·) (i.e., a fully-connected layer

and a softmax function). The basic training objective of our

UAR for language modeling is defined as:

LCE = −
T∑

t=1

log pθ(r = rt|R<t, I) (5)

In the following, we will elaborate on our proposed LSU,

CRA, and TIR, followed by the introduction of a two-stage

training procedure.

3.2. Latent Space Unifier (LSU)

As shown in Figure 2 (a), LSU unifies image and text

modalities into discrete tokens and obtain their embeddings.

For extracting visual embeddings E(I) of the input ra-

diograph I , we follow [44] and [4] to exploit a discrete

variational autoencoder (dVAE), which involves three com-

ponents, i.e., a codebook VI , an encoder that maps an image

into distributions over the codebook, and a decoder that

reconstructs the image from its discrete tokens sampled

from the distribution. Please see [44] for more details of

dVAE. Here, we only adopt the codebook and the encoder

of dVAE and discard its decoder. Concretely, the encoder of

dVAE compresses I ∈ R
H×W×C into D ∈ R

L×|VI |, where

L = HW/M2 denotes the number of visual tokens, M is

the downsampling factor, and |VI | the size of the codebook.

We apply the argmax operation on D to obtain L visual to-

kens, and then use a trainable look-up matrix WI ∈ R
|VI |×d

to attain E(I) ∈ R
L×d.

As the radiology report R is already discrete data, we only

need a vocabulary VR (e.g., constructed from the training

corpus) and a trainable look-up matrix WR ∈ R
|VR|×d for

extracting text embeddings E(R) ∈ R
T×d.

It is noteworthy that although the dVAE we use is pre-

trained on non-medical images, it produces reasonable re-

construction results for X-ray images (see Figure 6).

3.3. Cross-modal Representation Aligner (CRA)

As shown in Figure 2 (b), CRA is modality-agnostic. It

processes visual and textual embeddings with the same set of

orthonormal basis and a dual-gate mechanism to model cross-

modal interactions, and enhances global semantic alignment

under a triplet contrastive loss.

Specifically, we construct a set of orthonormal basis B ∈
R

2,048×d via Gram-Schmidt Orthogonalization [47]. Similar

to Layer Normalization [2], we adjust B as follows:

B̂ = γ �B + β, (6)

where � is element-wise multiplication, γ and β are gain

and bias parameters of the same dimension as B. Next, we

use B̂ and the attention mechanism to process embeddings

from different modalities:

F̃ (∗) = Attention(E(∗), B̂, B̂),

Attention(Q,K,V ) = softmax(A)(V WV ),

A = (QWQ)(KWK)�/
√
d,

(7)

where ∗ ∈ {I, R}, A denotes attention activations, and all

W are trainable parameters. In practice, we extend the above

attention mechanism into a multi-head version as in [55]. By

representing features with the same basis B̂, it could benefit

feature alignment [62, 52]. Next, inspired by LSTM [16],

we define a gate mechanism to control the information flow:

G(X,Y ) = σ(XW1 + Y W2), (8)

where σ is the sigmoid function, W1 and W2 are trainable

weights. We introduce a input gate GI(·, ·) and a forget gate

GF (·, ·) to adaptively fuse E(∗) and F̃ (∗) to produce the

final features F (∗) as follows:

F (∗) = GI(E
(∗), F̃ (∗))� tanh (E(∗) + F̃ (∗))

+ GF (E
(∗), F̃ (∗))�E(∗) + F̃ (∗).

(9)

Triplet Contrastive Loss In order to achieve global cross-

modal alignment with explicit supervision signals, we intro-
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Figure 2. Overview of our UAR framework. In addition to the widely-adopted Transformer shown in (c), it comprises three novel modules to

boost multi-level cross-modal alignments: (a) Latent Space Unifier (Section 3.2), (b) Cross-modal Representation Aligner (Section 3.3), and

(c, e) Text-to-Image Refiner (Section 3.4). In (d), we illustrate the flow chart of the dual-gate mechanism shown in (b).

duce the following training objective:

LGlobal = ReLU
(
α− 〈F (I),F (R)〉+ 〈F (I),F

(R)
− 〉

)

+ ReLU
(
α− 〈F (I),F (R)〉+ 〈F (I)

− ,F (R)〉
) (10)

where 〈·, ·〉 denotes cosine similarity, α is the margin value,

and F
(R)
− and F

(I)
− indicate hard negative samples that have

a high cosine similarity with the anchors F (I) and F (R).

3.4. Text-to-Image Refiner (TIR)

TIR aims to enhance the correspondence between the

radiology report R and its associated image I at the token

level. This is achieved by affects text-to-image attention

patterns with an additional learnable mask, as shown in

Figure 2 (c) and (e). Specifically, we modify the definition

of A (Eq. 7) in the vanilla text-to-image attention of the

Transformer decoder as follows:

A =
(
(QWQ)(KWK)� + k · σ(M)

)
/
√
d (11)

where k is a large scaling constant (e.g., 1,000) and σ(M) ∈
R

T×L denotes the learnable mask that impacts the activa-

tions between T textual tokens and L visual tokens. To focus

each text token on proper visual information, we constrain

the mask with the following objective:

LMask =

T∑

i=1

L∑

j=1

(1− σ(Mij)). (12)

3.5. Two-Stage Training

So far, we have introduced three training objectives of our

UAR approach: LCE (Eq. 5) for language modeling, LGlobal

(Eq. 10) for enhancing global cross-modal alignment, and

LMask (Eq. 12) that re-calibrates attention activations to

boost local cross-modal alignment. The overall loss function

of our approach is formulated as:

L = λ1LCE + λ2Lglobal + λ3LMask. (13)

To learn cross-modal alignment incrementally and stably,

we split the training process into two stages. In the first

stage, {λ1, λ2, λ3} = {1, 1, 0}. The model does not include

a learnable mask in the text-to-image attention and is forced

to learn coarse-grained semantic alignment besides language

modeling. In the second stage, {λ1, λ2, λ3} = {1, 1, 1},

i.e., the model additionally emphasizes the learning of fine-

grained semantic alignment.

4. Experiments
4.1. Configurations

Datasets Our evaluation is performed on two publicly avail-

able radiology report generation benchmark datasets, namely

IU-Xray [12] and MIMIC-CXR [20].

• IU-Xray1, established by Indiana University, is a

commonly-used dataset that comprises 7, 470 X-ray images

1https://openi.nlm.nih.gov/faq/
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DATASET METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDER

IU-XRAY [12]

COATT [19] 0.455 0.288 0.205 0.154 - 0.369 0.277
HRGR [30] 0.438 0.298 0.208 0.151 - 0.322 0.343
CMAS-RL [18] 0.464 0.301 0.210 0.154 - 0.362 0.275
SENTSAT+KG [70] 0.441 0.291 0.203 0.417 - 0.304 0.304
R2GEN [8] 0.470 0.304 0.219 0.165 - 0.371 -

CMCL [34] 0.473 0.305 0.217 0.162 0.186 0.378 -

PPKED [35] 0.483 0.315 0.224 0.168 0.190 0.376 0.351

R2GENCMN* [7] 0.470 0.304 0.222 0.170 0.191 0.358 0.344
JPG [67] 0.479 0.319 0.222 0.174 0.193 0.377 -

CMM+RL [43] 0.494 0.321 0.235 0.181 0.201 0.384 -

UAR (Ours) 0.530 0.365 0.263 0.200 0.218 0.405 0.501

MIMIC-CXR [20]

ST [58] 0.299 0.184 0.121 0.084 0.124 0.263 -

ATT2IN [45] 0.325 0.203 0.136 0.096 0.134 0.276 -

ADAATT [39] 0.299 0.185 0.124 0.088 0.118 0.266 -

TOPDOWN [1] 0.317 0.195 0.130 0.092 0.128 0.267 -

R2GEN [8] 0.353 0.218 0.145 0.103 0.142 0.270 -

CMCL [34] 0.344 0.217 0.140 0.097 0.133 0.281 -

PPKED [35] 0.360 0.224 0.149 0.106 0.149 0.284 0.237

R2GENCMN* [7] 0.348 0.206 0.135 0.094 0.136 0.266 0.158

CMM+RL [43] 0.381 0.232 0.155 0.109 0.151 0.287 -

UAR (Ours) 0.363 0.229 0.158 0.107 0.157 0.289 0.246

Table 1. Comparison with state-of-the-art methods on IU-Xray and MIMIC-CXR datasets. Optimal and suboptimal performance is

highlighted. *: Our re-implementations with the official code. Our UAR achieves competitive if not the best performance on all metrics.

along with 3, 955 corresponding reports. We use the same

70%-10%-20% training-validation-testing splits as previous

works [7, 35, 67]. We keep words that appear more than 3

times, resulting a vocabulary of size around 1K.

• MIMIC-CXR2, provided by Beth Israel Deaconess

Medical Center, is a recently released large chest X-ray

dataset that contains 473, 057 radiographs and 206, 563 cor-

responding reports. We adopt the official splits and retain

words that appear more than 10 times. We also preprocess

the reports by tokenizing, converting them to lowercase, and

removing non-alphabetic tokens. This results in a vocabulary

of approximately 4,000 words.

Metrics We report four widespread automatic metrics:

BLEU [42], METEOR [3], ROUGE-L [32] and CIDEr [56],

and compute them with Microsoft COCO Evaluation

Server [5]. BLEU [42] and METEOR [3] is originally pro-

posed for machine translation evaluation. ROUGE-L [32] is

initially introduced for summarization. CIDEr [56] is pro-

posed for image captioning. Higher is better for all metrics.

Settings Our baseline model comprises a pre-trained

ResNet101 [15] and a randomly initialized Transformer-

Base [55] with 3 layers. For our UAR model, we replace

ResNet101 with a pre-trained dVAE, whose details are left

to Appendix. Following previous works [30, 35, 67], we use

frontal and lateral X-ray images as input on IU-Xray, and

only frontal X-ray images on MIMIC-CXR. To save compu-

2https://physionet.org/content/mimic-cxr/

tation cost, we resize images to 128×128 and randomly crop

a region of size 112× 112 at the training phase; we directly

resize the image to 112× 112 at the inference phase. We use

the AdamW optimizer [38] to train the model. We employ

distinct training stage arrangements and learning rate sched-

ules, along with varying batch sizes, for different datasets.

More implementation details are given in Appendix.

4.2. Comparison with State-of-the-Art Methods

We compare our UAR model with state-of-the-art (SOTA)

methods of different backbones, including CNN-RNN [58,

39, 1, 19] and CNN-Transformer [8, 7, 35, 67]. Besides, we

also consider SOTA methods using different technologies,

including reinforcement learning [45, 30, 18, 43], knowl-

edge graph [70], and curriculum learning [34]. As shown

in Table 1, our approach achieves SOTA performance on

the IU-Xray dataset, with up to 1.9% and 15% absolute

gains in terms of BLEU-4 and CIDEr metrics. As for the

MIMIC-CXR dataset, our UAR obtains competitive results

compared to the strongest competitor, i.e., CMM+RL [43],

which utilizes reinforcement learning to directly optimize

metric scores. Notably, as our approach mainly involves net-

work designing, incorporating existing technologies like re-

inforcement learning and curriculum learning may bring fur-

ther improvements. Besides, the superiority of our approach

against CoATT [19], R2GenCMN [7], and JPG [67] show the

necessity of capturing multi-level cross-modal alignments.
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SECTION MODEL LSU
CRA

TIR TWO-STAGE
TRAINING

DATASET: IU-XRAY [12]

Integration Lglobal BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDER

3.2 BASE 0.424 0.268 0.189 0.144 0.171 0.339 0.271
(a)

√
0.475 0.319 0.233 0.177 0.218 0.399 0.295

3.3
(b)

√
0.446 0.283 0.196 0.141 0.174 0.360 0.330

(c)
√

0.426 0.274 0.192 0.143 0.184 0.356 0.409
(d)

√ √
0.471 0.302 0.213 0.158 0.187 0.390 0.393

3.4 (e)
√ √ √

0.538 0.365 0.262 0.193 0.218 0.365 0.410

(f)
√ √ √ √

0.505 0.332 0.244 0.182 0.206 0.401 0.460

3.5 UAR (Ours)
√ √ √ √ √

0.530 0.365 0.263 0.200 0.218 0.405 0.501

Table 2. Ablation studies on the proposed Latent Space Unifier (LSU), Cross-modal Representation Aligner (CRA), Text-to-Image Refiner

(TIR), and the two-stage training procedure. In CRA, “Integration” means using the orthogonal subspace and the dual-gate mechanism

simultaneously. As we can observe, our UAR model significantly outperforms the base model on all metrics.

BL-1 BL-2 BL-3 BL-4 MTOR RG-L CIDER

Ours 0.530 0.365 0.263 0.200 0.218 0.405 0.501

Uniform 0.441 0.284 0.207 0.158 0.179 0.378 0.428

Normal 0.467 0.303 0.210 0.155 0.197 0.371 0.427

Table 3. Effect of using subspaces subject to orthogonal (default),
uniform, and normal distributions in the proposed CRA.

5. Ablation Study and Analysis
In this section, we delve deeper into each module of our

UAR with both quantitative and qualitative results.

5.1. Effect of Latent Space Unifier

Quantitative Analysis As shown in Table 2 show, model (a)

surpasses the base model on all metrics, e.g., 2.3% improve-

ments on BLEU-4. Meanwhile, model (a) is also a strong

competitor even compared with the SOTA methods listed in

Table 1 on IU-Xray. The performance boost is possibly be-

cause LSU reconciles the distributions of visual and textual

data and thus prompts the implicit learning of cross-modal

alignments. To verify our hypothesis, we calculate the align-
ment score3 of different models. As shown in Figure 4 (a),

we can observe that “Base + LSU” achieves higher align-

ment score than the base model, i.e., 49% vs. 36%. which

proves the potential of LSU in implicitly aligning features

of different modalities.

Qualitative Analysis We visualize the heatmaps of pairwise

cosine similarity among all data samples in Figure 4 (b-d).

As we can see in (b), samples similar to the query sample are

relatively rare in the base model. Considering that radiology

reports contain inherent patterns, high correlations shall be

3Alignment score is defined as the portion of radiograph-report pairs

whose cosine similarity of features is larger than 0.5 after min-max normal-

ization.

BL-1 BL-2 BL-3 BL-4 MTOR RG-L CIDER

Ours 0.530 0.365 0.263 0.200 0.218 0.405 0.501

No Gate 0.439 0.296 0.208 0.155 0.193 0.373 0.405

Addition 0.487 0.318 0.225 0.167 0.214 0.386 0.376

Table 4. Effect of different fusing mechanisms in the proposed

CRA, including dual-gate (default), “no gate”: F (∗) = F̃ (∗), and

“addition”: F (∗) = E(∗) + F̃ (∗).

observed frequently. In (c), integrating the base model with

LSU improves this situation to some extent via unifying

multimodal characteristics. Furthermore, Figure 3 shows

retrieval results of different models given the same image as

the query. We can see that compared with the base model,

“Base + LSU” gives higher cosine similarity between the

query image and the ground-truth report, i.e., 0.4440 →
0.6060. These results further confirm that LSU can benefit

global semantic alignments.

5.2. Effect of Cross-modal Representation Aligner

Quantitative Analysis By comparing models (b,c,d) with

the base model in Table 2, we can observe that both the

feature integration and the triplet contrastive loss of CRA

can bring performance boosts. Specifically, the feature in-

tegration encourages the model to generate fluent and faith-

ful reports and thus model (b) achieves higher BLEU and

ROUGE-L scores than the base model. Meanwhile, the

triplet contrastive loss promotes the generation of diverse

sentences that are semantically consistent with ground truth

report, resulting in higher CIDEr score of model (c) than the

base model. By combining complementary merits of models

(b) and (c), model (d) performs better. Moreover, compared

with model (d), incorporating LSU and CRA (i.e., model

(e)) brings furhter improvements, which can be attributed to

the better cross-modal alignment ability shown in Figure 4
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Base + LSU + CRA

Rank 1
0.8020

Cardiomegaly is present. There is 
interstitial pulmonary edema with 
the <unk> of xxxx <unk>. There is 
no pneumothorax. There is an 
<unk> 17 mm nodular opacity 
projecting between the posterior left 
5th and 6th ribs. There is a 10 mm 
nodular density projecting over the 
right posterior <unk> rib. There is a 
xxxx posterior. 

Rank 2
0.7758

<unk> noncalcified lung nodules 
are present in the left lower lobe. 
The <unk> measures <unk> mm in 
diameter. <unk> nodule is present 
near the right hilum. It is 
approximately 2 cm in diameter. 
The xxxx and mediastinum appear 
normal. Heart size normal.

Rank 565
0.4440 Ground Truth

Rank 1
0.7342 Ground Truth

Rank 2
0.7333 Lungs are clear. Heart size normal. No pneumothorax.  

Rank 3
0.7299

The cardiac contours are normal. The lungs are 
clear. Thoracic spondylosis. 

Rank 1
0.6683

Stable cardiomegaly and mediastinal contour. Increased 
interstitial lung markings are seen possibly due to 
volume <unk>. There is improved aeration of the lung 
bases with small residual left basilar effusion. No xxxx 
focal consolidation or pneumothorax. Stable tunneled 
<unk> catheter. Visualized osseous structures appear 
intact.

Rank 2
0.6678 

Lung volumes remain low. No infiltrates. Heart and 
pulmonary xxxx remain normal.

Rank 22
0.6060 Ground Truth

Ground Truth: heart size is 
normal and the lungs are clear. 

Image Query

Image Retrieval

Base

Base + LSU

Report Retrieval

Base + LSU + CRA

Base

Base + LSU

Figure 3. Image retrieval and report retrieval results of different models. “Base”, “Base + LSU”, and “Base + LSU + CRA” correspond to the

base model, model (a) and model (e) in Table 2, respectively. In report retrieval, we highlight accurate, reasonable, and wrong phrases. We

also foreground rankings and cosine similarities. As we can observe, the model is more likely to retrieve the ground-truth report by gradually

integrating the base model with our proposed LSU and CRA, i.e., our approach effectively enhances global semantic alignments.

(c) (d) 

A
lig

nm
en

t S
co

re

Base + LSU Base + LSU + CRA
Base Base+LSU Base+LSU+CRA

36% 49% 68%

(a) 
(b) Base

Figure 4. (a): Alignment scores of different models. (b-d):

Heatmaps of pairwise cosine similarity among all data samples.

(a), where model (e) (i.e., “Base + LSU + CRA”) gets the

highest alignment score (68%).

As the feature integration of CRA is composed of two

Figure 5. Visualization of Gram matrix for the memory matrix

trained in R2GenCMN [7].

parts: the orthogonal subspace 4 and the two-gate mecha-

nism, we investigate different variants that can be substituted

with our proposals in Table 3 and Table 4. We can see that

our proposed orthogonal subspace outperforms the uniform

and normal ones, and the dual-gate mechanism is superior

in feature fusion than all other variants.

Qualitative Analysis Here, we first probe into the SOTA

4Since we use the scaled mechanism like Layer Normalization [2] to

adjust the basis, the orthonormal subspace evolved into orthogonal.
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Raw Image Reconstruction Residual

Figure 6. Chest X-ray reconstructions of pre-trained dVAE on IU-Xray dataset [12]. From left to right, we visualize the raw radiograph, the

reconstruction result and the residual image between the two in turn.

R2GenCMN model [7] that enhance global semantic align-

ments with a memory matrix. We visualize the Gram matrix

of the pre-trained memory matrix in Figure 5. Surprisingly,

almost all values in Gram matrix equal to 0, demonstrat-

ing that it is approximately an orthogonal subspace. This

visualization result justifies our subspace design in CRA.

Likewise, we show the similarity heatmap of “Base +

LSU + CRA” in Figure 4 (d), whose pattern is quite different

to that of (b) and (c). In Figure 3, we can observe that “Base +

LSU + CRA” performs the best in retrieval. On the one hand,

retrieved reports have high similarity to the query image, and

they are semantically consistent with the ground-truth report,

e.g., lung are clear and the cardiac contours are normal.
On the other hand, the ground-truth report can be retrieved

precisely, i.e., ranking first with a similarity of 0.7342.

In brief, the above quantitative and qualitative analyses
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Cardiomediastinal silhouette and pulmonary vasculature are within normal limits. Lungs are clear. No pneumothorax or pleural
effusion. No acute osseous findings.

The cardiomediastinal silhouette is normal in size and contour. No focal consolidat-ion pneumothorax or large pleural effuseon.
Normal xxxx.

The cardiomediastinal silhouette and pulmonary vasculature are within normal limits. The lungs are clear. No consolidation
pneumothorax or pleural effusion. No acute bony findings.

(w/o TIR) 
Ours

No acute bony findings Lungs clearNormal xxxx

Ours
(full)

Input Image

Ground 
Truth

Figure 7. An example of radiology reports generated by our model without or with the proposed Text-to-Image Refiner (TIR). We highlight

incomplete and detailed descriptions in the report. We also show the text-to-image attention heatmaps of specific descriptions at the top.

Our full model learns accurate correspondences between image regions and keywords.

verify that our proposed LSU and CRA can effectively en-

hances global semantic alignments.

5.3. Effect of Text-to-Image Refiner

Quantitative Analysis By comparing model (e), (f), and our

UAR model in Table 2, we have the following observations.

1) TIR can effectively improves the CIDEr metric, e.g., 5%

absolute improvement for model (f) vs. model (e), showing

that TIR is beneficial for generating accurate keywords in

the radiology report. Moreover, excluding two-stage training

leads to obvious performance degradation, i.e., our UAR

model vs. model (f). This indicates the instability of multi-

objective optimization and proves the effectiveness of our

two-stage training procedure.

Qualitative Analysis In Figure 7, we illustrate the effect

of TIR on radiology report generation. As we can see, the

model without TIR outputs an useless description “Normal

xxxx”, where “xxxx“ is anonymized information used to pro-

tect patient privacy and results in an incomplete sentence. By

contrast, our TIR remedies this content omission and inter-

prets the visual content in detail. Additionally, text-to-image

attention heatmaps demonstrate that our TIR is capable of

focusing word prediction on proper visual information.

In all, TIR can capture accurate fine-grained correspon-

dences between image regions and keywords. Our full model

can generate more informative and meaningful radiology re-

ports by enhancing multi-level semantic alignments.

5.4. Case Study of dVAE reconstructions

As shown in Figure 6, we present several reconstructions

for chest X-ray images. We obeserve that pre-trained dVAE

can generate reasonable and consistent reconstruction results,

which demonstrates that the extracted visual tokens remain

high-level semantic information, i.e., different tokens may

represent different organs or regions. In other words, the

unification of visual and textual characteristics facilitates the

design of a shared network to flexibly achieve cross-modal

alignment. Futhermore, most of the low-frequency structure

are retained and the high-frequency information is ignored

in reconstruction X-ray images. Despite the low-frequency

structure already contains enough semantic information, the

high-frequency information may be conducive to the judge-

ment of specific abnormalities, e.g., bone structure, which

will remain in future research.

6. Conclusion

In this paper, we make the first attempt to align visual

and textual semantics at different levels with explicit con-

straints in automatic radiology report generation. To this

end, we propose the UAR approach to unify multimodal data

into discrete tokens, align visual and textual representations

globally, and refine fine-grained text-to-image correspon-

dences. Extensive experiments and analyses on two bench-

mark datasets, i.e., IU-Xray and MIMIC-CXR, demonstrate

that our approach can generate more informative and mean-

ingful radiology reports by boosting multi-level cross-modal

alignments and thus achieves state-of-the-art performance.

Acknowledgments

This paper was partially supported by NSFC
(No: 62176008) and Shenzhen Science & Technology
Research Program (No: GXWD20201231165807007-

20200814115301001).

2871



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up

and top-down attention for image captioning and visual ques-

tion answering. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6077–6086,

2018. 2, 5

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

3, 7

[3] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic

metric for mt evaluation with improved correlation with hu-

man judgments. In Proceedings of the acl workshop on intrin-
sic and extrinsic evaluation measures for machine translation
and/or summarization, pages 65–72, 2005. 5

[4] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:

Bert pre-training of image transformers. In International
Conference on Learning Representations, 2023. 3

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.

Microsoft coco captions: Data collection and evaluation

server. arXiv preprint arXiv:1504.00325, 2015. 5

[6] Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X

Chang. Scan2cap: Context-aware dense captioning in rgb-

d scans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3193–3203,

2021. 2

[7] Zhihong Chen, Yaling Shen, Yan Song, and Xiang Wan.

Cross-modal memory networks for radiology report gener-

ation. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5904–5914, 2021. 1, 2, 5, 7,

8

[8] Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang Wan.

Generating radiology reports via memory-driven transformer.

In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1439–1449,

2020. 2, 5

[9] Xuxin Cheng, Zhihong Zhu, Hongxiang Li, Yaowei Li, and

Yuexian Zou. Ssvmr: Saliency-based self-training for video-

music retrieval. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023. 2

[10] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent neural

networks on sequence modeling. In NeurIPS Workshop on
Deep Learning, 2014. 1

[11] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita

Cucchiara. Meshed-memory transformer for image caption-

ing. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10578–10587, 2020. 2

[12] Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-

man, Sonya E Shooshan, Laritza Rodriguez, Sameer An-

tani, George R Thoma, and Clement J McDonald. Preparing

a collection of radiology examinations for distribution and

retrieval. Journal of the American Medical Informatics Asso-
ciation, 23(2):304–310, 2016. 2, 4, 5, 6, 8

[13] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 2625–2634, 2015. 2

[14] Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lin Liang, Zhe

Gan, Lijuan Wang, Yezhou Yang, and Zicheng Liu. Inject-

ing semantic concepts into end-to-end image captioning. In

Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 18009–18019, 2022. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 5

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 1, 3

[17] Wenhao Jiang, Lin Ma, Yu-Gang Jiang, Wei Liu, and Tong

Zhang. Recurrent fusion network for image captioning. In

Proceedings of the European conference on computer vision
(ECCV), pages 499–515, 2018. 2

[18] Baoyu Jing, Zeya Wang, and Eric Xing. Show, describe and

conclude: On exploiting the structure information of chest x-

ray reports. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 6570–6580,

2019. 1, 2, 5

[19] Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic

generation of medical imaging reports. In Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2577–2586, 2018.

1, 2, 5

[20] Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum,

Matthew P Lungren, Chih-ying Deng, Yifan Peng, Zhiyong

Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng.

Mimic-cxr-jpg, a large publicly available database of labeled

chest radiographs. arXiv preprint arXiv:1901.07042, 2019. 2,

4, 5

[21] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap:

Fully convolutional localization networks for dense caption-

ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4565–4574, 2016. 2

[22] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, pages 3128–3137, 2015. 2

[23] Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li

Fei-Fei. A hierarchical approach for generating descriptive

image paragraphs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 317–325,

2017. 2

[24] Christy Y Li, Xiaodan Liang, Zhiting Hu, and Eric P Xing.

Knowledge-driven encode, retrieve, paraphrase for medical

image report generation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 6666–6673,

2019. 1, 2

2872



[25] Dongxu Li, Junnan Li, and Steven CH Hoi. Blip-

diffusion: Pre-trained subject representation for control-

lable text-to-image generation and editing. arXiv preprint
arXiv:2305.14720, 2023. 2

[26] Hongxiang Li, Meng Cao, Xuxin Cheng, Yaowei Li, Zhihong

Zhu, and Yuexian Zou. G2l: Semantically aligned and uni-

form video grounding via geodesic and game theory. arXiv
preprint arXiv:2307.14277, 2023. 2

[27] Hongxiang Li, Meng Cao, Xuxin Cheng, Zhihong Zhu,

Yaowei Li, and Yuexian Zou. Generating templated cap-

tion for video grounding. arXiv preprint arXiv:2301.05997,

2023. 2

[28] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-

2: Bootstrapping language-image pre-training with frozen

image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 2

[29] Wei Li, Linchao Zhu, Longyin Wen, and Yi Yang. Decap:

Decoding clip latents for zero-shot captioning via text-only

training. arXiv preprint arXiv:2303.03032, 2023. 2

[30] Yuan Li, Xiaodan Liang, Zhiting Hu, and Eric P Xing. Hy-

brid retrieval-generation reinforced agent for medical image

report generation. Advances in neural information processing
systems, 31, 2018. 1, 2, 5

[31] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and

Eric P Xing. Recurrent topic-transition gan for visual para-

graph generation. In Proceedings of the IEEE international
conference on computer vision, pages 3362–3371, 2017. 2

[32] Chin-Yew Lin. Rouge: A package for automatic evaluation

of summaries. In Text summarization branches out, pages

74–81, 2004. 5

[33] Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe

Gan, Zicheng Liu, Yumao Lu, and Lijuan Wang. Swinbert:

End-to-end transformers with sparse attention for video cap-

tioning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17949–17958,

2022. 2

[34] Fenglin Liu, Shen Ge, and Xian Wu. Competence-based

multimodal curriculum learning for medical report generation.

In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 3001–3012, 2021. 2, 5

[35] Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou.

Exploring and distilling posterior and prior knowledge for

radiology report generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages

13753–13762, 2021. 1, 2, 5

[36] Fenglin Liu, Changchang Yin, Xian Wu, Shen Ge, Ping

Zhang, and Xu Sun. Contrastive attention for automatic

chest x-ray report generation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pages

269–280, 2021. 2

[37] Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew McDermott,

Willie Boag, Wei-Hung Weng, Peter Szolovits, and Marzyeh

Ghassemi. Clinically accurate chest x-ray report generation.

In Machine Learning for Healthcare Conference, pages 249–

269. PMLR, 2019. 2

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[39] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher.

Knowing when to look: Adaptive attention via a visual sen-

tinel for image captioning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

375–383, 2017. 2, 5

[40] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Neu-

ral baby talk. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7219–7228,

2018. 2

[41] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L.

Yuille. Deep captioning with multimodal recurrent neural

networks (m-rnn). In Yoshua Bengio and Yann LeCun, editors,

3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. 2

[42] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318,

2002. 2, 5

[43] Han Qin and Yan Song. Reinforced cross-modal alignment

for radiology report generation. In Findings of the Association
for Computational Linguistics: ACL 2022, pages 448–458,

2022. 1, 2, 5

[44] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,

Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.

Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.

2, 3

[45] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret

Ross, and Vaibhava Goel. Self-critical sequence training for

image captioning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7008–7024,

2017. 2, 5

[46] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 2

[47] Erhard Schmidt. Zur theorie der linearen und nichtlinearen

integralgleichungen. Mathematische Annalen, 63(4):433–476,

1907. 3

[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 2

[49] Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. Prompting

large language models with answer heuristics for knowledge-

based visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14974–14983, 2023. 2

[50] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In-
ternational Conference on Learning Representations, 2015.

1

2873



[51] Jingkuan Song, Lianli Gao, Zhao Guo, Wu Liu, Dongxiang

Zhang, and Heng Tao Shen. Hierarchical lstm with adjusted

temporal attention for video captioning. In Proceedings of the
26th International Joint Conference on Artificial Intelligence,

pages 2737–2743, 2017. 2

[52] Gilbert Strang. The discrete cosine transform. SIAM review,

41(1):135–147, 1999. 3

[53] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-

tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.

Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023. 2

[54] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-

jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya

Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:

Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023. 2

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 2, 3, 5

[56] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi

Parikh. Cider: Consensus-based image description evalu-

ation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4566–4575, 2015. 2, 5

[57] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus

Rohrbach, Raymond Mooney, and Kate Saenko. Translating

videos to natural language using deep recurrent neural net-

works. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1494–1504,

2015. 2

[58] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru

Erhan. Show and tell: A neural image caption generator. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3156–3164, 2015. 2, 5

[59] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,

Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and

Hongxia Yang. Unifying architectures, tasks, and modalities

through a simple sequence-to-sequence learning framework.

In ICML, 2022. 2

[60] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, and

Ronald M Summers. Tienet: Text-image embedding net-

work for common thorax disease classification and reporting

in chest x-rays. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9049–9058,

2018. 2

[61] Zhanyu Wang, Luping Zhou, Lei Wang, and Xiu Li. A self-

boosting framework for automated radiographic report gen-

eration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2433–2442,

2021. 1, 2

[62] Yiyan Wu and William Y Zou. Orthogonal frequency division

multiplexing: A multi-carrier modulation scheme. IEEE
Transactions on Consumer Electronics, 41(3):392–399, 1995.

3

[63] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gener-

ation with visual attention. In International conference on
machine learning, pages 2048–2057. PMLR, 2015. 2

[64] Bang Yang, Yuexian Zou, Fenglin Liu, and Can Zhang. Non-

autoregressive coarse-to-fine video captioning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-

ume 35, pages 3119–3127, 2021. 2

[65] Shuzhou Yang, Moxuan Ding, Yanmin Wu, Zihan Li, and Jian

Zhang. Implicit neural representation for cooperative low-

light image enhancement. arXiv preprint arXiv:2303.11722,

2023. 2

[66] Haoxuan You, Luowei Zhou, Bin Xiao, Noel Codella, Yu

Cheng, Ruochen Xu, Shih-Fu Chang, and Lu Yuan. Learn-

ing visual representation from modality-shared contrastive

language-image pre-training. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXVII, pages 69–87. Springer,

2022. 2

[67] Jingyi You, Dongyuan Li, Manabu Okumura, and Kenji

Suzuki. Jpg-jointly learn to align: Automated disease predic-

tion and radiology report generation. In Proceedings of the
29th International Conference on Computational Linguistics,

pages 5989–6001, 2022. 1, 2, 5

[68] Jianbo Yuan, Haofu Liao, Rui Luo, and Jiebo Luo. Automatic

radiology report generation based on multi-view image fusion

and medical concept enrichment. In Medical Image Com-
puting and Computer Assisted Intervention–MICCAI 2019:
22nd International Conference, Shenzhen, China, October 13–
17, 2019, Proceedings, Part VI 22, pages 721–729. Springer,

2019. 2

[69] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu

Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao

Xia, et al. Glm-130b: An open bilingual pre-trained model.

In The Eleventh International Conference on Learning Repre-
sentations, 2022. 2

[70] Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu, Alan

Yuille, and Daguang Xu. When radiology report generation

meets knowledge graph. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 12910–

12917, 2020. 2, 5

[71] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Ja-

son Corso, and Jianfeng Gao. Unified vision-language pre-

training for image captioning and vqa. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages

13041–13049, 2020. 2

2874


