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Abstract

The accuracy of learning-based optical flow estimation
models heavily relies on the realism of the training datasets.
Current approaches for generating such datasets either em-
ploy synthetic data or generate images with limited real-
ism. However, the domain gap of these data with real-world
scenes constrains the generalization of the trained model to
real-world applications. To address this issue, we inves-
tigate generating realistic optical flow datasets from real-
world images. Firstly, to generate highly realistic new im-
ages, we construct a layered depth representation, known
as multiplane images (MPI), from single-view images. This
allows us to generate novel view images that are highly re-
alistic. To generate optical flow maps that correspond ac-
curately to the new image, we calculate the optical flows of
each plane using the camera matrix and plane depths. We
then project these layered optical flows into the output op-
tical flow map with volume rendering. Secondly, to ensure
the realism of motion, we present an independent object mo-
tion module that can separate the camera and dynamic ob-
ject motion in MPI. This module addresses the deficiency
in MPI-based single-view methods, where optical flow is
generated only by camera motion and does not account
for any object movement. We additionally devise a depth-
aware inpainting module to merge new images with dy-
namic objects and address unnatural motion occlusions. We
show the superior performance of our method through ex-
tensive experiments on real-world datasets. Moreover, our
approach achieves state-of-the-art performance in both un-
supervised and supervised training of learning-based mod-
els. The code will be made publicly available at: https:
//github.com/Sharpiless/MPI-Flow .

1. Introduction

Optical flow refers to the precise calculation of per-pixel
motion between consecutive video frames. Its applica-
tions span a wide range of fields, including object tracking
[10, 51], robot navigation [23, 41], three-dimensional (3D)
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(a) Depthstill. [1] (b) RealFlow [12] (c) Ours

(d) Source image and details of generated flows from our method

Figure 1: Visual comparison of images reveals that our
method, when compared with those based on real-world
images [1, 12], demonstrates superior image realism. Our
method also achieves fine optical flows by employing vol-
ume rendering in MPI and separate motions of the camera
and object with the independent object motion module.

reconstruction [24, 14], and visual simultaneous localiza-
tion and mapping (SLAM) [52, 8, 29]. In recent years, with
the rapid development of neural networks, learning-based
methods [44, 45] have demonstrated significant advances
compared to traditional model-based algorithms [3, 49, 50].
Conventional practices primarily rely on synthetic data, as
demonstrated by [9, 18, 4]. Synthetic data contains exact
optical flow labels and animated images. However, the do-
main gap between synthetic and real data hinders its further
improvements in real-world applications.

Recent studies have aimed to extract optical flow from
real-world data by employing hand-made special hardware
[2, 11, 34]. However, the rigidly controlled and inefficient
collection procedure limits their applicability. To address
this issue, Depthstillation [1], and RealFlow [12] have been
proposed, which project each pixel in the real-world image
onto the novel view frame with the help of random motions
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of virtual cameras or estimated flows. Nonetheless, both
methods are limited by the lack of image realism, leading to
issues such as collisions, holes, and artifacts, as illustrated
in Figure 1. These limitations constrain the real-world per-
formance of learning-based optical flow models [44, 45].

To achieve higher image realism, we turn our atten-
tion to the use of single-view Multiplane Images (MPI)
[53, 47, 54, 6, 13]. This line of work demonstrates re-
markable single-view image rendering capabilities and ef-
fectively reduces collisions, holes, and artifacts commonly
found in previous methods [1, 12]. These advancements
contribute to higher image realism, prompting a natural
question: Can high-realistic MPI methods be adapted to
generate high-quality optical flow datasets for training pur-
poses?

To this end, we propose MPI-Flow, aiming to gener-
ate realistic optical flow datasets from real-world images.
Specifically, we first review the image synthesis pipeline of
MPI and devise an optical flow generation pipeline along
with image synthesis. In this step, we build an MPI by
warping single-view image features onto each layered plane
with the predicted color and density. The color and density
then be mapped into a realistic new image via volume ren-
dering. With the layered planes, we extract optical flows
with virtual camera motions from the rendered image and
the real image. Second, as the MPI can only be applied
in static scenes, which yield limited motion realism, we
propose an independent object motion module and a depth-
aware inpainting module to tackle this issue. The indepen-
dent object motion module decouples dynamic objects from
static scenes and applies different virtual camera matrices to
calculate the motion of both dynamic and static parts. The
depth-aware inpainting module is introduced to remove the
object occlusion in the synthesized new image.

With MPI-Flow, a large number of single-view images
can be used to generate large-scale training datasets with
realistic images and motions. This enables learning-based
optical flow models better generalization to a wide range of
real-world scenes. Extensive experiments on real datasets
demonstrate the effectiveness of our approach. In summary,
our main contributions are as follows:

• We are the first to present a novel MPI-based optical
flow dataset generation framework, namely MPI-Flow,
which can significantly improve the realism of the gen-
erated images and motion.

• We present a novel independent object motion mod-
ule for modeling dynamic objects in MPI, which can
model realistic optical flow from camera motion and
object motion simultaneously.

• We design a depth-aware inpainting module for realis-
tic image inpainting, which can remove unnatural mo-
tion occlusions in generated images.

2. Related Work
In this section, we review the most relevant studies on

optical flow networks, optical flow dataset generation, and
novel view image synthesis methods.
Supervised Optical Flow Network. Early methods train
deep neural networks to match patches across images [49].
FlowNet [9] first trains convolutional neural networks on
the synthetic datasets with optical flow. Moreover, the
follow-up methods [16, 17, 18, 32, 31] with advanced mod-
ules and network architectures make a significant improve-
ment in supervised optical flow learning, with RAFT [45]
representing state-of-the-art. However, generalization re-
mains a cause for concern due to the domain gap between
synthetic datasets and real-world applications. To address
this problem, our work focuses on generating realistic opti-
cal flow datasets from real-world images.
Dataset Generation for Optical Flow. The use of fluores-
cent texture to record motions in real-world scenes is first
described in [2] to obtain flow maps. KITTI [11, 34] pro-
vides sophisticated training data through complex lidar and
camera setups. However, the aforementioned real-world
datasets have limited quantities and constrained scenes,
making it difficult for models trained using deep super-
vised learning to generalize to more expansive scenes. Syn-
thesized training pairs, such as those in Flyingchairs [9]
and Flyingthings [18], have shown promise for supervised
learning. However, moving animated image patches can-
not accurately match real-world scenes, leading to domain
gaps. AutoFlow [43] introduces a learning-based approach
for generating training data by hyper-parameters searching.
However, AutoFlow relies on optical flow labels for domain
adaptation, which is not practical in most scenarios where
ground truth labels are unavailable.

Two recent works have proposed methods for generat-
ing training datasets based on real-world images or videos.
The first, called Depthstillation [1], synthesizes paired im-
ages by estimating depth and optical flows from a single
still image. Optical flows are calculated based on the vir-
tual camera pose and depth. The second method, called Re-
alFlow [12], synthesizes intermediate frames between two
frames using estimated optical flows with RAFT. However,
both methods use naive image synthesis techniques that fail
to meet the demand for realism criteria due to hole-filling
and artifacts. In contrast, our method improves on this ap-
proach by using a well-designed and modified multiplane
image (MPI) technique to obtain realistic images.
Novel View Synthesis. View synthesis methods aim to gen-
erate new images from arbitrary viewpoints by utilizing a
given scene. Several classical approaches [48, 30, 53, 35]
have been proposed that utilize multiple views of a scene
to render novel views with geometric consistency. How-
ever, synthesizing novel views from a single image remains
challenging due to the limited scene information available.
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Figure 2: Illustration of our proposed MPI-Flow framework with single-view image Is as input. We estimate depths to
construct MPI where RGB and density of each plane are predicted by neural networks and the flow of each plane is calcu-
lated with camera matrixes. Both the novel views and flow maps are rendered by volume rendering and separated by the
independent object motion module with novel view object masks. The new image is merged by depth-aware inpainting.

Pixelsynth [39] and Geometry-Free View Synthesis [40] ad-
dress this challenge by optimizing the synthesizing model
using multi-view supervision. However, their generaliza-
tion to in-the-wild scenes is hindered by the lack of large-
scale multi-view datasets. Single-view MPI [47] and MINE
[26] decompose the scene into multiple layers and utilize an
inpainting network to extend each occluded layer. Addition-
ally, AdaMPI [13] addresses complex 3D scene structures
through a novel plane adjustment network. These MPI-
based methods have demonstrated success in synthesizing
realistic images, and thus, we adopt multiplane images as
our basic synthesis tool. However, to the best of our knowl-
edge, there are currently no publicly available methods for
generating optical flow datasets from MPI. To extract opti-
cal flows from MPI, we propose a novel pipeline that differs
from previous MPI-based image synthesis methods by uti-
lizing layered depths and virtual camera poses. Addition-
ally, to enhance the realism of the generated optical flow
dataset, we introduce an independent object motion module
for static and dynamic decoupling, as well as a depth-aware
inpainting module to remove unnatural occupations.

3. The Proposed MPI-Flow
In this section, we first briefly review the basics of

our motivation and formulation for novel view image gen-
eration. Then we introduce the optical flow generation

pipeline. Next, we present the details of two crucial com-
ponents of our approach, including independent object mo-
tions and depth-aware inpainting.

3.1. Motivation and Formulation

Our goal is to generate a realistic novel view image
It ∈ RH×W×3 and the corresponding optical flow maps
Fs→t ∈ RH×W×2 from single-view image Is ∈ RH×W×3.
H and W are the height and width of the image, respec-
tively. The two-dimensional array on the optical flow Fs→t

represents the change of the corresponding pixel from im-
age Is to image It. The input image, generated image, and
optical flow together form a training pair.

To generate training pair, previous works [1, 12] wrap
pixels from image Is to image It with estimated flows. This
inevitably leads to holes and artifacts in the image It, which
damages the image realism. Recent work [47, 26, 13] on
Multiplane Images (MPI) reveals that the layered depth rep-
resentation of the single-view image can significantly im-
prove the realism of the generated novel view image.

We aim to tackle the image realism challenges in our
methods and meanwhile enhance the optical flow realism
and motion realism. Accordingly, we present an MPI-based
optical flow dataset generation method, namely MPI-Flow.
Figure 2 shows the MPI-Flow framework for training pair
generation. To construct MPI, given the input image Is,
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an off-the-shelf monocular depth estimation network [38]
is used to estimate its depth map. Then we use a neural
network to construct N fronto-parallel RGBσ planes with
color, density, and depth predicted by neural networks in
the rays under novel viewpoints.

To decouple dynamic objects, an instance segmentation
network [7] gives the object mask. Then we use bilinear in-
terpolation to obtain the object masks under two viewpoints
respectively. Using object masks and constructed MPI, we
use volume rendering to render the separate novel view im-
ages, optical flow maps, and depths of dynamic objects and
the static scene, respectively. The optical flow Fs→t can be
obtained simply by adding the optical flows of the objects
and the scene. However, due to different viewpoints, merg-
ing new images results in vacant areas and false occlusion.
To this end, we design a depth-aware inpainting module,
using rendered depths and object masks to fill the holes and
repair false occlusion in the synthesized new image It.

3.2. Optical Flow Data Generation

Novel View Image from MPI. To render realistic image It
under a target viewpoint µt, we use pixel warping from the
source-view MPI in a differentiable manner. Specifically,
we use a neural network F as in [13] to construct N fronto-
parallel RGBσ planes under source viewpoint µs with color
channels cn, density channel σn, and depth dn from the
input image Is and its depth map Ds as:

{(cn,σn,dn)}Nn=1 = F(Is,Ds), (1)

where N is a predefined parameter that represents the num-
ber of planes in MPI. Each pixel (xt, yt) on the novel view
image plane can be mapped to pixel (xs, ys) on n-th source
MPI plane via homography function [15]:

[xs, ys, 1]
T ∼ K

(
R − tnT

dn

)
K−1 [xt, yt, 1]

T
, (2)

where R and t are the rotation and translation from the
source viewpoints µs to the target viewpoints µt, K is the
camera intrinsic, and n = [0, 0, 1] is the normal vector.
Thus, the color c′n and density σ′

n of each new plane for the
novel view It can be obtained via bilinear sampling. We use
discrete intersection points between new planes and arbi-
trary rays passing through the scene and estimate integrals:

It =
N∑

n=1

(
c′nα

′
n

n−1∏
m=1

(1−α′
m)

)
, (3)

where α′
n = exp (−δnσ

′
n) and δn is the distance map be-

tween plane n and n+1 and we set the initial depth of MPI
planes uniformly spaced in disparity as in [13].

Optical Flow from MPI. Although MPI-based methods
synthesize realistic images, reliable optical flow maps are

also needed to train learning-based optical flow estimation
models. Therefore, we propose adding an additional optical
channel in each plane. To this end, we compute the optical
flow on the n-th plane at pixel [xs, ys] of source image Is
by fn = [xt −xs, yt − ys] with a backward-warp process in
terms of the inverse equivalent form of Equation (2):

[xt, yt, 1]
T ∼ K

(
R† − t†nT

dn

)
K−1 [xs, ys, 1]

T
, (4)

where xs and ys are uniformly sampled from a H×W grid.
R† and t† are the inverses of R and t, respectively.

To make sure that the optical flow maps match the novel
view image It perfectly, we propose to render Fs→t as in
Equation (3) in terms of volume rendering:

Fs→t =

N∑
n=1

(
fnαn

n−1∏
m=1

(1−αm)

)
, (5)

where fn ∈ RH×W×2 is the optical flow maps on the n-th
plane of image Is. The pipeline implemented thus far mod-
els the optical flows resulting from camera motion with-
out considering the potential presence of independently dy-
namic objects. However, real-world scenes are highly likely
to contain such objects. Not incorporating their motions can
lead to domain gaps by unrealistic optical flows.

Independent Object Motions. To model more realistic
motions, we propose applying separate virtual motions to
objects and static backgrounds extracted from the scene.
Therefore, we utilize an instance segmentation network Ω
[7] for extracting the main object in the source image Is as:

Ms = Ω(Is) ∈ RH×W , (6)

where Ms is a binary mask to indicate the region of the ob-
ject. To model the motions of the object Ms in the scene,
we construct separate viewpoints, including camera motion
µsce

t and object motion µobj
t . We then obtain the rendered

scene novel view Iscet and object novel view Iobjt as in Equa-
tion (3). The separate optical flows, Fsce

s→t and Fobj
s→t can also

be obtained as in Equation (5). The optical flows in Fs→t

are mixed by the values in Fsce
s→t and Fobj

s→t in terms of mask
Ms to get the final optical flow maps containing camera mo-
tion and dynamic objects for training.

We can then use the bilinear interpolation to get the new
object masks Mt and Mobj

t under the new viewpoints µt

and µobj
t via bilinear sampling from Ms. Pixels in the

new merged image are also selected according to the con-
tent masks 1 − Mt and Mobj

t from Iscet and Iobjt . Then,
a simple inpainting strategy [46] is used to fill the empty
area in the new image with an inpainting mask calculated
by Mfill = Mt ⊙ (1− Mobj

t ).
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Depth-Aware Inpainting Although merged images give a
realistic visual effect, depth changes caused by camera mo-
tion and object motion can also cause unnatural occlusions.
To solve this problem, we use volume rendering to obtain
the depth Dsce

t of the scene novel view:

Dt =

N∑
n=1

(
d′
nα

′
n

n−1∏
m=1

(1−α′
m)

)
, (7)

and the depth of the object novel view Dobj
t can be obtained

in the same way. We then utilize both depths to compute the
occupation mask between the novel views:

Mocc = (1− Mt)⊙ Mobj
t ⊙ (Dt < Dobj

t ), (8)

which indicates the background areas in front of the object.
Therefore, we are able to restore the coincidence area be-
tween the object and the background in the new image It.

Figure 3 provides a detailed illustration of the incremen-
tal effects of MPI-Flow with and without independent ob-
ject motion and depth-aware inpainting. Novel view images
and optical flows from single-view images can be generated
with MPI-Flow and only camera motion, as shown in Fig-
ures 3(a) and 3(b). However, camera motion alone does
not match the complex optical flows in real-world scenes.
To address this issue, we introduce an independent object
motion module, as shown in Figure 3(c), to ensure motion
realism. To further enhance motion realism and address oc-
clusion caused by object motion, we apply the depth-aware
inpainting module, as shown in Figure 3(d).

4. Experiments
4.1. Datasets

FlyingChairs [9] and FlyingThings3D [18] are both pop-
ular synthetic datasets that train optical flow models. As
a standard practice, we use “Ch” and “Th” respectively to
represent the two datasets, and “Ch→Th” means training
first on “Ch” and fine-tuning on “Th”. By default, we use
the RAFT pre-trained on “Ch→Th” to be fine-tuned on the
generated datasets and evaluated on labeled datasets.
COCO [27] is a collection of single still images and ground
truth with labels for object detection or panoptic segmenta-
tion tasks. We sample 20k single-view still images from
the train2017 split following Depthstillation [1] to generate
virtual images and optical flow maps.
DAVIS [37] provides high-resolution videos and it is widely
used for video object segmentation. We use all the 10581
images of the unsupervised 2019 challenge to generate
datasets by MPI-Flow and other state-of-the-art optical flow
dataset generation methods.
KITTI2012 [11] and KITTI2015 [34] are well-known
benchmarks for optical flow estimation. There are multi-
view extensions (4,000 for training and 3,989 for testing)

(a) Source Image

(b) + Camera Motion

(c) + Independent Object Motion

(d) + Depth-Aware Inpainting

Figure 3: Visualization of incrementally adding different
modules to improve the realism of the generated data.

datasets with no ground truth. We use the multi-view exten-
sion images (training and testing) of KITTI 2015 to gener-
ate datasets, separately. By default, we evaluate the trained
models on KITTI 12 training set and KITTI 15 training set
in the tables following [1] and [12], abbreviated as “KITTI
15” and “KITTI 12” in the following tables.
Sintel [5] is derived from the open-source 3D animated
short film Sintel. The dataset has 23 different scenes. The
stereo images are RGB, while the disparity is grayscale.
Although not a real-world dataset, we use it to verify the
model’s generalization across domains.

4.2. Implementation Details

Firstly, we provide a description of the learning-based
optical flow estimation models that were utilized in our ex-
periments. Subsequently, we outline the experimental pa-
rameters and setup along with the evaluation formulation.
Optical Flow networks. To evaluate how effective our gen-
erated data are at training optical flow models, we select
RAFT [45], which represents state-of-the-art architecture
for supervised optical flow and has excellent generalization
capability. By default, we train RAFT on generated data for
200K steps with a learning rate of 1× 10−4 and weight de-
cay of 1×10−5, batch size of 6, and 288×960 image crops.
This configuration is the default setting of RAFT fitting on
KITTI with two GPUs but four times the number of train-
ing steps, following [12]. For the rest of the setup, we use
the official implementation of RAFT without any modifica-
tions. All evaluations are performed on a single NVIDIA
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Sintel.C Sintel.F KITTI 12 KITTI 15
Image Source Method

EPE ↓ > 3 ↓ EPE ↓ > 3 ↓ EPE ↓ Fl ↓ EPE ↓ Fl ↓

COCO
Depthstillation [1] 1.87 5.31 3.21 9.25 1.74 6.81 3.45 13.08

RealFlow [12] N/A N/A N/A N/A N/A N/A N/A N/A
MPI-Flow (ours) 1.87 4.59 3.16 8.29 1.36 4.91 3.44 10.66

DAVIS
Depthstillation [1] 2.70 7.52 3.81 12.06 1.81 6.89 3.79 13.22

RealFlow [12] 1.73 4.81 3.47 8.71 1.59 6.08 3.55 12.52
MPI-Flow (ours) 1.79 4.77 3.06 8.56 1.41 5.36 3.32 10.47

KITTI 15 Test
Depthstillation [1] 4.02 9.08 4.96 13.23 1.77 5.97 3.99 13.34

RealFlow [12] 3.73 7.36 5.53 11.31 1.27 5.16 2.43 8.86
MPI-Flow (ours) 2.25 5.25 3.65 8.89 1.24 4.51 2.16 7.30

KITTI 15 Train
Depthstillation [1] 2.84 7.18 4.31 11.24 1.67 5.71 {2.99} {9.94}

RealFlow [12] 4.06 7.68 4.78 11.44 1.25 5.02 {2.17} {8.64}
MPI-Flow (ours) 2.41 5.39 3.82 9.11 1.26 4.66 {1.88} {7.16}

Table 1: The cross-dataset validation results and comparisons with other dataset generation methods from real images or
videos are presented in this study. The ”Image Source” column indicates the dataset used for optical flow training data
generation. The evaluation results of RAFT trained on different datasets using different methods are reported. In cases where
RealFlow fails to work on single-view images from COCO, the study indicates “N/A”. The curly braces “{}” represent the
use of the unlabeled evaluation set, which is the KITTI 15 training set in this table.

GeForce RTX 3090 GPU 1.
Virtual Camera Motion. To generate the novel view im-
ages from COCO and DAVIS, we adopt the same settings in
[1] to build the virtual camera. For KITTI, we empirically
build the camera motion with three scalars where tx, ty are
in [−0.2, 0.2] and tz are in [0.1, 0.35]. We build the camera
rotation with three Euler angles ax, ay, az in [− π

90 ,
π
90 ]. We

use single camera motion for each image from COCO but
multiple camera motions (×4 by default) from DAVIS and
KITTI as in [12], due to the small number of images and the
homogeneity of the scene in video data. We show how the
number of camera motions impacts the optical flow network
performance in the discussion.
Evaluation Metrics. We report evaluation results on the
average End-Point Error (EPE) and two error rates, respec-
tively the percentage of pixels with an absolute error greater
than 3 (> 3) or both absolute and relative errors greater than
3 and 5% respectively (Fl) on all pixels.

4.3. Comparison with State-of-the-art Methods

In this section, we evaluate the effectiveness of the MPI-
Flow generation pipeline on public benchmarks. We will
highlight the best results in bold and underline the second-
best if necessary among methods trained in fair conditions.
Comparison with Dataset Generation Methods. As a
method for generating datasets from real-world images,
we compare MPI-Flow with Depthstillation [1] and Re-
alFlow [12], which are representative works in real-world
dataset generation. In order to evaluate the effectiveness

1RAFT with the same parameters loaded on different GPUs yield
slightly different evaluation results. Therefore, to ensure fair comparison,
we download the official model weights with the best performance pro-
vided by the compared methods and evaluate them on the same GPU.

KITTI 12 KITTI 15
Dataset

EPE ↓ Fl ↓ EPE ↓ Fl ↓
Ch→Th [18] 2.08 8.86 5.00 17.44
dDAVIS [1] 1.81 6.89 3.79 13.22
MF-DAVIS 1.61 6.41 3.77 12.40
dCOCO [1] 1.80 6.66 3.80 12.44
MF-COCO 1.59 6.22 3.68 11.95

Table 2: Results on RAFT trained from scratch under the
same setting. “dX” are from Depthstillation [1] while “MF-
X” are from our proposed MPI-Flow

of MPI-Flow, we follow the procedures of Depthstillation
and RealFlow to construct training sets from four different
datasets, including COCO, DAVIS, KITTI 15 multi-view
train set, and KITTI 15 multi-view test set. To ensure fair
comparisons, we conduct experiments with a similar num-
ber of training sets as our competitors. Specifically, for
DAVIS and KITTI, we generate four motions for each im-
age to match RealFlow, which trains RAFT for four EM
iterations with four times the amount of data. For COCO,
we follow the exact same setup as Depthstillation. Since
Depthstillation does not provide details for KITTI 15 train,
we use its default settings to obtain the results. Trained
models are evaluated on the training sets of Sintel, KITTI
12, and KITTI 15. We report the evaluation results of
models with the best performance in the paper for Depth-
stillation and RealFlow. Furthermore, we conduct cross-
dataset experiments where RAFT is trained with one gener-
ated dataset and evaluated with another.

As shown in Table 1, even with the same amount of data,
our approach gains significant improvements and general-
ization over multiple datasets. When trained and tested with

13862



(a) Source Image (b) Depthstillation (c) RealFlow (d) MPI-Flow (ours)

Figure 4: Qualitative results of generated images and optical flows from the KITTI 2015 training set. (a) contains the input
source images. (b), (c), and (d) contain generated images of RealFlow [12], Depthstillation [1], and our proposed MPI-Flow.
MPI-Flow eliminates the artifact in the new image and guarantees image realism. (Best viewed with zoom-in)

(a) Source Image from KITTI 15

(b) Depthstillation (c) RealFlow (d) MPI-Flow (ours)

Figure 5: Visualization of generated images with Depthstil-
lation, RealFlow, and our proposed MPI-Flow from KITTI.
Note that RealFlow generates such data using two frames
with estimated optical flow.

(a) Depthstillation (b) MPI-Flow (ours)

Figure 6: Visualization of generated images with Depthstil-
lation and our proposed MPI-Flow using a single view.

the same KITTI 15 Train image source, our EPE outper-
forms the second-best by a remarkable 0.29. When trained
and tested with different image sources, our MPI-Flow
demonstrates clear improvements over the competitors on
almost all the evaluation settings. Notably, MPI-Flow
achieves much better performance, even though RealFlow
requires two consecutive frames to generate datasets, while

KITTI 12 KITTI 15
Method

EPE ↓ Fl ↓ EPE ↓ Fl ↓
SemiFlowGAN [25] - - {16.02} {38.77}
FlowSupervisor [20] - - {3.35} {11.12}

DistractFlow [21] - - {3.01} {11.7}
Meta-Learning [36] - - {2.81} -

SimFlow [19] - - {5.19} -
ARFlow [28] 1.44 - {2.85} -
UFlow [22] 1.68 - 2.71 9.05
UpFlow [33] 1.27 - 2.45 -
SMURF [42] - - {2.00} {6.42}

MPI-Flow 1.18 4.46 {1.80} {6.63}

Table 3: Comparison with semi-supervised and unsuper-
vised methods. ‘-’ indicates no results reported.

MPI-Flow needs only one still image.
It is worth comparing MPI-Flow with Depthstillation un-

der the same settings to evaluate their performance. For this
comparison, we use the exact same settings as Depthstilla-
tion. Specifically, we generate MPI-Flow datasets with 1)
no object motion, 2) the same camera parameters, 3) one
camera motion per image, and 4) without pre-training on
Ch→Th. The datasets generated are named MF-DAVIS and
MF-COCO, while dCOCO and dDAVIS are generated from
Depthstillation. The models are trained from scratch with
the respective datasets. RealFlow is not included in this ta-
ble as it requires a pre-trained optical flow model to gen-
erate datasets. The evaluation results are shown in Table
2. Our method outperforms Depthstillation with significant
improvements on both COCO and DAVIS, demonstrating
the importance of image realism.
Comparison with Unsupervised Methods. Another way
to utilize real-world data is through unsupervised learning,
which learns optical flow pixels directly without the need
for optical flow labels. In order to further demonstrate the
effectiveness of MPI-Flow, we compare our method with
the existing literature on unsupervised methods. The re-
sults of this comparison can be seen in Table 3. All meth-
ods are evaluated under the condition that only images from

13863



Dynamic Depth-Aware Multiple Sintel.C Sintel.F KITTI 12 KITTI 15
Objects Inpainting Objects EPE ↓ > 3 ↓ EPE ↓ > 3 ↓ EPE ↓ Fl ↓ EPE ↓ Fl ↓

✕ ✕ ✕ 2.58 6.10 4.04 9.67 1.20 4.34 {2.46} {8.38}
✓ ✕ ✕ 2.41 5.39 3.82 9.11 1.26 4.66 {1.88} {7.16}
✓ ✓ ✕ 2.37 5.44 3.71 9.05 1.25 4.58 {1.91} {7.06}
✓ ✓ ✓ 2.20 5.35 3.67 9.03 1.23 4.46 {1.92} {7.05}

Table 4: Ablation experiments. Settings used are marked with a checkmark. Here we only perform four camera motions per
image for these experiments due to the limitation of computational resources.

KITTI 15 KITTI 15 test
Method

EPE ↓ Fl ↓ Fl ↓
PWC-Net [44] {2.16} {9.80} 9.60

LiteFlowNet [16] {1.62} {5.58} 9.38
IRR-PWC [17] {1.63} {5.32} 7.65

RAFT [45] {0.63} {1.50} 5.10
Depthstillation [12] - - -

AutoFlow [43] - - 4.78
RealFlow [12] {0.58} {1.35} 4.63

MPI-Flow {0.58} {1.30} 4.58

Table 5: Comparison with supervised methods fine-tuned or
trained on KITTI 15 train set.

the evaluation set could be used, without access to ground
truth labels. For evaluation, we train the RAFT on our
generated dataset with images from the KITTI 15 training
set. Our MPI-Flow outperform all unsupervised methods in
terms of EPE on both the KITTI 12 training set and KITTI
15 training set, with no need for any unsupervised con-
straints. However, our method performs better on EPE but
has slightly lower Fl than SMURF, mainly because SMURF
employs multiple frames for training.
Comparison with Supervised Methods. To further prove
the effectiveness of MPI-Flow, we use KITTI 15 train set to
fine-tune RAFT pre-trained by our generated dataset with
images from KITTI 15 test set. The evaluation results on
KITTI 15 train and KITTI 15 test are shown in Table 5. We
achieve state-of-art performance on KITTI 2015 test bench-
mark compared to supervised methods on training RAFT.
Qualitative Results. Figure 4 show the generated images
from the methods utilizing real-world images, as presented
in Table 1. In this comparison, we use images from the
KITTI 15 dataset as source image input. The images gener-
ated by RealFlow [12] and Depthstillation [1] with artifacts
degrade the image realism. In contrast, MPI-Flow generates
more realistic images than the other two methods. More re-
sults are shown in Figures 5 and 6.

4.4. Discussion

To verify the effectiveness of the proposed MPI-Flow,
we discuss the performance of models trained with gener-
ated datasets with different settings. We show more discus-

Motions KITTI 12 KITTI 15
Per Image EPE ↓ Fl ↓ EPE ↓ Fl ↓

1 1.29 4.58 2.02 7.35
4 1.23 4.46 1.92 7.05

10 1.21 4.49 1.82 7.02
20 1.20 4.41 1.79 6.86
40 1.18 4.46 1.80 6.63

Table 6: Effect of amount of virtual camera motions (train-
ing pairs) per source image.

Objects KITTI 12 KITTI 15
Per Image EPE ↓ Fl ↓ EPE ↓ Fl ↓

1 1.25 4.58 1.91 7.06
2 1.26 4.76 2.02 7.19
4 1.23 4.46 1.92 7.05

Table 7: Effect of amount of dynamic objects per image.

sion and evaluation results in the supplementary material.
Object Motion and Depth-Aware Inpainting. We con-
duct a series of ablation studies to analyze the impact of
different choices in our proposed MPI-Flow for new image
synthesis, including object motion, depth-aware inpainting,
and multiple objects. “Multiple objects” indicates multiple
moving objects in each image. To measure the impact of
these factors, we generate new images from the KITTI 15
training set to train RAFT and evaluate them on the KITTI
12 training set and KITTI 15 training set. Because there
are multiple combinations of these factors, we test by incre-
mentally adding components of our approach, as shown in
Table 4. In the first row, we show the performance achieved
by generating new images without dynamic objects, thus as-
suming that optical flow comes from camera motion only.
Then we incrementally add single-object motion, depth-
aware inpainting, and multi-object motion to model a more
realistic scenario. There are considerable improvements in
almost all datasets on various metrics, except for the KITTI
12 training set, possibly due to the infrequent dynamic ob-
ject motion in this dataset. The EPE on KITTI 15 remains
relatively stable within the normal margin after adding the
depth-aware inpainting module and the multi-object trick.
Camera Motion Parameters. We also conduct a series of
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KITTI 12 KITTI 15
tz EPE ↓ Fl ↓ EPE ↓ Fl ↓

0.1 ∼ 0.45 1.25 4.60 {1.79} {6.68}
0.1 ∼ 0.35 1.18 4.46 {1.80} {6.63}
0.1 ∼ 0.25 1.19 4.50 {1.86} {6.71}
0.0 ∼ 0.35 1.12 4.32 {1.94} {6.92}

Table 8: Effect of motion parameters tz .

KITTI 12 KITTI 15
tx and ty EPE ↓ Fl ↓ EPE ↓ Fl ↓

−0.3 ∼ 0.3 1.22 4.42 {1.92} {6.83}
−0.2 ∼ 0.2 1.18 4.46 {1.80} {6.63}
−0.1 ∼ 0.1 1.32 4.99 {1.98} {7.02}

Table 9: Effect of motion parameters tx and ty .

KITTI 12 KITTI 15
Dataset

EPE ↓ Fl ↓ EPE ↓ Fl ↓
Ch→Th [18] 4.14 21.38 10.35 33.67
dDAVIS [1] 2.81 11.29 6.88 21.87
MF-DAVIS 2.70 11.25 6.92 20.97
dCOCO [1] 3.16 13.30 8.49 26.06
MF-COCO 3.02 11.20 8.22 23.40

Table 10: Results on PWC-Net trained on generated
datasets from scratch under the same setting.

ablation studies to analyze the impact of different param-
eters on camera motions. We first show the effect of tz ,
which indicates the range of moving forward and backward
distances, as shown in Table 4. We set the minimum tz to
0.1 by default, considering that most cameras on vehicles
only move forward in the KITTI dataset. We also show the
effect of tx and ty , representing the distance from left to
right and from up to down, respectively. Because there are
multiple combinations of parameters, we only test a spe-
cific parameter of our method in isolation. Settings used by
default are underlined. The results show that a more reason-
able range of camera motion leads to better performance.
Model Architectures The default model used in our paper
is RFAT [45]. Table 10 shows that our proposed MPI-Flow
also works for PWC-Net [44] compared with depthstilla-
tion [1] in a fair setting. We generate data from COCO and
DAVIS and train PWC-Net, in which the results are still bet-
ter than PWC-Net trained on Ch→Th or datasets generated
from depthstillation.
Amount of Virtual Motions. We can generate multi-
ple camera motions with multiple dynamic objects for any
given single image and thus a variety of paired images and
ground-truth optical flow maps. Thus we can increase the
number of camera motions to generate more data. Table 6
shows the impact of different amounts of camera motions
on model performance. Interestingly, MPI-Flow with 4 mo-

KITTI 12 KITTI 15
Dataset Quantity

EPE ↓ Fl ↓ EPE ↓ Fl ↓
Ch→Th [18] 47K 2.08 8.86 5.00 17.44
MF-COCO 20K 1.59 6.22 3.68 11.95
MF-COCO 120K 1.51 5.94 3.41 11.16

Table 11: Effect of amount of source images.

tions per image already allows for strong generalization to
real domains, outperforming the results achieved using syn-
thetic datasets shown in the previous evaluation results. In-
creasing the motions per image by factors 10 and 20 both
lead to better performance on KITTI 12 and KITTI 15 com-
pared to 4 and 1. Using 40 motions per image gives the best
performance on KITTI 15 in terms of Fl. It indicates that a
more variegate image content in the generated dataset may
be beneficial for generalization to real applications. Table 7
shows the effect of amounts of dynamic objects on model
performance. Increasing the number of dynamic objects
improves the performance of the model on KITTI 12 but
slightly decreases it on KITTI 15 in terms of EPE.
Quantity of Source Images The number of source images
affects the scene diversity of the generated dataset. Em-
pirically, more source images will be more conducive to
model learning, as verified in Table 11. We verify the ef-
fect of the number of source images on the MF-COCO. The
model performance is significantly improved by increasing
the number of source images.

5. Conclusion

In this paper, we present a new framework for generating
optical flow datasets, which addresses two main challenges:
image realism and motion realism. Firstly, we propose an
MPI-based image rendering pipeline that generates realistic
images with corresponding optical flows from novel view-
points. This pipeline utilizes volume rendering to address
image artifacts and holes, leading to more realistic images.
Secondly, we introduce an independent object motion mod-
ule that separates dynamic objects from the static scene.
By decoupling object motion, we further improve motion
realism. Additionally, we design a depth-aware inpainting
module that handles unnatural occlusions caused by object
motion in the generated images. Through these novel de-
signs, our approach achieves superior performance on real-
world datasets compared to both unsupervised and super-
vised methods for training learning-based models.
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