
ENVIDR: Implicit Differentiable Renderer with Neural Environment Lighting

Ruofan Liang1,2 Huiting Chen1 Chunlin Li1 Fan Chen1 Selvakumar Panneer3 Nandita Vijaykumar1,2

1University of Toronto 2Vector Institute 3Intel Labs

Ground Truth Ours Ref-NeRF [35] VolSDF [43] NVDiffRec [26] NVDiffRecMC [14]

Figure 1: Compared to prior work, ENVIDR has more accurate surface reconstruction and higher quality rendering for shiny
objects with inter-reflections, as depicted for this “toaster” scene. The project page: nexuslrf.github.io/ENVIDR

Abstract

Recent advances in neural rendering have shown great
potential for reconstructing scenes from multiview images.
However, accurately representing objects with glossy sur-
faces remains a challenge for existing methods. In this
work, we introduce ENVIDR, a rendering and modeling
framework for high-quality rendering and reconstruction of
surfaces with challenging specular reflections. To achieve
this, we first propose a novel neural renderer with decom-
posed rendering components to learn the interaction be-
tween surface and environment lighting. This renderer is
trained using existing physically based renderers and is de-
coupled from actual scene representations. We then pro-
pose an SDF-based neural surface model that leverages
this learned neural renderer to represent general scenes.
Our model additionally synthesizes indirect illuminations
caused by inter-reflections from shiny surfaces by marching
surface-reflected rays. We demonstrate that our method out-
performs state-of-art methods on challenging shiny scenes,
providing high-quality rendering of specular reflections
while also enabling material editing and scene relighting.

1. Introduction
Neural Radiance Fields (NeRF) [24] has emerged as a

promising approach to many important 3D computer vision
and graphics tasks. By integrating deep learning with tra-
ditional volume rendering techniques, NeRF enables high-
quality 3D scene modeling and reconstruction with photo-

realistic rendering quality with significant recent research
that has achieved impressive results [25, 26, 28, 20]. While
NeRF can synthesize novel views with photo-realistic qual-
ity, they often struggle to accurately represent surfaces
with high specular reflectance. Instead of learning a solid,
smooth surface for these regions, NeRF models tend to in-
terpret the view-dependent specular reflections as virtual
lights or images underneath the actual surfaces (Figure 2).
This leads to learning inaccurate surface geometry in the
shiny regions. These virtual lights can also interfere with
normal directions and negatively affect performance in in-
verse rendering tasks such as relighting and environment
estimation. This challenge has also been observed and ana-
lyzed by prior work, Verbin et al. [35], but is yet to be fully
addressed.

Prior work largely takes one of two major approaches to
address the challenge of learning reflection in neural render-
ing. The first approach involves explicitly representing vir-
tual lights or images underneath the surface to account for
complex view-dependent appearance [13, 42, 17, 34]. The
original NeRF [24] and its extensions such as [21, 2, 45]
also synthesize complex reflections in this way (Figure 2).
Although this approach at large can improve rendering qual-
ity, it often sacrifices the accuracy of the reconstructed sur-
face and limits the ability to edit scenes, such as relight-
ing. Alternatively, the second approach incorporates knowl-
edge of inverse rendering to model the interaction between
light and surface [47, 49, 6, 26]. By decomposing render-
ing parameters, these methods can achieve material editing
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Figure 2: Artifacts in rendering surfaces with specular reflections
due to the inaccurate interpretation of virtual lights underneath ob-
ject surfaces (results from mip-NeRF [2]).

and scene relighting. However, these methods often suf-
fer from relatively low rendering quality compared to top-
performing NeRF models without full decomposition. This
is because the simplified or approximated rendering equa-
tion [16] used in these models cannot account for all com-
plex rendering effects. Ref-NeRF [35] improves the render-
ing of glossy objects with some decomposition; however its
editability (e.g., relighting) is still limited as it does not fully
decompose surface material and environment illumination.
In this work, we aim to further improve the quality of neu-
ral rendering for glossy surfaces, while retaining accurate
surface geometry and the ability to edit scenes.

In this work, we introduce ENVIDR, a new rendering
and modeling framework for high-quality reconstructing
and rendering of 3D objects with challenging specular re-
flections. It comprises two major parts: 1) a novel neu-
ral renderer and 2) an SDF-based neural surface model that
represents the scene and interacts with the neural renderer.

Our neural renderer is different from prior works [47,
49, 6, 26] that incorporate the rendering equations for in-
verse rendering as we do not use an explicit form of the
rendering equation. Instead, our neural renderer learns an
approximation of physically based rendering (PBR) using
3 decomposed MLPs accounting for environment lighting,
diffuse rendering, and specular rendering, respectively (Fig-
ure 3). This neural renderer is trained using images with
various materials and environments synthesized by existing
PBR renderers. In our renderer, the environment MLP is a
decoupled component that is trained to represent the pre-
integrated lighting of a specific environment with neural
features as output (different from prior methods [6, 10, 19]
that outputs RGB). Thus, our neural renderer can be used
for scene relighting and material editing by simply swap-
ping out the environment MLP with the one that is trained
to represent the desired environment map.

To interact with this neural renderer, we present a new
neural surface model that employs an SDF-based neural
representation (similar to [43]). We, however, use the dif-
fuse/specular MLPs from the neural renderer in place of
the commonly used directional color MLP. During training,
we only train this SDF model and a new environment MLP
without changing the pre-trained diffuse/specular MLPs in
the neural renderer.

Finally, shiny surfaces may have inter-reflections that
cause apparent view-dependent indirect illumination. To
model this, we approximate the incoming radiance from
inter-reflections by marching rays along the surface-
reflected view directions. We additionally propose a color
blending model that converts the approximated incoming
radiance into indirect illumination and blends it into EN-
VIDR’s final rendered color.

We demonstrate the effectiveness of our proposed
method on several challenging shiny scenes, and our results
show that it is quantitatively and qualitatively on par with
or superior to previous methods. Our method achieves this
while preserving high-quality decomposed rendering com-
ponents, including diffuse color, specular color, material
roughness, and environment light, which enables physically
based scene editing.

2. Related Work
Neural rendering and NeRF. Neural rendering is a

class of reconstruction and rendering approaches that em-
ploy neural methods to learn complex mappings from cap-
tured images to novel images [33]. Neural radiance field
(NeRF) [24] is one representative work that utilizes implicit
neural representations and volume rendering for photo-
realistic novel view synthesis. NeRF has inspired many
follow-up works that achieve state-of-the-art performance
in 3D rendering tasks [2, 3, 35, 31]. Recent work also uti-
lizes the hybrid neural representation to accelerate the train-
ing and rendering speed of NeRF models [25, 32], making it
practical for real applications such as game and movie pro-
ductions. One major limitation of the original NeRF method
is that its unconstrained volumetric representation leads to
low-quality surface geometry. Follow-up methods combine
the implicit surface representation with NeRF [43, 38] to
enable volume rendering on neural surface representations
for more accurate and continuous surface reconstruction.

Rendering reflective and glossy surfaces. Render-
ing views in scenes with complex specular reflections has
been challenging. Early methods use light field techniques
[11, 18, 40, 8], which require dense image capture. Re-
cent approaches use learning-based methods to reconstruct
the light field from a small set of images [51, 9, 39], but
are limited by the number of available viewpoints. Recent
advances in neural rendering also show promising results
in rendering reflective or glossy surfaces. NeRFReN [13]
models planar reflections by learning a separate neural field.
SNISR [42] treats specular highlights as virtual lights un-
derneath the surface with a reflection MLP. Neural Cata-
caustics [17] uses a neural warp field to approximate the
catacaustic through the virtual points for reflections. How-
ever, these methods do not model the physically based in-
teraction between lighting and surface, limiting their ability
to edit the lighting of represented scenes. Ref-NeRF [35]
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Figure 3: Overview of our proposed neural renderer. Training images are synthesized by Filament PBR engine [29] during
runtime, and probes are from HDRI Haven (CC-0). The MLPs in our neural renderer are some simple and tiny MLPs.

conditions the view-dependent color on the reflected view
direction and improves learning of surface normals, but it
may still inaccurately learn virtual geometry from complex
reflections (see Fig. 1). In contrast, our model uses the
surface-based representation to constrain the surface nor-
mal, and it decouples environment light from the directional
MLP to achieve scene relighting.

Neural inverse rendering. Inverse rendering aims to
estimate surface geometry, material properties and light-
ing conditions from images [22]. Recently, NeRF meth-
ods have been employed in inverse rendering tasks to learn
scene lighting and material properties (e.g., BRDF). How-
ever, prior work such as [4, 30] requires known lighting
conditions to learn materials. More recent works such as
[47, 6, 49, 26, 14] jointly estimate environment light and
materials with images under unknown lighting conditions.
These methods employ different representations to model
the environment light, such as learnable spherical Gaus-
sians [5, 47], pre-integrated environment texture [6], HDR
light probes [49, 19, 26, 14]. With the estimated decom-
posed rendering parameters, previous neural inverse render-
ing methods rely on an approximated or simplified render-
ing equation [16] to synthesize or edit the scene, limiting
their ability to achieve high-quality renderings comparable
to top-performing NeRF models. In contrast, our model
uses a neural renderer to learn the physically based inter-
action between surface and environment through existing
PBR renderers, without explicitly formulating the render-
ing equation. Similar to [6, 10, 19], our model also uses
MLPs to represent environment lights, however, the output
of our environment MLP is neural features instead of RGB
colors. Regarding indirect illumination, [30, 50] incorpo-
rate indirect illumination in their model, but their approx-
imation may not work well on shiny surfaces. We instead
directly march the surface-reflected rays to synthesize indi-
rect lighting on shiny surfaces.

3. Preliminaries
3.1. Volume Rendering with Neural Surface

Instead of representing volume density like NeRF [24],
neural surface methods [27, 44] use implicit neural repre-
sentation to represent scene geometry as signed distance
fields (SDF). For a given 3D point x ∈ R3, SDF returns
the point’s distance to the closest surface x 7→ s = Fθ(x),
Fθ denotes the neural spatial representation with learnable
parameters θ. Fθ can be either a fully implicit MLP or a
hybrid model containing voxel-based features [25, 46, 41].

To render a pixel, a ray r : o + tv̂ is cast from the cam-
era’s origin o along its view direction v̂. The SDF value
si of sampled point xi along the ray are then converted to
density or opacity value for volume rendering. VolSDF [43]
demonstrates a density conversion method with the cumu-
lative distribution function (CDF) of Laplace distribution:

σβ(s) =

{
1
2β exp( s

β ) if s ≤ 0,
1
β (1−

1
2 exp(−

s
β )) if s > 0

(1)

Where σ is converted volume density, β is a learnable pa-
rameter. With the predicted color c(xi) of sampled points
along the ray, the color C(r) for the current ray r is inte-
grated with volume rendering [23]:

C(r) =
∑
i

exp(−
i−1∑
j=1

σjδj)(1− exp(−σjδj))c(xi) (2)

where δi denotes the distance between adjacent sampled po-
sitions along the ray.

3.2. The Rendering Equation

Mathematically, the outgoing radiance of a surface point
x with normal n̂ from outgoing direction ω̂o can be de-
scribed by the physically based rendering equation [16]:

Lo(x, ω̂o) =

∫
Ω

Li(x, ω̂i)fr(x, ω̂i, ω̂o)(n̂ · ω̂i)dω̂i (3)
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(a) Ground Truth (b) Rendering Results (c) Normals
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Figure 4: ENVIDR achieves high-quality rendering (b) and reconstruction (c) of scenes with glossy/shiny surfaces. Our method represents
diffuse, direct specular, and indirect specular colors separately (d), and enables various scene relighting and material editing (e-h) using
our proposed neural renderer with decomposed rendering components. Ref-NeRF’s results are reproduced based on the official code.

where ω̂i denotes incoming light direction, Ω denotes the
hemisphere centered at n̂, Li(x, ω̂i) is the incoming radi-
ance of x from ω̂i, fr is the BRDF that describes the surface
response of incoming lights. BDRF can be expressed as a
function with diffuse fd and specular fs components [36]:

fr = fd + fs (4)

4. Neural Renderer: Approximating the PBR
From the rendering equation described in 3.2, we know

PBR is the result of the interaction between the surface ma-
terial and lighting. The neural renderer proposed in this
work attempts to learn a neural approximation of the PBR,
instead of explicitly formulating a rendering equation. In
addition to the geometry MLP F for surface geometry rep-
resentation, we use three MLPs: environment light MLP
E(·), diffuse MLP Rd(·), and specular MLP Rs(·) in place
of NeRF’s directional MLP. Similar to the decomposition
of BDRF in PBR (Eqn. 4), our diffuse MLP and specular
MLP implicitly learn the rendering rules for the correspond-
ing color components. The environment light MLP encodes
the distant light probes of a specific environment into neu-
ral features that interact with surface geometry features (i.e.,
feature fusion) through diffuse/specular MLPs.

4.1. Decomposed Rendering MLPs

Environment Light MLP. Similar to [6, 19, 10], we rep-
resent the environment light probes as a coordinate-based
MLP, conditioned on light directions. However, the output
of our environment MLP is a high-dimensional neural fea-
ture vector instead of a valid HDR pixel. These neural envi-
ronment features help our neural renderer capture complex
surface-lighting interactions compared to RGB pixels. For

efficient rendering, we use a similar approach as Neural-PIL
[6] to represent pre-integrated environment light. There-
fore, our environment MLP also requires roughness as the
additional input. We employ the integrated directional en-
coding (IDE) [35] over input direction and roughness to bet-
ter learn continuous, high-frequency environment feature
vectors. More specifically, given a light direction ω̂, and
a roughness value1 ρ, our environment MLP E returns a
neural feature vector fenv:

fenv = E(ω̂, ρ) (5)

fenv is then used for synthesizing diffuse/specular colors.
To change the environment lighting of the rendered scene,
we can swap the environment MLP to achieve this.
Diffuse MLP. The diffuse MLP learns color synthesis from
the diffuse (Lambertian) BRDF. Since the irradiance of dif-
fuse color is a cosine-weighted integration of environment
light over a hemisphere centered at surface normal direc-
tion n̂, the diffuse color is independent of view direction
and surface roughness. Based on this, we use the normal
direction n̂ and a constant high roughness value ρ0 (we
empirically set ρ0 = 0.64) as the input to our environ-
ment MLP to query the environment neural feature vector
fdenv = E(n̂, ρ0). Environment features fdenv are then con-
catenated with geometry features fgeo as the input to the
diffuse MLP Rd:

cd = Rd(fgeo, f
d
env) (6)

Specular MLP. As the counterpart of the diffuse MLP,
specular MLP learns color synthesis from the specular

1It should note that the roughness ρ used in IDE does not have the same
meaning as the perceptual roughness α used in analytic BRDF models.
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BRDF. The commonly used analytic BRDF model [7, 36]
also depends on view direction and roughness. The spec-
ular BRDF lobe2 tends to be located around the direction
of specular reflection and its shape is controlled by material
roughness ρ and the angle between the outgoing direction
ω̂o (ω̂o = −v̂) and surface normal n̂. Similarly, the out-
going radiance at ω̂o can be approximated as an integral
over the weight distribution of incoming lights that is cen-
tered around reflected view direction ω̂r. Therefore, we use
the reflected view direction ω̂r and the predicted roughness
ρ (via geometry MLP Fg) to query environment MLP E
for the environment feature vector fsenv = E(ω̂r, ρ). En-
vironment features, geometry features, and the dot product
between ω̂o and n̂. are then combined as the input to the
specular MLP Rs:

cs = Rs(fgeo, f
s
env, ω̂o · n̂) (7)

Finally, the synthesized diffuse and specular colors after
volume rendering (Eq. 2) are additively combined in the
linear space and then converted to sRGB space with gamma
tone mapping [1]:

C = γ(Cd +Cs) (8)

4.2. Training the Neural Renderer

We train our neural renderer using synthesized images
of a sphere with various materials and environment lighting
rendered by an existing PBR renderer as depicted in Figure
3. Specifically, we use Filament [29] to synthesize images
by varying perceptual roughness α, metallic value m, and
base color cb for the surface material, as well as different
light probes. Note that it trained with only 11 light probes
that are not used by any evaluated synthetic scene (please
refer to Supp. ?? for more details). To render the same
sphere with our neural renderer, we employ a simple MLP
Fsphere (similar to the one introduced in 3.1) to represent
the sphere surface with SDF and output geometry features
fgeo. Fsphere is also conditioned on the three material at-
tributes (α,m, cb) to account for the changes in geometry
features caused by varying material properties.

To train our model, we construct an L1 photometric loss
between images synthesized by the PBR renderer C∗ and
ones synthesized by our renderer C. Other than the pho-
tometric loss, we also use the ground truth SDF s∗ to su-
pervise the SDF prediction of the sphere (MSE). The loss
function is formulated as:

Lr = Lrgb(C,C∗) + λ1LSDF (s, s
∗) + λ2Leik(∇s) (9)

Where Leik is Eikonal loss [12], λ1 & λ2 are loss weights
which we set to 0.1 and 0.01 respectively. Figure 5 show-
cases the controllable rendering results of our renderer.
Once the neural renderer is trained, we will freeze the
weights of diffuse/specular MLPs for the rest experiments.

2We leave the anisotropic or refraction effects to future exploration.
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Figure 5: Spheres sythesized by our neural renderer with
varying metallic m, base color cb, roughness α, and light
probes. We will show an interactive web demo in the future.

4.3. Feature Normalization

Unlike the prior work that estimates all rendering param-
eters with physical meanings, our high-dimensional neural
features are unconstrained, since they are simply the outputs
of a linear net layer. There could be multiple possible fea-
ture mappings to the RGB colors in the high-dimensional
space, which could cause mismatched colors in relighting
results when swapping the environment MLP learned from
two different scenes. To constrain the neural features for
more plausible relighting results with environment MLP
swapping, we propose to normalize the neural features (fenv
and fgeo) with l2-norm of each feature vector:

f ′ = f/∥f∥2 (10)
This normalization maps neural features to the unit vector
on a hypersphere manifold, which improves the feature in-
terchangeability among different represented neural scenes.
We will give an empirical analysis of this in Section 7.1.

5. Neural Rendering for General Scenes
5.1. Neural Surface Representations

Following [25, 37, 46], our approach utilizes a hybrid
neural SDF representation Fg with multi-resolution feature
grids and hash encoding for the efficient learning and ren-
dering of scene surfaces. Given an input query position x,
Fg converts coordinate input x into a concatenated feature
vector from the multi-resolution hash encoding sampled
with trilinear interpolation (the encoding used in Instant-
NGP [25]). The encoded features are then fed into a shal-
low MLP to predict all of SDF s, roughness ρ, and geometry
feature fgeo. Note that unlike Fsphere used for learning the
neural renderer, Fg for general scenes is not conditioned
on any explicit material properties. Instead, Fg implicitly
learns the material properties through the multiview train-
ing images and encodes the knowledge into its geometry
feature fgeo.

s, ρ, fgeo = Fg(x) (11)
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(a) Tracing ray’s reflection path
to the camera.

(b) The raymarching process to
capture pixel color.

Figure 6: The illustrations of inter-reflections from the (a)
physical lighting process and (b) raymarching rendering
process. We assume the surface has a low roughness value.

For the color rendering, we utilize pre-trained diffuse
and specular MLPs (Rd & Rs) from 4.2 to synthesize out-
put colors. The weights of both Rd and Rs remain frozen
throughout training. To estimate unknown environment
light from training images, we randomly initialize an en-
vironment MLP Eg and optimize it alongside the geometry
model Fg . By combining all these components, we intro-
duce our neural scene representation and rendering model,
which we call ENVIDR. Similar to the training of other neu-
ral surface models [43, 38], Our training is supervised by L1
photometric loss and the Eikonal constraint [12]:

L = Lrgb(C,C∗) + λeikLeik(∇s) (12)

where λeik is a weight hyperparameter which we set to 0.01.
To ensure a smooth geometry initialization at the beginning,
we add additional SDF regularizations at the early training
iterations, please refer to the supplement for details.

5.2. Ray Marching for Inter-reflections

Our learned neural renderer from 4 only models the
image-based lighting from distant light probes. As a result,
ENVIDR in Section 5 cannot effectively handle the indi-
rect illumination caused by surface inter-reflection. Inter-
reflection can negatively impact the inverse rendering pro-
cess for mirror-like specular surfaces as shown in Figure
1. We observe that most indirect illumination effects arise
from reflective surfaces with low roughness values. Al-
though rougher surfaces can also be affected by indirect
illumination, the resulting visual effects are less apparent.
Thus, we focus on synthesizing inter-reflection on reflective
surfaces with predicted roughness lower than a threshold ρs
(set to 0.1 in our experiments).

The weight distribution of incoming lights for outgoing
radiance at ω̂o on surfaces with low roughness is similar to a
specular BRDF with rays concentrated at the reflected view
direction ω̂r. Thus, to efficiently approximate the incom-
ing radiance of the indirect illumination caused by inter-
reflection on these surfaces, we can perform additional ray-
marching (one-bounce) along the reflected view directions
(see Fig. 6). This raymarching is similar to the raymarching

along camera rays, but the origin and direction are set to the
surface point ps and ω̂r.

To render indirect illumination from approximated in-
coming radiance er from rendered reflected rays, we intro-
duce another color encoding MLP Eref to convert rendered
reflected ray color into neural features frefenv compatible with
our specular MLP Rs. The rendered indirect illumination
cref is then output by:

cref = Rs(fgeo, f
ref
env , ω̂o · n̂), frefenv = Eref (er, ρ) (13)

To blend the rendered indirect illumination into our final
rendering results, we let the geometry MLP Fg to addition-
ally predict a blending factor η ∈ [0, 1] (with Sigmoid acti-
vation) to combine the original direct specular color cs and
indirect specular color cref into new specular color c′s:

c′s = cs + ηcref (14)

6. Experiments
We evaluate our method on various challenging shiny

scenes and demonstrate the qualitative and quantitative re-
sults. We compare against prior methods based on view
synthesis, scene relighting, and environment light estima-
tion. Please refer to supplement for additional results.
Datasets. We use all 6 scenes in the Shiny Blender dataset
proposed in [35], 2 shiny scenes (“ficus” and “materials”)
from NeRF’s Blender dataset [24], and one real captured
shiny scene (“garden spheres”) from SNeRG [15].
Baselines. We choose Ref-NeRF [35] as the top-performing
view synthesis model, NVDIFFREC [26] and NVD-
IFFRECMC [14] as two top-performing neural inverse ren-
dering models. We also include VolSDF [43] as a baseline
neural surface model.

6.1. Novel View Synthesis

Following prior works, we use PSNR, SSIM, and LPIPS
[48] to measure the view synthesis quality. Similar to [35],
we use mean angular error (MAE) to evaluate the estimated
surface normals. We show the novel view synthesis results
for all evaluated scenes in Table 1 and visual results in Fig-
ure 1 and 4. Our model consistently shows better qualities
in perceptually based metrics (SSIM and LPIPS). ENVIDR
significantly outperforms previous neural inverse rendering
and neural surface methods. ENVIDR also performs on
par with Ref-NeRF, and with higher PSNR scores in some
scenes. However, we should note that Ref-NeRF has a much
lower surface quality (depicted by MAE) and does not sup-
port scene relighting.

In terms of learned surface quality, ENVIDR achieves
the lowest MAEs on almost all evaluated synthetic scenes,
indicating superior surface quality. We attribute this im-
provement primarily to the VolSDF-like neural surface rep-
resentation employed in our model, as VolSDF also demon-
strates competitive MAE values. Combining our neural
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ficus mat. car ball helmet teapot toaster coffee garden.
PSNR ↑

VolSDF 22.91 29.13 27.41 33.66 28.97 44.73 24.10 31.22 -
NVDiffRec 29.88 26.89 27.98 21.77 26.97 40.44 24.31 30.74 -
NVDiffMC 27.05 25.68 25.93 30.85 26.27 38.44 22.18 29.60 -
ReF-NeRF 33.91 35.41 30.82 47.46 29.68 47.90 25.70 34.21 23.46
Ours 30.53 29.51 29.88 41.03 36.98 46.14 26.63 34.45 22.67

SSIM ↑
VolSDF 0.929 0.954 0.955 0.985 0.968 0.998 0.928 0.977 -
NVDiffRec 0.985 0.955 0.963 0.858 0.951 0.996 0.928 0.973 -
NVDiffMC 0.969 0.943 0.940 0.940 0.940 0.995 0.886 0.965 -
ReF-NeRF 0.983 0.983 0.955 0.995 0.958 0.998 0.922 0.974 0.601
Ours 0.987 0.971 0.972 0.997 0.993 0.999 0.955 0.984 0.695

LPIPS ↓
VolSDF 0.068 0.048 0.047 0.056 0.053 0.004 0.105 0.061 -
NVDiffRec 0.012 0.047 0.045 0.297 0.118 0.011 0.169 0.076 -
NVDiffMC 0.026 0.080 0.077 0.312 0.157 0.014 0.225 0.097 -
ReF-NeRF 0.019 0.022 0.041 0.059 0.075 0.004 0.095 0.078 0.138
Ours 0.010 0.026 0.031 0.020 0.022 0.003 0.097 0.044 0.372

MAE◦ ↓
VolSDF 39.80 8.28 7.84 1.10 5.97 4.61 11.48 7.68 -
NVDiffRec 32.39 15.42 11.78 32.67 21.19 5.55 16.04 15.05 -
NVDiffMC 29.69 10.78 11.05 1.55 9.33 7.63 13.33 22.02 -
ReF-NeRF 41.05 9.53 14.93 1.55 29.48 9.23 42.87 12.24 -
Ours 34.44 8.47 7.10 0.74 1.66 2.47 6.45 9.23 -

Table 1: Quantitative comparison among evaluated models.
“NVDiffMC” is short for NVDIFFRECMC. Ref-NeRF’s results
are imported from their original paper [35].

renderer and neural surface model can further enhance the
quality of the learned surface geometry.

6.2. Environment Estimation

Although the environment MLP in ENVIDR does not
directly represent RGB values of environment light, it en-
codes the environment light as neural features. Our learned
neural renderer can convert these neural features into RGB
colors on a metallic sphere. By unwrapping such a sphere,
we can obtain a panorama view of the environment light,
which is similar to a light-probe image. This approach
allows us to extract the environment light and compare it
against the results obtained from other methods. In this sec-
tion, we choose NVDIFFREC as a strong baseline to evalu-
ate the accuracy of our environment light estimation.

Figure 7 visually compares our estimated environment
light maps with those of NVDIFFREC3. Figure 7 demon-
strates that our model effectively captures high-frequency
environment lighting through the training with multiview
images. Both our approach and NVDIFFREC accurately
capture the high-quality environment light from highly re-
flective objects like the “toaster” and “helmet”. However,
NVDIFFREC struggles to capture the detailed patterns of
environment light for less reflective objects such as the “cof-
fee” and “teapot”, whereas our model still captures these
patterns with precision.

3Indeterminable color scaling and incomplete estimation from limited
views make it difficult to quantify the quality of estimated light probes.

Scenes Reference Ours NVDiffRec [26]

Figure 7: The comparison of estimated environment light probes.
HDR light probes are converted to sRGB by gamma correction.
Note that NVDIFFRECMC’s extracted probes have similar or
worse qualities compared to NVDIFFREC.
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Figure 8: Relighting results for “car”. Except for ours, other
results are rendered by Blender. Since our relighting is synthesized
by a neural model, the intensity of environment light represented
by our env MLP may not match the Blender rendering.

6.3. Relighting

Similar to the relighting process in the traditional PBR,
we can relight the scene represented by our model by re-
placing the environment MLP with environment MLPs rep-
resenting new environment lights (these pre-trained env.
MLPs can be obtained from our neural renderer).

In Figure 8, we present a comparison between the scene
relighting results obtained from our neural renderer and
those obtained from NVDIFFREC and NVDIFFRECMC
(rendered by Blender). Table 2 also provides a quantitative
comparison. Our model outperforms NVDIFFREC since
NVDIFFREC fails to accurately reconstruct surfaces on re-
flective regions (e.g., artifacts shown in Figure 8). Even
though the baseline models directly use the same Blender
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car ficus materials
NVDiffRec 22.44 / 0.920 20.21 / 0.888 22.07 / 0.895
NVDiffMC 24.71 / 0.936 23.16 / 0.921 23.69 / 0.914
Ours 22.45 / 0.921 24.64 / 0.936 22.48 / 0.900

Table 2: Quantitative results (PSNR/SSIM) of relighting on
three synthetic scenes with 4 light probe images, each with
50 uniformly sampled views

rendering as the ground-truth reference, our model using
a fully neural approach still provides comparable results
with specular reflections on relit surfaces. Artifacts from
our approach are primarily due to: 1) the mismatch of ren-
dering parameters (e.g., light intensity) used by our neu-
ral renderer and Blender; 2) no synthesized shadowing ef-
fects on surfaces with occluded visibility due to the use of
pre-integrated environment representation. We intend to ad-
dress these limitations in our future work.

7. Ablation
7.1. The Design Choice of Neural Render

Our proposed neural renderer is able to generalize to
scenes with various shapes and materials for achieving rea-
sonable relighting effects. To justify the design choices, we
conduct ablation studies from two aspects and present the
visual comparisons in Figure 9.

Reference l2-Norm Inst-Norm w/o Norm w/o Pre-train

Figure 9: The effects of design choices on scene relighting.
Note that models trained with different design options have
the same level of rendering quality before relighting.

The use of pre-trained rendering MLPs. The use of pre-
trained diffuse/specular MLPs allows the model to enforce
a consistent feature-color mapping across different scenes.
Without pre-training, the model cannot synthesize accurate
reflections during relighting (“w/o Pre-train” in Fig. 9).
Feature normalizations. The feature normalization (Sec.
4.3) is another non-trivial part of our design. To
demonstrate the effectiveness of our l2-Norm, we train
two additional models: one without any normalization
(“w/o Norm”) and one with instance normalization (“Inst-
Norm”). Compared to our l2-Norm, both w/o Norm and
Inst-Norm fail to synthesize the accurate specular highlight
in the relit scene (e.g., pot in Fig. 9).

7.2. The Effect of Indirect Illuminations.
To demonstrate the effectiveness of our modeling of indi-

rect illuminations, we train our model without specific mod-
eling of indirect illumination (“w/o Indir.”) on 4 scenes that

contain obvious inter-reflections. Table 3 and Figure 10 pro-
vide the quantitative and qualitative comparisons, respec-
tively. The results demonstrate that our additional modeling
of indirect illumination can help improve model’s rendering
quality, as well as the accuracy of surface geometry.

materials toaster coffee garden.
w/o Indir. 29.40 / 8.85 25.46 / 7.64 33.86 / 10.44 22.57 / -

w/ Indir. 29.51 / 8.47 26.63 / 6.45 34.45 / 9.23 22.67 / -

Table 3: Comparison of PSNR/MAE scores for models
trained with and without indirect illumination modeling.

Ground Truth w/o Indir. w/ Indirect Illumination

Figure 10: The visual comparison between models trained
with and without indirect illumination modeling, the right-
most figure shows our synthesized indirect specular color.

8. Limitations and Conclusions
The main limitation of our neural renderer is the ab-

sence of explicit modeling of light visibility, which is cru-
cial for synthesizing shadowing effects. Our use of a pre-
integrated representation of environment light, assuming
full visibility of the lights to the surface, may result in
lower rendering quality of shaded surfaces in complex ob-
jects (e.g., the base of material balls in Fig. 10). This issue
is also present in other neural inverse rendering methods
[47, 6, 26]. Given the high-quality surface geometry recon-
structed by our model, our future work could incorporate
geometry-based visibility approximations in proposed re-
cent works [14, 19] to deal with shadowing effects. Other
limitations of our approach include the lack of fine-grained
rendering parameter decomposition, the inability to handle
semi-transparent or unbounded scenes, and limited support
for indirect illuminations only on low-roughness surfaces.

To summarize, we show that our approximation of phys-
ically based rendering with decomposed neural net compo-
nents can help implicit neural surface models improve ren-
dering and reconstruction of glossy surfaces, with results
on par with or better than the state-of-art for view synthesis
and inverse rendering, while enabling more accurate sur-
face reconstruction and scene editing. The design of our
neural renderer is inspired by PBR and models the implicit
interaction between material and environment lighting. We
use various plausible scene relighting and material editing
examples in the paper to show the applicability of our ap-
proach. We believe our approach can benefit other implicit
neural representation methods, leading to higher rendering
and reconstruction quality with enhanced scene editability.
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