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Abstract

Underwater image instance segmentation is a fundamen-
tal and critical step in underwater image analysis and un-
derstanding. However, the paucity of general multiclass
instance segmentation datasets has impeded the develop-
ment of instance segmentation studies for underwater im-
ages. In this paper, we propose the first underwater im-
age instance segmentation dataset (UIIS), which provides
4628 images for 7 categories with pixel-level annotations.
Meanwhile, we also design WaterMask for underwater im-
age instance segmentation for the first time. In Water-
Mask, we first devise Difference Similarity Graph Atten-
tion Module (DSGAT) to recover lost detailed information
due to image quality degradation and downsampling to
help the network prediction. Then, we propose Multi-level
Feature Refinement Module (MFRM) to predict foreground
masks and boundary masks separately by features at differ-
ent scales, and guide the network through Boundary Mask
Strategy (BMS) with boundary learning loss to provide finer
prediction results. Extensive experimental results demon-
strates that WaterMask can achieve significant gains of 2.9,
3.8 mAP over Mask R-CNN when using ResNet-50 and
ResNet-101. Code and Dataset are available at https:
//github.com/LiamLian0727/WaterMask.

1. Introduction

The field of underwater image vision is dedicated to the
analysis and understanding of underwater images, and thus
to the exploration, exploitation and protection of marine
resources [17]. And instance segmentation assigns each
pixel in the image to a specific semantic category and dis-
tinguishes different individual objects in the same category
[11, 12, 33]. Since it is valuable in estimating object interac-
tions and inferring scene geometry, instance segmentation
is of great use in many underwater vision scenarios, such
as underwater robot vision, autonomous underwater vehicle
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(a) Original (b) Mask RCNN (c) Ours

Figure 1: A simple comparison of Mask R-CNN and Wa-
terMask R-CNN on UIIS dataset. The first, second and
third columns indicate the original image, results of Mask
R-CNN and our WaterMask R-CNN, respectively.

autopilot and underwater target recognition detection.
However, image instance segmentation for general un-

derwater scenes has not been explored thoroughly. On the
one hand, there is no general underwater image instance
segmentation dataset to promote training and evaluation of
instance segmentation models. The existing annotated data
is either related to the application of instance segmentation
for a specific object, like fish [10] and buildings [34], or
only applicable for certain tasks such as object detection
[27], semantic segmentation [14]. These datasets are not
general for the task of multi-class instance segmentation of
underwater images. On the other hand, quality degrada-
tion of underwater images is inevitable due to wavelength
and distance-related attenuation and scattering [1]. More-
over, sea snow formed by plankton and other organisms in
the ocean may also cause varying degrees of noise, which
is harmful for imaging quality. This leads to the fact that
directly transferring the existing instance segmentation al-
gorithms for natural images to underwater images, it will
have a certain degradation on the segmentation results. We
illustrate a simple case of utilizing Mask RCNN [12] for un-
derwater scenes in Figure 1. We can see that Mask R-CNN
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Figure 2: The figure shows pixel-level instance segmentation of specific object classes: humans, robots, fish, coral reefs,
undersea rocks, and undersea wrecks/ruins, and the segmented masks are superimposed on the image.

incorrectly assumes that the detector is part of the diver, but
our WaterMask specifically designed for underwater images
not only infers the correct segmentation, the segmentation
mask also fits the object boundary precisely.

To alleviate this issue, we propose the first underwater
image instance segmentation (UIIS) dataset, aiming to pro-
mote the development of instance segmentation for under-
water tasks. UIIS dataset contains 4628 images for 7 cat-
egories with pixel-level annotations, including fish, coral
reef, aquatic plant, etc. Simultaneously, we propose Wa-
terMask for multi-object underwater image instance seg-
mentation according to the intrinsic characteristics of un-
derwater imagery. As far as we know, this is the first
model specifically designed for underwater images. Under-
water instances (especially boundaries) are difficult to seg-
ment due to occlusion of similar instance clusters (e.g., fish
swarms and coral reefs), quality degradation, and sea snow.
Classical instance segmentation methods[7, 12, 4, 20] are
unable to accurately localize underwater object regions due
to too many downsampling operations. As a result, the
shape and details of the objects may be lost and distorted
after segmentation. WaterMask reconstructs the highest
resolution feature maps in the feature pyramid network
based on our proposed Difference Similarity Graph Atten-
tion Module (DSGAT) and uses these features to comple-
ment missing details, helping the model to align objects.
We then designed the Multi-level Feature Refinement Mod-
ule (MFRM) for WaterMask, which infers different resolu-
tion masks by supplementing the degradation information
so that higher resolution features can be utilized to fully
predict the boundaries. Additionally, we devise Boundary
Mask Strategy (BMS) with boundary learning loss to pre-
vent network overfitting by emphasizing the boundaries of
the high-resolution masks, which guides the network to out-
put more accurate instance masks.

We conducted extensive experiments to evaluate the ef-
fectiveness of our method. Firstly, we integrate Water-
Mask into the Mask R-CNN [12] framework, called Wa-

terMask R-CNN. which achieves 2.9, 3.8 mAP improve-
ment on the UIIS in ResNet-50 and ResNet-101 backbones.
Moreover, It tends to gain more improvement on a more
stringent evaluation mechanism due to the network’s precise
localization of the mask boundary part, as shown in Table 2.
Secondly, we also demonstrate the generalization ability of
our approach on another pixel-based instance segmentation
frameworks, Cascade R-CNN [3]. In summary, the main
contributions of this work are concluded as follows:

• We construct the first general underwater image in-
stance segmentation(UIIS) dataset containing 4,628
images for 7 categories with pixel-level annotations for
underwater instance segmentation task.

• We propose the first underwater instance segmentation
model WaterMask, as far as we know. In WaterMask,
we devise DSGAT and MFRM modules to reconstruct
and refine the image features with underwater imaging
degradation, and Boundary Mask Strategy with bound-
ary learning loss to optimize the boundaries of under-
water clustered instances.

• Extensive experiments on public evaluation criteria
demonstrate the effectiveness of the proposed UIIS
dataset and WaterMask.

2. Related Work
Underwater Image Segmentation Dataset. The ex-
isting underwater image datasets mainly include EUVP
datasets [16], UIEBD datasets [21] and SAUD datasets
[18] for image enhancement and color correction, SUN
dataset(underwater scenes) [30] and WishFish [35] dataset
for underwater scene recognition and underwater target de-
tection. Islam [14] et al. annotated and built the first un-
derwater semantic segmentation dataset containing 1500
images, which achieved wide acceptance. Nahuel [10] et
al. created the DeepFish dataset for instance segmentation
of different fishes.
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Figure 3: UIIS dataset. (a) Distribution of the number of instances per image in the UIIS dataset. (b) Distribution of image
resolutions in the UIIS dataset. (c) The number of instances per category in the UIIS dataset.

Category Descriptions

Fish Fish and other vertebrates
Reefs Coral reefs and other invertebrates

Aquatic plants Aquatic plants and flora
Wrecks/ruins Underwater damaged man-made artifacts
Human divers Human and the diving equipment they carry

Robots AUV, ROV and other underwater robots
Sea-floor Rocks and reefs on the seafloor

Table 1: Category descriptions of in UIIS dataset.

Instance Segmentation. Classical instance segmentation
methods [12, 3, 4, 7, 13, 28] are usually based on a Mask R-
CNN-style structure [12], which generates bounding boxes
by object detectors, and then uses the RoIAlign [12] op-
eration to extract the corresponding instance features from
the feature pyramid [22] into a low-resolution regular grid
for pixel-level mask prediction. Cascade RCNN [3] uses
a sequence of detectors to return accurate bounding boxes
for fine segmentation. PointRend [20] treats image seg-
mentation as a rendering problem, adaptively selecting the
location of point-based segmentation predictions. BMask
R-CNN [7] has a similar motivation to ours, using ob-
ject boundary information to improve the accuracy of mask
localization and to better align the predicted masks with
object boundaries. QueryInst [9] applies the Transformer
structure in instance segmentation, treating the instances of
interest as learnable query, and performs instance segmen-
tation in this way. Mask2Former [6] extracts local features
for segmentation by limiting the attention interval of cross-
attention in the Transformer decoder and works well.

3. UIIS Dataset
We propose the first dataset UIIS for general underwater

image instance segmentation, which contains a total of 4628
RGB underwater images with pixel-level annotations.

3.1. Dataset Collection and Annotation

Dataset Collection. We collected about 25,000 images
from various domains for underwater image enhancement
[21, 16, 15, 2, 32], semantic segmentation [24, 14], and ob-
ject detection [35, 27] etc. These images include different

natural underwater scenes and are adapted to various do-
mains such as marine exploration, marine ecological main-
tenance and human-robot intelligent cooperation applica-
tions. After that, we obtained about 5000 images filtered
by Underwater Color Image Quality Evaluation (UCIQE)
[31] and Underwater Image Quality Measurement (UIQM)
[26] metrics, and annotated them in detail.
Dataset Annotation. The UIIS dataset contains object
categories such as fish, coral reefs, aquatic plants, and
wrecks/ruins, which are major research components for ma-
rine exploration and marine ecological maintenance. In
addition, it contains pixel annotations of human divers,
robots/instruments, and seafloor/reefs, which are the main
targets for investigation of cooperative human-robot-object
intelligence applications. Detailed category definitions can
be found in Table 1. We assembled 15 volunteers with ba-
sic dataset annotation experience and fundamental knowl-
edge of marine biology to annotate the dataset. We adopted
sparsely annotated polygons to annotate each instance in the
image, and the resulting annotated data will be stored as a
mainstream COCO-style format [23] to facilitate the use of
this dataset by most general frameworks and models. Each
image was annotated by at least three volunteers and then
evaluated by another person to select the best annotation
and refine it. To classify potential confused objects such
as plants/coral reefs, vertebrates/invertebrates, we followed
the guidance in [8] and [25]. We also filtered out images that
could not reach consensus or could not be finely labeled to
ensure the rigor of the dataset, and finally we obtained 4628
images and corresponding annotations.

3.2. Dataset Statistic and Challenges

In this section, we illustrate the broad picture and chal-
lenges of the UIIS dataset by providing some visual samples
in Figure 2 and the statistical analysis in Figure 3. More vi-
sual samples about UIIS dataset can be seen in Appendix.
Challenge in the number of instance. In UIIS dataset, an
image often has multiple instances. As in Figure 2, gener-
ally the above images have more than five instances. In Fig-
ure 3 (a), we counted the number of instances in the dataset
and the scenes with more than 5 instances accounted for
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Figure 4: Framework of WaterMask. WaterMask consists of DSGAT (defined in Section 4.1), MFRM (defined in Section 4.2)
and BMS (defined in Section 4.3). DSGAT reconstructs the highest resolution feature P2 in the feature pyramid network
to generate global fine-grained features. Then, MFRM downsamples the region of interest from the reconstructed global
features, and fuses them with the local coarse-grained features in P3 − P6 to predict foreground masks and boundary masks
with different resolutions. The final output masks are optimized by BMS to achieve finer boundaries of underwater instances.

38.5% of the total and more than 10 instances accounted for
14.2%, in which the image with the most instances had 162
instances. Meanwhile, the increase of instances in underwa-
ter images is often caused by situations such as aggregation
of fish or clustering of corals. As in the second image in
Figure 2, instances tend to gather closely and occlude each
other, which demanding higher segmentation accuracy in
terms of instance boundaries.

Challenges in small or large instances The prediction of
too small or too large instances is a very general but chal-
lenging problem in the field of instance segmentation. In
UIIS dataset, we collected some tiny samples (e.g., part of
the fish in Figure 2) and huge samples (e.g., the wreck in the
fifth image of Figure 2). We counted instances of too small
or too large instances in the dataset, with a total of 3319
instances less than 14×14 pixels, accounting for 11.7% of
the total, in addition to 6485 instances of size larger than
128x128 pixels, accounting for 22.8% of the total, which
illustrates the challenge of the UIIS dataset.

Challenges in various image resolutions and image sce-
narios. UIIS dataset has images of various resolutions,
matching low-resolution images taken with handheld cam-
eras and medium-resolution to high-resolution images taken
with industrial equipment in underwater tasks, to meet the
resolution demands for various tasks. Moreover, UIIS
dataset also contains images with significant quality degra-
dation, high saturation or high contrast images to evaluate
the performance of the network in different ocean scenarios.

4. WaterMask
Figure 4 shows the overview of WaterMask. The features

are input into DSGAT for reconstruction to recover the lost
detailed information, then MFRM refines the multi-level
segmentation features and generate the prediction masks at
different scales. Finally, BMS guides the network through
the boundaries to predict the fine segmentation masks.

4.1. Difference Similarity Graph Attention Module

Although underwater images generally suffer from qual-
ity degradation, underwater instances are mostly clustered,
which makes it possible for underwater images to have sim-
ilar visual information in multiple places, retaining differ-
ent degraded details under different water and lighting con-
ditions. Therefore, we propose DSGAT for collecting this
similar visual information by computing the attention be-
tween image patches so that each patch can be comple-
mented by the visual information of multiple other similar
patches, and reconstructing the image details by extracting
and combining information through GAT operations.

DSGAT accepts the highest resolution feature P2 in the
feature pyramid [22] as input. P2 ∈ Rh×w×c, where h and
w denote the spatial dimension and c represents the number
of feature channels of the input. To reduce the number of
parameters processed by subsequent GAT operations, DS-
GAT is first fed P2 to a s × s convolutional layer with
stride s. Then each row of pixels in the output feature
P ′
2 ∈ Rh/s×w/s×d is treated as a graph node hi ∈ Rd,
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Figure 5: (a) Structure of DSGAT. (b) An illustration of the attention mechanism by node h⃗1 on its neighbors.

which is mapped to a patch of 4s × 4s size in the original
image. Thus, the graph consisting of image patches can be
represented as Hin = {h⃗1, h⃗2, . . . h⃗n}, n = h/s × w/s.
In addition, the presence of edges between every two nodes
in the graph means that the information will be aggregated
through the edges using GAT. Therefore, in order to collect
as numerous different degenerate residual detail features as
possible and to reduce computational cost and memory con-
sumption, we connect only the k nodes with the farthest Eu-
clidean distance from each node.

To transform the input features into higher-level fea-
tures and make the network better expressive, we use a
shared learnable weight matrix W ∈ Rd′×d to linearly
transform each node and then use the shared self-attentive
weight matrix l ∈ R2d′×1 to compute the attention coeffi-
cients for the node pairs. We only calculate aij for node
j ∈ Ni where Ni is the first-order neighbor nodes of node
i in the graph. To better compare the coefficients a between
different nodes, we normalize all selected j using the soft-
max function. Therefore, the formula for aij is:

aij =
exp(σ(lT[Wh⃗i ∥ Wh⃗j ]))∑

n∈Ni
exp(σ(lT[Wh⃗i ∥ Wh⃗n]))

, (1)

where ·T represents transposition and ∥ is the concatenation
operation, σ is the LeakyReLU function. Let δ be the ELU
activation function, the features of the final output can be
expressed as :

h⃗′
i = δ(

∑
n∈Ni

aijWh⃗j). (2)

As a result, information from its neighbors is aggregated
and adopted to update the feature definitions according to
Equation (2), an example of which is shown in Figure 5(b).
Meanwhile, we set d′ equal to d, and the output features of
DSGAT model will have the same dimension as the input
features, e.g., Hout = {h⃗′

1, h⃗
′
2, . . . h⃗

′
n}, h′

i ∈ Rd. Then, the
features represented by the output graph Hout are decon-
voluted and up-sampled as Pres ∈ Rh×w×d as the residual
information stream to complement the detailed information
lost due to quality degradation and network downsampling.

4.2. Multi-level Feature Refinement Module

The receptive field of the fine-grained features P ∗
2 re-

constructed by DSGAT is too small to be used directly for
instance segmentation, so we also prepare a MFRM, con-
sisting of ROIAlign [12] and convolutional layers, to fuse
the coarse-grained feature flow from the feature pyramid
[22] layer P3 − P6 with the fine-grained feature flow re-
constructed by DSGAT to help the network perform higher
quality segmentation.

Before proceeding to MFRM, the features extracted from
the feature pyramid by the 14×14 RoIAlign operation are
first sent to the two 3×3 convolutional layers to generate
the initial instance feature F1. After that, we iteratively re-
fine the initial F1 by MFRM using the fine-grained features
generated by DSGAT. At each stage, we use the RoIAlign
operation to extract local fine-grained features of the corre-
sponding size from P ∗

2 and concatenate them with the fea-
tures obtained in the previous stage, after which we per-
form a 1×1 convolution and an 2× upsampling operation
on these features to generate the output features for that
stage. Since the use of 1×1 convolution reduces the num-
ber of feature channels to half the number of input channels
before upsampling, the process of refining the instance fea-
tures does not increase the number of feature parameters,
thus incurring additional computational costs. MFRM will
be executed twice, and we call the outputs of both times F2

and F3, which will be used as foreground prediction and
boundary prediction, respectively.

4.3. Boundary Mask Strategy

We feed the features F2 and F3 generated by MFRM into
the 1×1 convolution layer to generate instance masks M2

and M3 with different resolutions. The pixels in F2 have
a large receptive field and contain rich high-level informa-
tion, which is beneficial for predicting the approximate lo-
cation of the instance mask, but because of the low feature
resolution, the boundaries of the prediction results tend to
be rough. Conversely, F3, while the high-resolution mask
reduces the boundary error, also causes the network to over-
predict other pixels of the mask. Therefore, we perform 2×
upsampling operation on M2 and replace its bounding part
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with the corresponding part of M3. We designed a convo-
lutional layer ∇2p using the Laplacian operator to generate
boundary from the base of the binary mask, ∇2p with stride
of 1, padding of 1, convolutional kernel size of b × b and
weight vector p⃗ can be formulated as follows:

pij =

{
b2 − 1, if i = j = b−1

2
−1, otherwise,

(3)

where i, j denote the position of the pixel pij in p⃗. Thus, the
boundary mask determination function can be expressed as:

B(M) =

{
1, if

∣∣∇2p(M)
∣∣ ≤ µb2

0, otherwise, (4)

where µ is a hyperparameter to control the size of boundary,
representing that a pixel in the binary mask is considered a
boundary pixel only if it is surrounded by at least µb2 pixels
whose values are not equal to it. µ is set as 0.15 empirically.
The final output mask Mout can be defined as:

Mout = f2×(M2)⊙B2× +M3 ⊙ (1−B2×), (5)

where ⊙ denotes pixel-wise multiplication, f2× is 2× up-
sampling operation using bilinear interpolation, B2× is a
boundary determination matrix, expressed as f2×(B(M2)).

4.4. Boundary Learning Loss

Instance segmentation models are often accustomed to
using binary cross-entropy (BCE) as mask loss. How-
ever, the quality degradation phenomenon often leads to
blurred boundaries of objects in underwater images, while
the pixels used for training boundary classification are much
smaller than those used for mask classification, resulting in
the BCE loss only provide an accurate but blurred localiza-
tion of the boundary region, which prevents the network to
effectively learn information from the boundary. To solve
this problem, we designed Boundary Learning Loss (BLL)
to allocate more weights to the boundary regions and thus
compel the network to pay more attention to the classifica-
tion within the boundary pixels, thereby making more accu-
rate predictions. BLL is formulated as follows:

LB =

∑H×W
i Ri

2× ·BCE
(
M i

3, G
i
3

)∑H×W
i Ri

2×
, (6)

where H and W are height and width of the mask M3,
Gk is the ground truth corresponding to Mk, i denotes the
i-th pixel, BCE () returns the binary cross-entropy loss of
a pixel, ∨ denotes the union of two regions, Ri

2× represents
the boundary region that ought to be focused on, and is de-
fined here as f2×(B(M2) ∨ (B(G2)).

We also perform 1×1 convolution on F1 to generate the
in-process mask M1 and use BCE loss for M1 and M2 to

insure that the parameters learned by the network in the pro-
cess are reliable, from which the total loss of the mask part
can be expressed as:

Lmask = LB +
∑

k⊂[1,2]

λkLBCE(Mk, Gk), (7)

where λk is hyperparameter to balance the weight (We em-
pirically set λ1 = 0.25 and λ2 = 0.65 in experiments).

5. Experiments
5.1. Implementation Details

We divide the UIIS into two parts, in which 3937 images
are used for training and 691 images are used for valida-
tion. Meanwhile, we adopt the standard mask AP metric
[23] as an evaluation metric to show the performance of the
model comprehensively through a series of different IoU
thresholds and different scales, including mAP, AP50, AP75,
APS , APM , and APL. We also list the mAP performance
of the model on fish, human divers and wrecks/ruins classes
to assess the applicability of the model in common under-
water domains such as underwater ecological conservation,
underwater human-machine interaction and marine explo-
ration. All backbone and method hyper-parameters are the
same as the original work, except for our newly designed
parts. In DSGAT, we set the graph nodes for the original
image patch size to 12×12 and the number of neighboring
nodes k = 11 for each node. In Boundary Mask Strategy,
we set the convolution kernel size of ∇2p to 7×7 for train-
ing and 9×9 for testing. We train 2 images on each GPU,
using SGD optimizer with a starting learning rate of 2.5e-3.
We implement WaterMask with PyTorch and MMDetection
[5], and use an NVIDIA A5000 GPU to train.We also im-
plement our network by using the MindSpore Lite tool1 In
addition, all models presented in the ablation experiments
are trained with 1× learning schedule.

5.2. Experimental Results

Comparisons with baseline framework.
We first evaluated our WaterMask head on the Mask

R-CNN framework [12] with different backbone networks
and different learning schedules in Table 2. The Water-
Mask R-CNN performs much better than the Mask R-CNN
in the vast majority of metrics under various configura-
tions. Without additional conditions, the WaterMask R-
CNN achieved 1.6 and 3.3 points of AP improvement over
Mask R-CNN on ResNet-50-FPN and ResNet-101-FPN, re-
spectively, when using the 1× training strategy. In Figure 6,
we can observe that the WaterMask R-CNN outperforms the
Mask R-CNN by 6.1 mAP points when using a more strin-
gent evaluation criterion, such as AP80. This illustrates that

1https://www.mindspore.cn/

1310



Method Backbone Schedule mAP AP50 AP75 APS APM APL APf APh APr

Mask R-CNN R50-FPN 1× 21.7 39.5 21.0 8.2 18.3 29.9 42.0 42.0 16.6
WaterMask R-CNN R50-FPN 1× 23.3 39.7 24.8 8.2 19.2 33.7 43.8 46.5 14.4
Mask R-CNN‡ R50-FPN 3× 23.5 42.3 23.7 7.8 19.3 34.9 44.3 46.4 15.8
WaterMask R-CNN‡ R50-FPN 3× 26.4 43.6 28.8 9.1 21.1 38.1 46.9 54.0 18.2
Mask R-CNN R101-FPN 1× 22.3 40.2 24.5 8.0 19.7 30.7 42.8 46.3 16.7
WaterMask R-CNN R101-FPN 1× 25.6 41.7 27.9 8.8 21.3 36.0 45.3 53.9 19.0
Mask R-CNN‡ R101-FPN 3× 23.4 40.9 25.3 9.3 19.8 32.5 43.6 49.0 18.0
WaterMask R-CNN‡ R101-FPN 3× 27.2 43.7 29.3 9.0 21.8 38.7 46.3 54.8 20.9
Cascade Mask R-CNN‡ R101-FPN 3× 25.5 42.8 27.8 7.5 20.1 35.0 43.9 52.9 22.3
Cascade WaterMask R-CNN‡ R101-FPN 3× 27.1 42.9 30.4 8.3 21.0 38.9 47.0 55.8 22.5

Table 2: Comparison with Mask R-CNN and Cascade Mask R-CNN on UIIS dataset. Models with ‡ were trained with
3× schedule using multi-scale training.
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Figure 6: mAP curves of Mask R-CNN and WaterMask R-
CNN under different mask IoU thresholds on the UIIS with
1× schedule. The blue line shows the AP gains of Water-
Mask R-CNN over Mask R-CNN.

the addition of WaterMask to the framework improves the
AP of the model because WaterMask head infers a high-
quality mask that fits more closely to the edges of the object
through a reasonable mask prediction mechanism, rather
than stack a large number of parameters.

When using the 3× training strategy, WaterMask R-
CNN boosts the AP by 2.9 and 3.8 on the two backbone net-
works. While using the 3× strategy and ResNet-101-FPN,
although reconstructing images by DSGAT pairs may hin-
der WaterMask’s prediction on small objects (0.3 AP behind
in APS), this also helps the network to better predict large
object masks with high accuracy (6.2 AP above in APL).
We also conducted experiments on the Cascade Mask R-
CNN framework. Compared with Cascade Mask R-CNN
[3], Cascade WaterMask R-CNN achieved significant im-
provements in various metrics, which shows the generaliza-
tion ability of our WaterMask.
Comparisons with state-of-the-art methods.

We present our proposed WaterMask on the UIIS dataset
and compare it with the state-of-the-art methods. Ta-
ble 3 demonstrates that WaterMask R-CNN outperforms
traditional natural image instance segmentation algorithms
such as Mask R-CNN [12], BMask R-CNN [7], and Point

Figure 7: Qualitative comparison on the UIIS dataset.
The first row represents the original image, and the second,
third and fourth rows represent the results of Mask R-CNN,
QueryInst and ours, respectively.

Rend [20] with 3.8AP, 5.1AP, and 1.3AP improvement
in mAP respectively. Although WaterMask RCNN has a
0.7AP lag in APS compared to R3-CNN [28], it achieves an
average improvement of 2.4AP in all other metrics. Addi-
tionally, WaterMask is also highly competitive when com-
pared with state-of-the-art algorithms that utilize Trans-
former structures, such as QueryInst [9], Mask Trans-
finer [19] and Mask2Former [6]. When compared with
Mask2Former, our Cascade WaterMask R-CNN exhibits
a 0.6AP lag in APr but boasts significant advantages in
APf (5.9AP lead), APh (3.9AP lead), and mAP (1.4AP
lead). In conclusion, our proposed WaterMask instance seg-
mentation algorithm shows promising results and outper-
forms previous methods on the UIIS dataset.

We also illustrate some visual comparisons with Mask
R-CNN [12] and QueryInst [9] on the test set of UIIS in
Figure 7, which demonstrates that our method consistently
succeeds in segmenting the overall shape of the salient in-
stances, even in challenging regions such as those depicted
in the second and third columns of the figure. Furthermore,
our method produces more accurate boundary and detail-
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Method Backbone mAP AP50 AP75 APS APM APL APf APh APr Params

Mask R-CNN‡ [12] ResNet-101 23.4 40.9 25.3 9.3 19.8 32.5 43.6 49.0 18.0 63M
Mask Scoring R-CNN‡ [13] ResNet-101 24.6 41.9 26.5 8.4 20.0 34.3 44.2 52.8 16.0 79M
Cascade Mask R-CNN‡ [3] ResNet-101 25.5 42.8 27.8 7.5 20.1 35.0 43.9 52.9 22.3 88M
BMask R-CNN‡ [7] ResNet-101 22.1 36.2 24.4 5.8 17.5 35.0 40.7 50.0 17.7 66M
Point Rend [20] ResNet-101 24.8 41.7 25.4 7.8 21.6 34.2 44.8 50.4 18.6 75M
Point Rend‡ [20] ResNet-101 25.9 43.4 27.6 8.2 20.2 38.6 43.3 54.1 20.6 75M
R3-CNN‡ [28] ResNet-101 24.9 40.5 27.8 9.7 21.4 33.6 45.4 52.2 20.2 77M
SOLOv2 [29] ResNet-101 24.5 40.9 25.1 5.6 19.4 37.6 36.4 48.3 20.6 65M
QueryInst‡ [9] ResNet-101 26.0 42.8 27.3 8.2 21.7 35.1 43.3 54.1 20.6 191M
Mask Transfiner‡[19] ResNet-101 24.6 42.1 26.0 7.2 19.4 36.1 43.8 26.3 19.8 63M
Mask2Former‡ [6] ResNet-101 25.7 38.0 27.7 6.3 18.9 38.1 41.1 51.9 23.1 63M
WaterMask R-CNN ResNet-101 25.6 41.7 27.9 8.8 21.3 36.0 45.3 53.9 19.0 67M
WaterMask R-CNN‡ ResNet-101 27.2 43.7 29.3 9.0 21.8 38.9 46.3 54.8 20.9 67M
Cascade WaterMask R-CNN‡ ResNet-101 27.1 42.9 30.4 8.3 21.0 38.9 47.0 55.8 22.5 107M

Table 3: Comparison with the State-of-the-art Methods on UIIS. Models with ‡ were trained with 3× schedule using
multi-scale training. The data marked in red are the best, and those in blue are the second best.

Methods mAP AP50 AP75 APS APM APL

w/o DSGAT 24.2 40.2 25.7 8.2 20.9 33.3
w/o MFRM 23.1 38.4 24.6 8.4 20.1 31.8
w/o BMS 22.5 41.2 23.1 8.4 19.0 31.1
w/o BLL 23.9 40.7 25.4 8.7 20.9 32.9

WaterMask 25.6 41.7 27.9 8.8 21.3 36.0

Table 4: Effectiveness of each com-
ponent in WaterMask. ResNet-101-FPN
and 1× training schedule is adopted.

Patch mAP AP50 AP75 APS APM APL

8×8 - - - - - -
12×12 25.6 41.7 27.9 8.8 21.3 36.0
16×16 24.2 40.6 25.8 8.4 21.6 32.0
20×20 23.5 38.1 25.2 8.7 20.1 32.5

Table 5: Different Size of Patch. Each
graph node corresponds to a 4s × 4s
patch, where s is downsampling stride.

k mAP AP50 AP75 APS APM APL

5 23.1 39.2 23.8 8.6 19.9 31.8
7 24.0 40.3 25.2 8.0 21.1 31.8
9 24.9 42.2 26.6 8.3 21.2 34.9

11 25.6 41.7 27.9 8.8 21.3 36.0
13 25.5 41.4 27.3 8.1 20.9 36.3

Table 6: Different value of k. k is
the number of farthest nodes to be
connected.

rich prediction mask, as can be seen in the last column of
Figure 7. In addition, more qualitative comparisons can be
seen in Appendix. In summary, WaterMask exhibits strong
performance in high saturation and mass degradation cases.

5.3. Ablation Studies

Effectiveness of each component in WaterMask. We
show the results of the following ablation experiments in
Table 4. (1) DSGAT. We verify the effectiveness of DS-
GAT by remove DSGAT from WaterMask. With DSGAT,
the model obtains a gain of 1.4 AP, which indicates that the
DSGAT reconstructed features can indeed help the model
to make better inference by collecting as much degraded
details as possible to compensate for the loss of information
due to mass degradation and downsampling operations. (2)
MFRM. When analyzing the validity of MFRM, we disable
the feature fusion function in the module and keep only its
main body. By using MFRM, WaterMask has a 2.5AP im-
provement, indicating that fusing the reconstructed global
fine-grained features into the local mask prediction as sup-
plementary details improves the quality of the mask predic-
tion, while increasing the model-aware domain. In addition,
large scale objects benefit more from reconstructed features,
as shown by their 4.2AP improvement on APL. (3) BMS.
From Table 4, it can be seen that utilizing the BMS can give
the model 3.1 AP improvement in mAP, which is caused by

the fact that BMS allows the network to predict different
positions of the mask using features of different scales. (4)
Boundary learning loss. To verify the effect of boundary
learning loss (BLL), we find that adopting BLL leads to a
1.7AP improvement of the model on mAP, which is due to
the BLL guiding the network to focus more on the segmen-
tation of the boundary part.
Different Size of Patch. We also discuss the size of the
original image patch corresponding to each graph node in
DSGATin Table 5. The downsampling stride s rages from
2 to 5, and we can see that when s = 2, the memory required
by the model has exceeded the upper limit of the device. In
the other cases in, s = 3 achieves the best results.
Different Number of Neighboring Node. We likewise dis-
cuss the number of neighboring nodes connected to each
node in DSGAT. It can be seen in Table 6 that the model
achieves the best performance-consumption balance when
the number of neighbor nodes k = 11.

6. Conclusion
In this paper, we have constructed the first general under-

water image instance segmentation dataset with pixel-level
annotations, which enables us to comprehensively explore
the underwater instance segmentation task. According to
the intrinsic characteristics of underwater imagery, we have
proposed WaterMask for underwater instance segmentation.
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Figure 8: More visual samples of annotated images with pixel-level instance segmentation in the UIIS dataset.

Figure 9: More qualitative comparisons of the UIIS dataset. The first, second and third rows illustrate the results of Mask
R-CNN, QueryInst and our method, respectively.

Extensive experiments have demonstrated the effectiveness
of UIIS dataset and WaterMask. In future work, we will ex-
tend the UIIS dataset with larger-scale and more challeng-
ing underwater images for complex underwater exploration.

Acknowledgment. This work was supported in part by
Hainan Provincial Natural Science Foundation of China
under Grant 622RC623; in part by the National Natural
Science Foundation of China under Grant 62201179; in
part by the specific research fund of The Innovation Plat-
form for Academicians of Hainan Province; in part by
the Taishan Scholar Project of Shandong Province under
Grant tsqn202306079; in part by Young Elite Scientist
Sponsorship Program by the China Association for Science
and Technology under Grant 2020QNRC001; in part by
CAAI-Huawei MindSpore Open Fund; in part by the Nat-
ural Science Foundation of Shandong Province for Distin-
guished Young Scholars under Grant ZR2020JQ29; in part
by Project for Self-Developed Innovation Team of Jinan
City under Grant 2021GXRC038; in part by the Hong Kong
Innovation and Technology Commission (InnoHK Project

CIMDA); in part by the Hong Kong GRF-RGC General Re-
search Fund under Grant 11203820 (9042598)).

A. Appendix

We present more visual samples and analysis of our UI-
IIS Dataset in Figure 8, where the different instances in the
image are labeled with different color masks. As can be
seen, the images in the UIIS dataset cover a wide range
of underwater scenes with different saturation, chromatic
aberration and quality degradation, which is beneficial for
network training in general underwater scenes. Moreover,
we also illustrate more visual comparisons with Mask R-
CNN [12] and QueryInst [9] on the UIIS test set in Figure 9.
We can see that our approach can successfully segment the
boundary masks of the fitting instances, such as those de-
picted in the second, third and last columns. Even in chal-
lenging regions, our network always predicts the correct and
reliable output masks completely, such as those depicted in
the fourth and fifth columns in Figure 9. In conclusion, Wa-
terMask can achieve superior segmentation performances.
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