
Virtual Try-On with Pose-Garment Keypoints Guided Inpainting

Zhi Li1,2 Pengfei Wei1 Xiang Yin1 Zejun Ma1 Alex C. Kot2
1Bytedance Ltd. 2Nanyang Technological University

{zhi.li.2023, pengfei.wei, yinxiang.stephen, mazejun}@bytedance.com eackot@ntu.edu.sg

Abstract

Virtual try-on is an important technology supporting on-
line apparel shopping, which provides consumers with a vir-
tual experience to fit garments without physically wearing
them. Recently, the image-based virtual try-on has received
growing research attention. However, the synthetic results
of existing virtual try-on methods usually present distor-
tions in garment shape and lose pattern details. In this pa-
per, we propose a pose-garment keypoints guided inpaint-
ing method for the image-based virtual try-on task, which
produces high-fidelity try-on images and well preserves the
shapes and patterns of the garments. In our method, hu-
man pose and garment keypoints are extracted from source
images and constructed as graphs to predict the garment
keypoints at the target pose. After which, the predicted key-
points are used as guide information to predict the target
segmentation map and warp the garment image. The try-
on image is finally generated with a semantic-conditioned
inpainting scheme using the segmentation map and recom-
posed person image as conditions. To verify the effective-
ness of our proposed method, we conduct extensive exper-
iments on the VITON-HD dataset under both paired and
unpaired experimental settings. The qualitative and quan-
titative results show that our method significantly outper-
forms prior methods at different image resolutions. The
codes repository link is https://github.com/lizhi-ntu/KGI.

1. Introduction
Online shopping has exploded rapidly in the past decade

because of its convenience and high cost-effectiveness.
Buying clothes and other daily necessities without leaving
home is gradually becoming a mainstream lifestyle among
the young generation. With the popularity of online apparel
shopping, virtual try-on technology has received growing
interests from fashion brands and online retail platforms in
recent years [14].

Virtual try-on technology aims to improve the online
shopping experience by visualizing the fitting results with-
out requiring consumers to physically wear the garments.

Figure 1. Pose-garment keypoints guided inpainting framework.

According to whether 3D modeling is used, existing virtual
try-on methods are categorized into image-based approach
and 3D model-based approach. Since capturing 3D infor-
mation requires additional sensory devices and the 3D mod-
eling of person and garments costs more expense, image-
based technology has attracted more attention recently.

Image-based virtual try-on aims to produce high-fidelity
fitting results given person and garment images. The gen-
erated try-on image is expected to preserve the appearance
and pose of the given person image but replace the cloth
region with the given garment image. Most existing ap-
proaches share the same idea of firstly warping the garment
image for target pose then blending the person image with
warped garment image and target segmentation map. How-
ever, a common issue has always existed, that is, inappro-
priate warping of the garment image or inaccurate estima-
tion of the target segmentation map usually results in the
distortion of the garment shape. For instance, when part of
the cloth is occluded due to the person pose, as shown in
the Ground-Truth in Figure. 2, the warped garment gen-
erated by existing methods, e.g., thin-plate spline transfor-
mation (TPS) [3, 9], suffers from severer distortion at the
overlapping part, as observed in the upper-side of Figure. 2.
Other distortions may happen at cuff or neckline. Moreover,
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Figure 2. Garment warping results: conventional TPS v.s. ours.

the blending procedure may also blur the garment image
or lead to the loss of pattern details. To alleviate these is-
sues, we propose a pose-garment keypoints guided inpaint-
ing method (KGI) for image-based virtual try-on.

The motivation of KGI is that our interested information
in the given garment and person images, i.e., the garment
shape and the person pose, can be well represented by two
sets of keypoints, namely original garment keypoints and
pose keypoints. Using the two sets of keypoints, we can
generate pose-oriented garment keypoints, precisely rep-
resenting the warped garment shape following the person
pose. Subsequently, we use pose-oriented garment key-
points to guide fine-grained garment warping and target seg-
mentation map estimation. In the final try-on image gener-
ation, we further apply a semantic-conditioned inpainting
scheme to avoid the issue of blurring and loss of pattern
details. The framework of KGI is shown in Figure 1.

More specifically, we first extract keypoints from the
given garment and person images, respectively. The two
sets of extracted keypoints are constructed as graphs, and
then fed into a two stream graph convolutional network to
predict pose-oriented garment keypoints. Next, we use the
predicted keypoints to perform garment warping and gener-
ate target segmentation map. For garment warping, we sep-
arate the garment into five sub-segments, namely left low,
left up, center, right up and right low as shown in lower-side
of Figure 2, and then use the paired original/pose-oriented
kerpoints to warp each sub-segment individually. The final
warped garment integrates the five warped sub-ones. By do-
ing so, we can handle the overlapping deformation. For tar-
get segmentation map, we generate it using pose keypoints,
pose-oriented garment keypoints, and the source segmenta-
tion map extracted from the given person image.

Finally, the warped garment image and the target seg-
mentation map, together with the given person image,
source segmentation map, and pose keypoints, are input for
the try-on image generation. To avoid issues of blurring and
loss of pattern details, we recompose a person image with
incomplete fitting areas and inpaint the missing regions ac-
cording to the semantic segmentation maps. Precisely, the
given person image combined with pose keypoints and the
source segmentation map are used to generate a person im-

age with the garment and arms region cropped off. The
warped garment are then populated, conditioned on target
segmentation maps, into the cropped area of the person im-
age, resulting in the recomposed person image. To fill up the
missing area of the recomposed person image, we adopt in-
painting conditioned on the target segmentation map. Note
that the target segmentation map plays a role in providing
the body semantic information, and this is why we call the
final step semantic-conditioned inpainting. The main con-
tribution of the paper is summarized as:

• We propose a pose-garment keypoints guided inpaint-
ing method for the image-based virtual try-on task.

• We propose a graph-based model to extract the pose-
oriented garment keypoints for garment warping and
target segmentation map estimation.

• We propose a semantic-conditioned inpainting scheme
to generate the final try-on image.

• We conduct extensive experiments to verify the effec-
tiveness of KGI and show quantitative and qualitative
improvements compared with prior methods.

2. Related Works
In literature, virtual try-on methods are mainly divided

into 3D model based [2, 17, 19, 28, 21] and 2D image
based. With the exquisite modeling of person and garment,
3D model based approaches are capable of visualizing the
fitting results at different views. However, the requirement
of additional devices for information retrieval and the high
computational cost of 3D modeling highly constrains the
application of these methods, especially in scenarios with
limited resources.

Recently, image-based virtual try-on techniques have
been widely concerned and developed rapidly. Image-based
virtual try-on aims to generate a fitting image based on the
given person and garment images. Most existing methods
follow the pipeline of warping the given garment image and
blending the cloth region of the given person image with
the warped garment. For instance, Han et al. [9] propose a
method to blend the cloth region with coarse-to-fine strat-
egy. They firstly generate a coarse try-on image and a cloth
mask using a multi-task regression network. Afterward,
they leverage the cloth mask for cloth warping with the
TPS and blend the coarse image with a refinement network.
Wang et al. [22] propose a method to learn a TPS transfor-
mation for cloth warping and a composition mask to ensure
the smoothness of generated images while composing the
warped clothes and the rendered image. Han et al. [8] in-
troduce an appearance-flow-based generative model which
estimates a dense flow between source and target clothing
regions for cloth warping. Yu et al. [26] present a three-
stage design strategy including cloth warp, segmentation
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map prediction, and fusion for fine-scale image synthesis.
Yang et al. [25] propose to progressively predict the desired
layout of try-on and warp the cloth image according to the
generated layout. An inpainting module is then applied to
adaptively produce fitting results. Choi et al. [6] propose
a method which firstly uses the segmentation map to guide
the try-on synthesis, then roughly fits the cloth to person im-
age, and lastly handles the misaligned areas with Alignment
Aware Segment normalization. The garment warping and
the segmentation generation are usually performed individ-
ually in existing works. Considering the misalignment be-
tween the warped clothes and the segmentation map results
in the artifacts in the generated results, Lee et al. [15] pro-
pose a method with a multi-task condition generator for gar-
ment warping and segmentation map generation. He et al.
[10] propose a method based on StyleGAN for appearance
flow estimation with the global style features. To simplify
the existing multi-stage based method, Bai et al. [1] propose
a single-stage try-on framework which performs multi-flow
estimation using a deformable attention scheme.

Instead of explicitly performing cloth warping, some
virtual try-on methods are developed with delicate feature
learning strategies. Raj et al. [20] propose a method trans-
fers the cloth of person images with the garment image via
feature disentanglement. Ge et al. [7] propose a method
to produce highly-realistic try-on images by disentangling
clothes warping, skin generation, and other essential com-
ponents. Considering that the estimation of person segmen-
tation is sub-optimal and time-consuming, some virtual try-
on methods are developed without using segmentation map.
Issenhuth et al. [13] propose a try-on method in a student-
teacher paradigm. Chen et al. [5] propose a co-attention
feature-remapping framework to generate the try-on results
according to the driven-pose sequence in two stages.

3. Methods

As shown in Figure 1, the proposed Keypoints Guided
Inpainting (KGI) method consists of three stages. At Stage
1, we predict pose-oriented garment keypoints. At Stage
2, the pose-oriented garment keypoints are used to guide
cloth warping and target segmentation map generation. Af-
terwards, a person image is recomposed using the warped
garment image and the target segmentation map. At Stage
3, the recomposed person image is progressively inpainted
using a diffusion model conditioned on the target segmen-
tation map and known pixels.

3.1. Pose-Oriented Garment Keypoints Prediction

We formulate the pose-oriented garment keypoints pre-
diction as a garment graph regression problem conditioned
on the pose graph, and devise a two stream graph neural
network to solve the problem.

Figure 3. Illustration of pose and garment graphs.

The keypoints are extracted with the off-the-shelf models
for human pose estimation [4] and fashion landmark detec-
tion. Then we represent the keypoints with the graph struc-
ture composed of nodes and edges so as to better model the
relationships of different keypoints. As presented in Figure
3 (a), the pose graph consists of 10 nodes and 18 edges. The
nodes are defined as the joints of upper human body and the
edges are corresponding human skeletons. As the edges are
directional, the number of edges doubles the number of yel-
low lines. For the garment graph, the nodes are defined as
32 keypoints extracted from the given garment image, pre-
sented in Fig 3 (b). We define two types of edges to describe
different semantic relationships of these nodes. There are
64 edges representing the contour and 28 edges represent-
ing the symmetry structure for the garment as shown in Fig-
ure 3 (c) and (d). For all the nodes, we use horizontal and
vertical coordinate values as features.

To handle the pose-conditioned garment graph regres-
sion task, we devise a two stream graph neural network with
graph convolution blocks [29]. The architecture of the net-
work is shown in Figure 4. The main stream takes the gar-
ment graph as the input for nodes feature regression. More-
over, the pose graph is embedded as the side stream to con-
dition the regression task by hierarchically providing pose
information to the main stream at different feature levels.
The network is trained in a supervised manner to optimize
network parameters ΘKP . We use gG, gP , and gT to denote
the garment graph, the pose graph and the predicted graph,
respectively. The objective function is represented as:

argmin
θKP

LKP (ΘKP (gG, gP ), gT ), (1)

where LKP is the loss function. For a precise prediction,
LKP is defined as the combination of nodes loss LN and
edges loss LE as presented in Eqs. (2-4).

LKP (g, g
′) = λN · LN (g, g′) + λE · LE(g, g

′), (2)

LN (g, g′) =
1

MN

MN∑
i=1

||xi − x′
i||

2
, (3)

LE(g, g
′) =

1

ME

MN∑
j=1

MN∑
i=1

aij · (1−
⟨xi − xj , x

′
i − x′

j⟩
|xi − xj ||x′

i − x′
j |
)

(4)
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Figure 4. Illustration of the pose-oriented garment keypoints prediction module. The network consists of two graph convolution streams.
The mainstream takes the garment graph of given garment image as the input and outputs the garment graph at the target pose. The side
stream takes the pose graph as input and hierarchically embeds the pose information and provides conditions to the mainstream.

Figure 5. Illustration of the inputs for the target segmentation map
generation.

where the MN and ME denote the numbers of nodes and
edges in graphsxi, xj , x′

i and x′
j are the features of the ith

and jth nodes in graph g and g′, respectively, and aij is 1 if
edge exists between nodes i and j and aij is 0 otherwise.

3.2. Segmentation Map Generation, Cloth Warping
and Person Image Recomposition

With the predicted pose-oriented garment keypoints, we
generate the target segmentation map and perform cloth
warping. Afterwards, we recompose a person image used to
be inpainted. Following [9, 15], the garment region and part
of skin regions are removed from the source segmentation
map (generated from the given person image) to produce a
garment-agnostic segmentation map. As shown in Figure 5,
we draw the sketches of human skeleton and garment con-
tour using pose keypoints and pose-oriented garment key-
points. The sketches are stacked with the garment-agnostic
segmentation map and fed into an autoencoder to generate
the target segmentation map. The model is trained with a
cross-entropy loss in a supervised manner.

In addition to the target segmentation map generation,
pose-oriented garment keypoints are also used for fine-
grained garment warping. Thin Plate Spline (TPS) [3] well

preserves the pattern details during transformation hence
has been widely used in virtual try-on methods [9, 22] for
garment warping. Despite well handling non-rigid defor-
mation, TPS is not effective when encountering folding and
occlusions. To address the limitation of the conventional
TPS, we divide the garment into five sub-segments, namely
left low, left up, center, right up and right low, and then
use the paired original and pose-oriented kerpoints to warp
each sub-segment individually. The final warped garment is
obtained by combining the five individual warped images.
The comparison between the conventional TPS and our pro-
posed scheme is clearly presented in Figure 2.

With the target segmentation map and warped garment
images, we recompose a person image and treat it as the
incomplete try-on image for final inpainting. Due to space
limit, we put the details of the network architecture for tar-
get segmentation map generation and the implementation
details of the person image recomposition in the supplemen-
tary materials.

3.3. Semantic-conditioned Inpainting

The final stage aims to inpaint the missing regions in
the recomposed person image according to the target seg-
mentation map and the existing pixels. We observe that the
blending procedure of existing methods usually loses the
details of the input images. To better preserve the patterns
of the garment and the appearance of person, we produce
a binary mask indicating whether the region is kept or not
during inpainting. Inspired by [16], we develop a semantic-
conditioned inpainting model based on the denoising diffu-
sion. Different from [16], we enforce the model to inpaint
the missing pixels of try-on image conditioned on the target
segmentation map.
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Figure 6. Illustration of the semantic conditioned inpainting with the reverse diffusion process. Given an image xkeep
0 , the semantic

conditioned inpainting start from the time step T with a noise xT . s is the target segmentation map and m is the content keeping mask.

As defined in DDPM [12], an image x0 can be trans-
formed into a white Gaussian noise by progressively adding
noise in T time steps. In reverse, a noise sampled from
the standard Gaussian distribution can be reconstructed to
an image x0 by predicting and removing the noise step by
step. In this stage, we aim to train a denoising diffusion
model conditioned on the target segmentation map while
predicting noise. Afterwards, we use the denoising diffu-
sion model to perform inpainting for the final try-on image
synthesis, elaborated as follows.

As shown in Figure 6, given a range of time steps [1, T ],
the inpainting process starts from time step T . We use x0

to denote the image to be inpainted and xT to denote an
noise sampled from the Gaussian distribution. At each time
step t>1, the image xt−1 is the composition of xkeep

t−1 and
xinpaint
t−1 controlled by the content keeping mask m, as rep-

resented in Eq. (5):

xt−1 = m ∗ xkeep
t−1 + (1−m) ∗ xinpaint

t−1 , (5)

where xkeep
t−1 is produced by adding noise to x0 and xinpaint

t−1

is produced by the denoise from xt with the diffusion model
ϵθ conditioned on the segmentation map s. The calculation
of xkeep

t−1 and xinpaint
t−1 are formalized as Eqs. (6) and (7),

xkeep
t−1 =

√
ᾱtx0 + (1− ᾱt)ϵ, (6)

xinpaint
t−1 =

1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t, s)) + σtz (7)

Following the aforementioned reverse diffusion steps, the
missing pixels in the input image x0 will be inpainted pro-
gressively and the inpainting step is conditioned by the seg-
mentation map and known pixels in the input image.

Figure 7. Examples of generation results under the paired setting.

To get the semantic conditioned inpainting model, we
train a denoising diffusion model with the original person
image and its segmentation map. Following [23], the net-
work architecture consists of spatially-adaptive normaliza-
tion [18] to embed the segmentation map into the diffusion
model. The overall objective function LSI consists of two
loss terms which are formalized as in Eqs. (8-10):

LSI = Lsimple + Lvlb (8)

Lsimple = Et,x0,ϵ,s[||ϵ− ϵθ(xt, t, s)||2] (9)

Lvlb = KL(pθ(xt−1|xt, s)||qθ(xt−1|x0, xt)) (10)

where t is a given time step sampled from [0, T ], s is the
semantic segmentation map, x0, xt−1, xt are images at cor-
responding time steps, ϵ and ϵtheta are the noise and the de-
noising diffusion model, respectively, q and pθ are diffusion
process posterior and the distribution of estimations.
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Method 256 x 192 512 x 384 1024 x 768
SSIM↑ LPIPS↓ FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓

CP-VTON [22] 0.739 0.159 30.11 2.034 0.791 0.141 30.25 4.012 0.786 0.158 43.28 3.762
ACGPN [25] 0.833 0.074 11.33 0.344 0.858 0.076 14.43 0.587 0.850 0.112 43.29 3.730
VITON-HD [6] 0.811 0.084 16.36 0.871 0.843 0.076 11.64 0.300 0.873 0.077 11.59 0.247
HR-VITON [15] 0.864 0.062 9.38 0.153 0.878 0.061 9.90 0.188 0.892 0.065 10.91 0.179
KGI (Ours) 0.878 0.062 6.38 0.084 0.892 0.064 6.50 0.072 0.900 0.066 6.93 0.077

Table 1. Paired Setting Results on VITON-HD Dataset.

4. Experiments
To verify the effectiveness of KGI, we conduct experi-

ments on the recent VITON-HD dataset [6]. The dataset
contains 13,679 pairs of garment and person image data.
Following [15], we conducted experiments under both the
paired and unpaired experimental settings for fair compari-
son with prior methods. For unpaired experimental setting,
the quantitative results are evaluated with Frechet Inception
Distance [11] and and Kernel Inception Distance (KID),
which are commonly used to evaluate the performance of
generative models by comparing the distributions of gen-
erated images and ground truths. For paired experimental
setting, in addition to FID and KID, we also compute the
Structural Similarity (SSIM) [24] and Learned Perceptual
Image Patch Similarity (LPIPS) [27] for performance eval-
uation. Moreover, we did some ablation study to analyze
the necessity of each components of KGI. In addition to
numerical comparison, we also visualize the try-on results
and perform qualitative comparison with [6, 15]. Due to the
page limit, the implementation details about the network ar-
chitecture, the hyper parameters for model training, the user
study results, and some ablation study experiments are pro-
vided in the supplementary materials.

4.1. Paired Setting Results

In the paired virtual try-on experimental setting, the gar-
ment region of the person image are replaced with its paired
garment. The generated try-on images are expected to be
similar to the original person images. Following [15], we
conduct experiments at three image resolutions: 1024x768,
512x384, and 256x192, respectively. We compared the
quantitative results of our method with four image-based
virtual try-on methods.

The quantitative results are presented in Tabel 1. From
the numerical results, we observe that KGI consistently per-
forms the best in terms of SSIM, FID and KID evaluation
metrics at different image resolutions. Compared with prior
methods, KGI has higher SSIM scores. In terms of the FID
and KID performance, the superiority of KGI are more ob-
vious. Following [15], we report KID value multiplied by
a scale factor 100. For LPIPS, our method clearly performs
better than CP-VTON [22], ACPGN [25] and VITON-HD
[6] methods at all image resolution settings.

Method FID↓ KID↓
VITON-HD [6] 11.65 0.256
HR-VITON [15] 11.03 0.228
KGI (Ours) 10.33 0.174

Table 2. Unpaired Setting Results on VITON-HD Dataset.

In addition to the quantitative comparison, we further
visualize the generated fitting results of HR-VITON [15],
VITON-HD [6] and our method for qualitatively compari-
son. The image examples are shown in Figure 7. From the
images presented in the first row, we can observe that the
synthetic results of HR-VITON and VITION-HD method
present obvious color distortion and lose pattern details
compared to the ground-truth. In contrast, the try-on image
generated by KGI well preserves the color and detailed pat-
tern information, which looks more realistic and more simi-
lar to the ground-truth image. The rationale is that KGI uses
the paired original and pose-oriented garment keypoints to
warp the garment image, which well preserves the color and
patterns of the garment images. Moreover, after the image
recomposition, a content keeping mask is used during the
final inpainting. From the examples in the second row, we
can see that the results of baselines have severe semantic
errors. Especially for the image generated by HR-VITON,
the length of the hem is not consistent with the actual gar-
ment and the boundary between the garment and the waist is
blurring. Our method effectively reduces these errors with
a more accurate target segmentation map estimation guided
by the pose-oriented garment keypoints.

4.2. Unpaired Setting Results

Considering that the application scenario of the virtual
try-on technique is to fit on arbitrary garments with the
given person image. We further carry out experimental ver-
ification under the unpaired setting. Following [15], the
experiments are conducted at 1024x768 image resolution.
For quantitative comparison with prior methods, we gener-
ate the try-on images using the same person-garment pairs
as prior works [6, 15] at the 1024x768 image resolution.
Since there is no ground-truth under the unpaired setting,
SSIM and LPIPS is not applicable. Following [15], we
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Figure 8. Illustration of the generation results of different person and garment images. Images in the first row and the first column are given
person images and garment images respectively. The rest of images are generation results with our proposed method.

evaluate the performance with FID and KID metrics only.
As shown in Table. 2, KGI outperforms the two baselines
in terms of both evaluation metrics. Compared to the re-
cent HR-VITON method, KGI reduces the FID and KID by
0.7 and 0.54, respectively. In addition to quantitative re-
sults, we visualize the unpaired setting which is similar to
the practical application scenario. Figure 8 presents the try-
on results of KGI with arbitrary garment and person pairs.
We can see that our method is able to produce high fidelity
try-on images with arbitrary garments and people of differ-
ent body shapes and poses. The try-on images generated
by KGI well preserve the the shape, color, and textures of
the garment image without obvious artifacts and semantic
errors. We present the generation results of HR-VITON,
VITON-HD and our method in Figure 9. From the fig-
ure we find that the images generated by HR-VITON and
VITON-HD show more obvious color distortion and loss of
details. In addition, images generated with VITON-HD ap-
pear body shape distortion. The images generated by KGI
demonstrate higher fidelity.

4.3. Ablation Study

In KGI, inpainting is conditioned on the target segmen-
tation map and the recomposed person image with warped
garments. To verify the necessity of the target segmenta-

Method SSIM↑ LPIPS↓ FID↓ KID↓
full method 0.892 0.064 6.50 0.072
w/o segmentation 0.862 0.105 8.22 0.145
w/o warped cloth 0.861 0.187 14.34 0.464

Table 3. Contribution of Different Components as Conditions

No. Step SSIM↑ LPIPS↓ FID↓ KID↓
5 0.879 0.083 8.81 0.236
10 0.889 0.066 6.98 0.094
20 0.891 0.065 6.62 0.078
50 0.892 0.064 6.50 0.072

Table 4. The Impact of Number of Diffusion Step During Inference

tion map and warped garments, we carry out experiments
for ablation study. From the experimental results shown
in Table 3, we find that the performance degrades signif-
icantly without the two modules. Figure 10 shows exam-
ples of generation results. We can intuitively observe that
without the target segmentation map, despite the inpainted
pixels are similar to the garments texture, the generated im-
age is semantic incorrect. Without the warped garment, the
inpainted pixels in the generated image are with arbitrary
textures.
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Figure 9. Examples of generation results of HR-VITON, VITON-HD and our KPI methods under the unpaired setting.

Figure 10. Results generated without each conditions.

Figure 11. Results with different lengths of diffusion process.

The semantic-conditioned inpainting is based on a dif-
fusion process with T time steps. By increasing T , the
inpainting process costs more time and computational ex-
penses. Thus, we carry out experiments to verify the impact
of T . As shown in Table 4, the performance consistently im-
proves in terms of all evaluation metrics with the increase
of T . As shown in Figure 11, the results of qualitative vi-
sualization are consistent with the quantitative analysis, the
pattern of the inpainted regions are more realistic and har-
monious with longer diffusion process.

5. Conclusions

In this paper, we propose a pose-garment keypoints
guided inpainting (KGI) method for image-based virtual
try-on task, which produces high fidelity try-on images and
well preserves the patterns and shapes of the garments.
In the proposed method, pose keypoints and garment key-
points are extracted from the source images and constructed
as graphs to predict pose-oriented garment keypoints. After
which, the predicted keypoints are used as guide informa-
tion for garment warping and the target segmentation map
generation. The given person image is recomposed with the
warped garment image based on the semantic information
of the target segmentation map. The missing region of the
recomposed person image is finally filled with a semantic-
conditioned inpainting scheme. To verify the effectiveness
of KGI, we conduct extensive experiments on VITON-HD
dataset under both paired and unpaired settings. The qual-
itative and quantitative results show that KGI significantly
outperforms prior methods at different image resolutions.

In this work, the experiments on VITON-HD dataset
contain samples of upper-body wears only. While the ge-
ometric structures of lower-body wears and foot wears can
be described by landmarks as well. The KGI method could
be extended for other garment items in future work.
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