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Abstract

We present a new formulation for structured information
extraction (SIE) from visually rich documents. We address
the limitations of existing IOB tagging and graph-based for-
mulations, which are either overly reliant on the correct
ordering of input text or struggle with decoding a complex
graph. Instead, motivated by anchor-based object detectors
in computer vision, we represent an entity as an anchor word
and a bounding box, and represent entity linking as the as-
sociation between anchor words. This is more robust to text
ordering, and maintains a compact graph for entity linking.
The formulation motivates us to introduce 1) a Document
Transformer (DocTr) that aims at detecting and associating
entity bounding boxes in visually rich documents, and 2) a
simple pre-training strategy that helps learn entity detection
in the context of language. Evaluations on three SIE bench-
marks show the effectiveness of the proposed formulation,
and the overall approach outperforms existing solutions.

1. Introduction
Structured information extraction (SIE) from documents,

as shown in Fig 1, is the process of extracting entities and
their relationships, and returning them in a structured format.
Structured information in a document is usually visually-rich
– it is not only determined by the content of text but also the
layout, typesetting, and/or figures and tables present in the
document. Therefore, unlike the traditional information ex-
traction task in nature language processing (NLP) [8, 3, 30]
where the input is plain text (usually with a given reading
order), SIE assumes the image representation of a document
is available, and a pre-built optical character recognition
(OCR) system may provide the unstructured text (i.e., with-
out proper reading order). This is a practical assumption
for day-to-day processing of business documents, where the
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Figure 1: Structured information extraction problem formulations.
Given an input image, we aim to extract each entity (e.g., name,
count, or price) and link the related entities together. To ad-
dress this task, (a) IOB tagging [29] assigns a tag to each word to
indicate if it is the beginning (B-), inside (I-), end (E-) of an entity
or a single (S-) word entity. (b) Graph based methods [15] take
each word as a node, and use edges between words to indicate that
the words belong to the same entity (purple edges) or the underlying
entities are linked (red edges). A graph is generated by decoding
from two adjacency matrices (one for each type of edges). (c)
Our formulation represents an entity as an anchor word (colored
words) and a box (colored bounding boxes), and represents entity
linking via anchor word association (red arrows).

documents are usually stored as images or PDFs, and the
structured information, such as key-value pairs or line items
(see Fig. 2) from invoices and receipts, has been primarily
obtained manually. This is time consuming and does not
scale well. Hence, automating the document structured in-
formation extraction process with efficiency and accuracy is
of great practical and scientific importance.

Structured information extraction is part of document
intelligence [5], which focuses on the automatic reading,
understanding, and analysis of documents. Early approaches
to document intelligence usually address the problem purely
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from either a computer vision or an NLP perspective. The
former takes the document as an image input and frames
entity detection as object detection or instance segmenta-
tion [41, 31]. The latter takes only the textual content of a
document as the input, and addresses the problem with NLP
solutions, such as IOB tagging via transformers [14].

Recently, models have also been proposed to pre-train
on large-scale document collections and apply them to a
wide variety of downstream document intelligence prob-
lems [38, 11, 1, 20]. Such general-purpose models usually
have the ability to make use of multi-modal inputs – text
from OCR, layout in the form of text locations, and visual
features from images, and pre-training enables them to under-
stand the basic structure of documents. Therefore, general-
purpose models have demonstrated significant improvements
on multiple document intelligence tasks, such as entity ex-
traction [11, 20], document image classification [38, 1], and
document visual question and answering [39, 1].

For structured information extraction, existing general-
purpose models rely on two broad approaches: 1) IOB tag-
ging [29] based methods [38, 39, 20], and 2) graph based
methods [11, 15]. Both of these approaches suffer from in-
herent limitations. IOB tagging relies on the correct “reading
order” or serialization of text, which however is not given
by the OCR. As shown in Fig. 1(a), the raster scan order
of OCR text separates I-name and E-name. When there
are multiple name entities, it could be non-trivial to know
which I-name/E-name word belongs to which name en-
tity. Graph-based methods (Fig. 1 (b)) can result in complex
graphs with many words in a document (i.e., many nodes
in the graph). Therefore, decoding the entities and their
relationships from the adjacency matrices is error-prone.

Given the limitations of existing work, we make the fol-
lowing contributions in this paper:

• We introduce a new formulation for SIE where we rep-
resent an entity as an anchor word along with a box, and
regard the problem as an anchor word based entity de-
tection and association problem (Fig 1 (c)). Thus, we
extract entities via bounding boxes and do not depend on
the reading order of input. We assign each entity with
an anchor word, resulting in a compact graph of entity
relations (e.g., the anchor word links in Fig 1 (c)), which
facilitates decoding structured information.

• We develop a new model, called Document Transformer
(DocTr), which combines a language model and visual
object detector for joint vision-language document under-
standing. We note that the recognition of an anchor word
is largely a language-dependent task, while the detection
of entity boxes is a more vision-dependent task. There-
fore, DocTr is an intuitive approach to target this problem
under the proposed formulation.

• We propose a new pre-training task, called masked detec-

tion modeling (MDM), that matches our formulation and
helps learn box prediction in the context of language. Our
experimental results show that 1) the proposed formula-
tion addresses SIE better than IOB tagging or graph-based
solutions, 2) MDM is a more effective pre-training task,
in particular when worked together with the new formu-
lation, and 3) the overall approach outperforms existing
solutions on three SIE tasks.

2. Related Work
General-purpose document understanding. General-

purpose approaches aim to develop a backbone model
for document understanding, which is then adapted to ad-
dress downstream document understanding tasks. Lay-
outLM [38, 39, 13] is an early approach that pre-trains on a
large-scale document dataset. It introduces masked vision-
language modeling and layout information for document
understanding pre-training. BROS [11] improves LayoutLM
via better encoding of the spatial information and introducing
a pre-training loss for understanding text blocks in 2D. Doc-
Former [1] introduces a new architecture and pre-training
losses to better leverage text, vision and spatial information
in an end-to-end fashion. FormNet [20] encodes neighbor-
hood context for each token using graph convolutions and
introduces an attention mechanism to address imperfect se-
rialization. StrucText [23] proposes to extract multi-modal
semantic features at both token level, word-segment level
and/or entity level. Donut [19] proposes an OCR free solu-
tion that is pre-trained to predict document text from images.
It is an encoder-decoder model that can directly decode the
expected outputs as text for downstream tasks.

Structured information extraction (SIE). Early ap-
proaches [41, 18, 6] formulate the SIE problem as a com-
puter vision problem to either segment or detect entities
from documents. However, they cannot address linking of
entities due to the limitation of the formulation. With the
advent of transformers [34] and their success in NLP, more
recent approaches [25, 44, 10] address SIE by incorporating
layout/visual information with text inputs to transformers,
and extract entities via a NLP formulation [29]. Other ap-
proaches [24, 36, 42] propose to regard the text inputs as the
nodes in a graph and model the relationship of text inputs via
graph neural networks. To extract the relationship between
entities, SPADE [15] introduces a graph decoding scheme
on learned pairwise affinities between extracted entities.

Table detection and recognition (TDR). TDR is the
task of detecting and recognizing tabular structures from
document images. Both SIE and TDR focus on returning
information in a structured way from documents. However,
unlike SIE where the spatial relationship of entities are un-
constrained, TDR assumes a tabular structure of entities
(i.e., table cells) and leverages this prior knowledge in the
model design and post-processing [28, 45, 26]. Moreover,
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SIE requires returning a semantic label for each entity which
demands an understanding of the text, while TDR does not
distinguish between types of table cells but focuses more on
table layout. Therefore, the existing approaches [28, 45, 26]
to TDR are vision-only approaches.

TextVQA. Given an input image, TextVQA aims to an-
swer questions related to the text in image. Similar to SIE,
existing TextVQA approaches [32, 12, 9, 2] employ multi-
modal models that take both the OCR and image as inputs.
However, for TextVQA, the answers are typically single
entities. It can be challenging to address the problem with
TextVQA if we aim to return multiple entities in a structured
way, and if an image could have multiple of such structures.

Scene graph generation (SGG). Generating scene
graphs can be regarded as a form of SIE for natural im-
ages. SGG methods [17, 37, 43, 40, 33] detect objects as the
nodes of scene graphs, and construct edges of scene graphs
by identifying the pairwise relationships between objects.
This is similar to our formulation of SIE where we extract
entities via anchor word guided object detection, and link
entities by learning to output their pairwise affinities.

3. Approach
3.1. Structured Information Extraction

Problem Formulation. Following prior work, we assume
the input is the image of a document page, and a pre-built
OCR system is applied to detect and recognize the words.
The goal of a structured information extraction system for
document understanding is to extract a set of grouped entities
G = {Gi}, where each entity group Gi = {eij} is a set
of entities with predefined relations. As shown in Fig. 2,
an entity group may be a key and value pair, or a line item
containing the name, count and price entities. We denote
an entity as e = (t, c, b) where t, c and b are the text, class
label, and location (bounding box) of the entity, respectively.
Note that, with OCR inputs, this formulation of an entity can
be reduced to e = (c, b), because the text t can be obtained
by aggregating the OCR text inside b.

Next, we propose a new formulation to address structured
information extraction. We propose to address entity extrac-
tion via anchor word guided detection and entity linking via
anchor word association. The former extracts entities {ei},
and the latter links entities into groups {Gi}.

Entity Extraction via Anchor Word Guided Detection.
To extract an entity e, we first introduce a new concept called
anchor word, which is a designated word of an entity. In
Fig. 2, we select the first word of an entity as the anchor word,
e.g., “ABC” is the anchor word for value, and “Chicken”
is the anchor word for name. Other designations of anchor
words are possible (see Sec. 4.2). An anchor word may be
regarded as the representation of an entity. Since the goal

class:

bbox:

key-value pair line item

2 Chicken Wings
(Lemon Pepper)

$5.00

cnt name price

Ship To: ABC Company
123 Good Dr
Boston, MA 02110

key value

Figure 2: Illustration of our formulation for structured information
extraction of two types of relations. We first identify the “anchor
words” of entities (which are the first words of entities in this
example, e.g., “Ship” or “Chicken”). Then, from each anchor word,
we extract the entity by predicting (dotted arrows) its class label
and bounding box. We link entities by linking (yellow arrows) their
anchor words. For key-value pair relation, we link “Ship” to “ABC”.
For line item relation, we link “2” and “$5.00” to “Chicken”.

of extracting an entity e = (c, b) is to find its class label c
and bounding box b, they may then be represented by an
anchor word. As shown in Fig. 2, we associate each anchor
with a label and a bounding box. For example, the anchor
word “Ship” is associated with a label key and a bounding
box that encloses the entity “Ship To:”. Therefore, the task
of extracting an entity may be seen as first identifying its
anchor word, and then obtaining the label and bounding box
associated with it.

Entity Linking via Anchor Word Association. We de-
fine an entity group as consisting of a primary entity, and
all the other entities in the group are secondary. The anchor
word of a primary/secondary entity is the primary/secondary
anchor word. Once anchor words have been identified, link-
ing entities into entity groups is equivalent to associating
anchor words. To establish such association, we first select
the primary anchor words of entity groups, and then all the
secondary anchor words from the same group are linked
to the primary anchor word. The definition of a primary
entity may vary. For key-value pairs, the primary anchor
words may simply be those anchor words labeled as key.
For more general entity groups, we designate a primary an-
chor word based on the task/data. For example, we choose
name’s anchor word “Chicken” as the primary anchor in
Fig. 2. Other ways of choosing primary anchors are possible
(See Sec. 4.2). Links between primary and secondary anchor
words are represented by a binary matrix M ∈ {0, 1}m×n.
Mij = 1 indicates that the ith primary anchor word, and jth
secondary anchor word are linked. Otherwise, Mij = 0.

3.2. DocTr: Document Transformer

DocTr is a multi-modal transformer that takes both the
document image and OCR words (text and position) as input.
Unlike existing encoder-only approaches [39, 1, 23], DocTr
has an encoder-decoder architecture with 1) two dedicated
encoders to encode vision and language features separately,
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Figure 3: Overall architecture of DocTr. The vision encoder ex-
tracts visual features from a document image. The language en-
coder extracts language features from OCR text and bounding
boxes (i.e., document layout information). The VL-decoder uses
language-conditioned queries to decode structured information
from visual and language features. For entity extraction (EE), each
query decodes an anchor word label and an entity box. For entity
linking (EL), each query decodes an association embedding of an
anchor word and a primary/secondary anchor label.

and 2) a vision-language decoder to decode anchor word
based outputs for entity extraction and entity linking. An
overview of the DocTr architecture is shown in Fig. 3.

Vision Encoder. The vision encoder is adapted from De-
formable DETR [46]. It consists of a CNN backbone with
multi-scale visual feature extraction, and a deformable trans-
former encoder for efficient encoding of visual features.
Compared with vanilla transformer based vision encoders,
this design is more lightweight due to the use of deformable
attention, which has linear complexity with respect to the
spatial size of image feature maps instead of the quadratic
complexity using standard self-attention. As a result, it is ca-
pable of encoding high-resolution multi-scale visual features
for better detection of small objects/entities.

This vision encoder is shown to work effectively with a
transformer decoder for end-to-end object detection [4]. This
is helpful to our formulation of entity extraction, where we
convert this task into an anchor word guided object detection
problem. We also highlight the differences from existing
encoder-only methods where the visual features – either
region-based [38, 23] or grid-based [39, 1] – are extracted
with a pre-trained CNN model; they are sent to the trans-
former encoder along with OCR inputs without dedicated
network components for decoding entity bounding boxes.

Language Encoder. The language encoder is a trans-
former model adapted from the BERT architecture [7]. We
follow LayoutLM [38] to include the layout information (i.e.,

2D position embeddings of OCR) along with the OCR text as
input. However, no visual information is added since it has
already been addressed by the vision encoder. The language
encoder is critical to our formulation for the identification of
anchor words, which is a language-dependent task.

Vision-Language Decoder with Language-Conditioned
Queries. The architecture of the vision-language decoder
is similar to the decoder of the Deformable DETR trans-
former model [46] - with two major differences to facili-
tate the decoding of vision-language inputs. Each decoder
layer has two cross-attention modules to decode from vision
and language inputs respectively. For vision, we apply de-
formable cross-attention (similar to Deformable DETR) to
efficiently decode from high-resolution visual features. For
language, we apply language-conditioned cross-attention to
decode from the discrete OCR language features.

Specifically, we introduce language-conditioned queries
to better leverage the OCR inputs and obviate the need for
bipartite matching between predicted and ground truth enti-
ties. The original DETR-like decoder queries [4, 46] do not
have explicit semantic meanings at the beginning. Hence,
DETR requires finding the most plausible matching between
a prediction and ground truth, which is less effective and
impedes the training. For document understanding with
OCR inputs, we consider a one-to-one mapping between
OCR inputs and decoder queries. That is, we have the same
number of queries as the number of OCR inputs to the lan-
guage encoder, and the ith query is mapped to the ith OCR
input (see Fig. 3). This mapping can be simply modeled as
cross-attention between queries and language embeddings
by using the same position embedding for both inputs. Let
Q ∈ RL×d be a set of L decoder queries each with dimen-
sion d (packed as a matrix), V ∈ RL×d be the set of output
embeddings from the language encoder, and P ∈ RL×d be
a set of position embeddings. Then, the cross attention with
language-conditioned queries can be written as:

CrossAttn(Q,V,P) = softmax( (Q+P)(V+P)T√
d

)V, (1)

where
√
d is a scaling factor [34]. This mapping assigns

each query with an explicit linguistic semantic meaning –
the i-th decoder output now corresponds to the i-th input
text token, via the i-th decoder query. Thus, we can directly
match entities with queries without the bipartite matching
required by the default DETR decoder formulation [4, 46].

Entity Extraction and Linking Outputs. The decoder
has two sets of outputs for entity extraction and entity linking
respectively (see Fig. 3). For entity extraction, each output
is a class label and a bounding box which uniquely decide
an entity. Because each query (and thus its corresponding
output) is mapped to an OCR input, the class label indicates
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Figure 4: Illustration of of masked detection modeling (MDM)
and comparison with masked language modeling (MLM) [7] and
masked vision-language modeling (MVLM) [38]. (a) MLM takes
only text as input, and requires predicting the masked text input.
(b) MVLM takes both OCR texts and boxes as input. But only
the text part is masked and to be predicted. (c) MDM (ours) takes
one step further by masking both the texts and boxes, and requires
predicting the masked boxes and their corresponding texts.

whether the underlying OCR input is an anchor word, and
the type of entity it represents. For entity linking, each output
is a binary class label and an embedding vector. The binary
class label indicates whether the OCR input is a primary
anchor word. The embedding vector is for the linking of
anchor words, and we use different embeddings for primary
and secondary anchor words. Let Ep ∈ Rm×h be a set of m
primary embeddings, and Es ∈ Rn×h be a set of n secondary
embeddings, the predicted affinity matrix for entity linking
is computed as M̂ = sigmoid(EpE

T
s ), M̂ ∈ (0, 1)m×n.

3.3. Architecture Details

For the vision encoder, we use a ResNet50 backbone and
a 6-layer deformable transformer encoder [46]. The back-
bone is initialized with ImageNet pretrained weights, and
outputs three scales of visual features. The multi-scale vi-
sual features are transformed into a sequence with 2D “sine”
position embeddings before sending to the deformable trans-
former encoder. For the language encoder, we use a 12-layer
transformer encoder with the same architecture settings as
the BERT-base model [7]. In addition to BERT’s text embed-
dings and 1D position embeddings, we also add 2D position
embeddings [38] to include layout information of the docu-
ment as the input. The 2D position embeddings are learned
embeddings with random initialization. The VL-decoder has
6 layers, where each layer consists of a self-attention mod-
ule, a deformable cross-attention module [46] and a standard
cross-attention module [34] (see supplementary material for
detailed architecture of VL-decoder layers).

3.4. Training and Pre-training

Entity Extraction and Linking Objectives. The entity
extraction objective is similar to the one used in DETR [4]
except that we do not need the bipartite matching due to
the use of language-conditioned queries (as introduced in

Sec. 3.2). Specifically, given a set of N OCR inputs, the
language-conditioned queries yields N entity extraction out-
puts Ê = {êi}Ni=1. For a document with M entities, we
also construct a ground truth E = {ei}Ni=1 of size N . Here,
êi and ei denote the predicted and ground truth entities of
the ith OCR input, respectively. Note that not every OCR
word is an anchor word, and thus it may have no associated
entity. In this case, we say that the ground truth of the input
OCR is an empty entity, i.e., e = ∅, and there are in total
N −M empty entities in E. If we denote a non-empty entity
as e = (c, b) and a predicted entity as ê = (p̂, b̂), where c is
the ground truth entity label, p̂ is the predicted entity label
probability, and b/b̂ is the ground truth/predicted bounding
box, then we write the entity extraction loss as

LEE(E, Ê) =
∑

i[− log p̂i(ci) + λ1{ei 6=∅}Lbbox(bi, b̂i)],

(2)
where p̂i(ci) is the predicted probability of entity being la-
beled as ci, Lbbox is a bounding box loss [4], and 1{ei 6=∅}
means we only compute Lbbox for non-empty entities.

The entity linking loss consists of two parts, primary
anchor classification and linking classification. Let L̂ be
a set of primary anchor classification outputs and L be its
binary ground truth labels. Let M̂ and M be the predicted
and ground truth entity linking affinity matrices, respectively.
Then, we can simply write the entity linking loss as

LEL(L, L̂,M, M̂) = BCE(L, L̂) + βBCE(M, M̂), (3)

where BCE denotes the binary cross-entropy loss.

Pre-training. We pre-train DocTr on a large-scale dataset
of unlabeled document images. For simplicity of model-
ing, we only include one pre-training task, termed masked
detection modeling (MDM), for DocTr which we find suf-
ficient for downstream tasks. Since pre-training is not the
main focus of this work, we leave the exploration of other
pre-training strategies [39, 11, 1] for future work. Fig. 4
illustrates MDM and compares it with related pre-training
tasks. MDM is an extension of masked vision-language mod-
eling (MVLM) [38, 39]. Both MDM and MVLM take OCR
text and boxes as input. However, MVLM only randomly
masks the text inputs. Instead, MDM randomly masks both
the text inputs and their boxes. Specifically, we replace text
with [MASK] and set boxes to [0,0,0,0]. Then, we
train DocTr to predict both the masked texts and their cor-
responding boxes. Note that this task is similar to object
detection. Thus, the objective function can be written in
the same way as Eq. (2), where the first term is for masked
text classification, and the second term is for masked box
regression. Also note that for MDM, the input image is not
masked so that a model can better learn how to leverage the
visual information to locate and identify the masked inputs.
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[
[ {"cnt": "1"}, {"nm": "PLASTIC BAG RED CENTRAL SI"},

{"num": "9100544260074"},
{"price": "0.00"}, {"unitprice": "0.00"} ],

[ {"cnt": "1"}, {"nm": "COPIA 1 /GB"}, 
{"num": "2100252000358"},
{"price": "18,000.00"}, {"unitprice": "18,000.00"} ],

[ {"creditcardprice": "63,000.00"}, {"menuqty_cnt": "3"},
{"total_price":"63,000.00"}, {"discount_price": "0.00"} ]

]
(a) receipt parsing

(b) entity labeling

(c) entity linking

line
item 1
line
item 2

key-
values

Figure 5: Illustration of the three tasks in the experiments.

4. Experiments

Datasets and Tasks. We use three datasets in our exper-
iments, IIT-CDIP document collection [21], CORD [27]
and FUNSD [16]. We follow the convention in the liter-
ature [38, 39, 11, 1] to pre-train DocTr on the IIT-CDIP
document collection, which is a large-scale dataset with 11
million unlabeled documents. CORD [27] is a receipt dataset
with 800 training, 100 validation, and 100 testing samples.
Each receipt in this dataset is labeled with a list of line items
and key-value pair groups. FUNSD [16] consists of scanned
forms, with 149 training and 50 testing examples. Each
form is labeled with key/value entities together with links to
indicate which keys and values are associated.

We evaluate our model’s performance on three tasks, re-
ceipts parsing, entity labeling and entity linking. For receipt
parsing, a model not only has to extract each receipt’s en-
tities but also correctly link entities to form line items and
key-value pair groups. Fig. 5 (a) shows a sample receipt
from CORD and its expected output after parsing. The sam-
ple contains two line items and four key-value pairs. For
line items, it requires identifying each line item related entity
(class and text) and group the entities of the same line item
together. For key-value pairs, we identify class labels of the
keys and return only text of the corresponding values. We
use the same evaluation protocols and metrics as defined in
[15] to evaluate the receipt parsing performance.

Entity labeling and entity linking are commonly adopted
tasks [38, 15] to evaluate a pre-trained model’s performance,
which however are simplified versions of what we have de-
fined in Sec. 3.1. Entity labeling requires assigning a class
label to each word of the document. Fig. 5 (b) shows a
sample from FUNSD where the task is to identify if a word

model F1

Donut [19]† 87.8
SPADE [15] 92.5

LayoutLMv2 [39] w/ IOB 91.4
BROS [11] w/ IOB 91.8
LayoutLMv3 [13] w/ IOB 92.2

LayoutLMv2 [39] w/ ours 92.7
BROS [11] w/ ours 92.9
LayoutLMv3 [13] w/ ours 93.6

DocTr (ours) 94.4

Table 1: Comparison with exist-
ing solutions on receipts parsing
with the CORD dataset.

model F1

SPADE [15] 41.7
BROS [11] 71.5
StructText [23] 44.1
DocTr (ours) 73.9

Table 2: Comparison with ex-
isting solutions on entity linking
with the FUNSD dataset.

†We take the official model from [19] and report numbers using the metric from [15].

belongs to a key (red), a value (green) or a title (blue). In en-
tity linking, the assumption is that the key/value entities are
correctly detected, and the task is to identify which keys and
values should be linked (See Fig. 5 (c), red arrows). We eval-
uate entity labeling/linking by checking if the words/links
are correctly labeled using F1-score as the metric.

4.1. Comparison with Existing Solutions

We compare DocTr with the existing methods on receipts
parsing, entity labeling, and entity linking tasks, respectively.

For receipts parsing, SPADE [15] and Donut [19] are the
only two other publicly available solutions (to the best of
our knowledge) that address this task on CORD. The other
existing general-purpose models [39, 11, 13] are not able to
directly address this structured information extraction task
out-of-the-box. For a fair comparison with our method, we
fine-tune the officially released general-purpose models un-
der two settings: using the standard IOB tagging for receipts
parsing or using our proposed formulation. From Table 1,
we can see that DocTr outperforms general-purpose mod-
els BROS, LayoutLMv2 and LayoutLMv3 by a noticeable
margin when they are fine-tuned with the IOB tagging set-
ting. When fine-tuned with our proposed formulation, the
general-purpose models’ performance improved but they are
still behind DocTr, which shows the effectiveness of the pro-
posed encoder-decoder solution for the anchor word based
structure information extraction.

For entity labeling, we note that the majority of exist-
ing works (including DocTr) report numbers using word-
level boxes (for position embedding) as input, and some
others [22, 35, 13] use segment-level boxes from GT as
input. Segment-level boxes provide more semantic informa-
tion, and thus their usage is unfair to those using word-level
boxes.. Since segment-level boxes are not conventional in-
puts (due to OCR limitations), in this experiments we mainly
focus on comparing the methods with word-level boxes.

To address entity labeling, DocTr follows the general-
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model text box FUNSD CORD #params

SPADE [15] word 71.6 - -
LayoutLMBASE [38]. word 78.7 94.7 113M
BROSBASE [11] word 83.1 96.5 110M
DocFormerBASE [11] word 83.3 96.3 183M
LayoutLMv2BASE [39] word 82.8 95.0 200M
StructText [23] word 83.4 - 107M
DocTr(ours) word 84.0 98.2 153M

LayoutLMLARGE [38] word 79.0 95.0 343M
BROSLARGE [11] word 84.5 97.3 340M
DocFormerLARGE [11] word 84.5 97.0 536M
LayoutLMv2LARGE [39] word 84.2 96.0 426M
FormNet [20] word 84.7 97.3 345M

LiLTBASE [35] segment 88.4 96.1 -
LayoutLMv3BASE [13] segment 90.3 96.6 133M

StructualLMLARGE [22] segment 85.1 - 426M
LayoutLMv3LARGE [13] segment 92.1 97.5 368M

Table 3: Comparison with existing solutions on entity labeling
(with FUNSD and CORD datasets).

formulation text serial. parsing (C)

IOB tagging [29] raster scan 93.2
SPADE [15] raster scan 93.0

DocTr (ours) raster scan 94.4

IOB tagging [29] oracle 94.1
SPADE [15] oracle 93.9

DocTr (ours) oracle 95.0

Table 4: Comparison of different SIE formulations under two text
serialization settings, raster scan and oracle.

purpose models [38] to only fine-tune DocTr for IOB tagging
and evaluate based on its IOB tagging outputs. This is less
favorable for DocTr since the architecture and is dedicated
to address our new formulation, and the pre-training strategy
is not a main focus of this paper. However, we observe
DocTr noticeably outperforming the existing solutions with
comparable model sizes and text box embeddings (“Base”
models with “word” text box embeddings in Table 3). Even
when compared with larger pre-trained models, DocTr’s
performance is comparable or better on the CORD dataset.

For entity linking, we apply the objective introduced in
Eq. (3) to train our model to link keys and values in FUNSD
documents. We remove the entity extraction loss (Eq. (2))
but use ground truth entities as per the task definition. The
results are shown in Table 2 – DocTr also outperforms the
existing solutions by a noticeable margin in this task.

4.2. Model Properties

We analyze DocTr’s design and consider other choices.

Problem Formulation. We use DocTr as the backbone
network for the encoding of document inputs (image and

(b)

(c)

(a)

[{"cnt": "1"}, {"nm": "[REG] BLACK SAKURA"}, {"price": "45,455"},
{"sub_cnt": "1"}, {"sub_nm": "COOKIE DOH SAUCES"}, {"sub_price": "0"},
{"sub_cnt": "1"}, {"sub_nm": "NATA DE COCO"}, {"sub_price": "0"}]

[{"cnt": "1"}, {"nm": "[REG] BLACK SAKURA"}, {"price": "45,455"},
{"sub_cnt": "1"}, {"sub_nm": "COOKIE DOH SAUCE NATA DE COCO"},
{"sub_price": "0"},
{"sub_cnt": "1"}, {"sub_nm": "NATA DE COCO"}, {"sub_price": "0"}]

[{"cnt": "1"}, {"nm": "[REG] BLACK SAKURA"}, {"price": "45,455"},
{"sub_cnt": "1"}, {"sub_nm": "COOKIE DOH SAUCES"}, {"sub_price": "0"},
{"sub_cnt": "1"}, {"sub_nm": "NATA DE COCO"}, {"sub_price": "0"}]

Figure 6: Visualization of receipt parsing results using different
SIE formulations. Each result consists of the visualization of model
predictions, and the parsing outputs (given the model predictions).
(a) IOB tagging visualizes the predicted tags of OCR words. (b)
SPADE decoding visualizes the decoded graph, and arrows be-
tween words indicate that the words are linked in the same entity.
(c) DocTr visualizes the predicted anchor words and their bounding
boxes. For the parsing outputs, green/red text means the predicted
text matches/does not match ground truth. Strikethrough text means
the ground truth text is missed from prediction.

OCR words) and apply different formulations to decode
structured information. Specifically, we compare our formu-
lation with IOB tagging and graph based solutions. For IOB
tagging, we follow the literature [20, 38] and assign BIOES
tags to each token and decode entities according to the tagged
entity spans. Note that IOB tagging does not support entity
linking. For a fair comparison, we link entities using a way
similar to the anchor word association method introduced in
Sec. 3.2. We treat the “B” tag or “S” tag of entities as the
anchor words and link entities via decoding of entity linking
affinity matrices. For graph based SIE, we follow the litera-
ture [11, 15] by attaching a SPADE [15] decoder at the end
of DocTr. We fine-tune DocTr and decode graphs using the
same way as specified in the original SPADE method. To un-
derstand the sensitivity of the SIE formulations with regard
to the reading orders of input text, we evaluate them under
two text serialization settings, raster scan and oracle. For
oracle, we first order the ground truth entities in a raster scan
manner, then order text while preserving the entity order.

Table 4 shows the receipt parsing results on the CORD
dataset. Our proposed formulation achieves the best per-
formance in both text serialization settings. We notice that,
compared with the other two formulations, our formulation
is less sensitive to text serialization with only 0.6 score drop
(vs. 0.9 drop by IOB tagging or SPADE) while switching
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anchor word primary anchor parsing (C)

first name 94.2
last name 94.1

first + last first 94.0
first + last name 94.4

Table 5: Receipt parsing (CORD) results under different choices
of anchor words and primary anchors.

from oracle to raster scan text serialization. We also observe
that our formulation can better address cases where there is
dense text with multiple entities near each other. Fig. 6 shows
an example visualization (see supplementary material for
more results). For IOB tagging, it can tag most of the words
well. However, even a single tagging error can cause failures
of entity decoding, and an entity is missed from the parsing
outputs. For SPADE, the dense words result in a challenge
for constructing an entity graph, and the model incorrectly
merges the two sub_nm’s as a single entity. In comparison,
DocTr only requires identifying the anchor words which is
an easier task and, with bounding box predictions, all the
entities are correctly extracted.

Anchor Word and Primary Anchor. We investigate dif-
ferent ways of designating anchor word and primary anchor.
In Sec. 3.1, we introduced using the first word (in terms of
reading order) of an entity as the anchor word. Here, we
consider two alternatives: 1) using the last word or 2) both
the first and last word as the anchor. Table 5 (row 1-2, 4)
shows the comparison of these three choices. We notice that
there is no significant differences (94.2 vs. 94.1) between
using the first word and last word as the anchor word. Using
both first and last as the anchor word gives slightly better
performance. We hypothesize that this is because first and
last words help better identify the boundary of an entity.

For primary anchor, we investigate its choices for line-
item extraction. We consider two candidates: 1) using the
anchor word of the first entity in a line-item, or 2) using the
anchor word of name as the primary anchor. From Table 5
(row 3 and 4), we see the latter is a better choice with 0.4
improvement. This is reasonable since the first entity in
a line-item may vary semantically (i.e., it could be name,
cnt or other entity types), and thus it is harder to identify.
However, this choice is also more flexible than using name
as the primary anchor because there may be no name in an
line-item. For CORD, each line-item always has a name, so
this is not a concern (see supplementary material for primary
anchor choices of other entity categories).

Pre-training. We evaluate the effectiveness of the pre-
training task (MDM) introduced in Sec. 3.4. We consider
three settings: 1) without pre-training, 2) with MVLM and
3) with MDM. Table 6 compares their performances. With-

pre-training parsing (C) ELB (F) ELK (F)

none 82.3 14.2 12.0
MVLM [38] 90.9 82.7 73.0

MDM 94.4 84.0 73.9

Table 6: Receipt parsing (CORD), entity labeling (FUNSD) and
entity linking (FUNSD) results using different pre-training tasks.

(a) inputs (b) predictions

Figure 7: Example pre-training predictions on CORD images. For
inputs, we visualize masked word boxes, and their text is replace by
[MASK]. For predictions, we visualize the predicted word boxes
of the masked inputs. Under each box prediction, we also visualize
its corresponding word token predictions.

vis. enc. VL-dec. LCQ parsing (C) ELB (F) ELK (F)

1) N/A 92.3 82.1 73.2
2) X X 92.6 83.0 73.3
3) X X 90.7 14.9 9.5
4) X X X 94.4 84.0 73.9

Table 7: Impact of different architectural components: vision
encoder, VL-decoder and language conditioned queries. Xmeans
the component is included in the architecture.

out pre-training, the performance drops significantly. With
MVLM, the performance improves but still falls behind us-
ing MDM. This shows the effectiveness of having MDM
for document understanding pre-training. In particular, we
see more benefit of using MDM for receipt parsing. This
is because our proposed formulation requires bounding box
regression, and MDM helps learn better box predictions.

We also show example MDM pre-training predictions in
Figure 7. Note that since both the input OCR box and text
are masked, the model will need to not only predict what
is masked but also predict where to find the masked word.
We can see in most of the cases, the model can predict both
kinds of information well. There are cases where the box
(e.g., “25,000” in row 1) or text (e.g., “Bun” in row 2) is
not accurately predicted. But the errors are reasonable. We
also notice that the model can predict words that cannot
be inferred through only text context, such as prices. This
shows the usage of visual information.
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Architecture Design. We then ablate the impact of the
architectural components of DocTr. Table 7 shows the abla-
tion results. The first row is a DocTr model with only the
language encoder which is equivalent to the LayoutLM [38]
model without visual inputs. The second row is a model with
both the language encoder and VL-decoder but no vision
encoder. These two models are close in performance. This
is reasonable as without visual inputs the VL-decoder does
not add much of information for decoding. Row 4 is the full
model with both the vision encoder and VL-decoder. Com-
pared with row 1 and 2, the performance improves noticeably.
This suggests the importance of using visual information.

For row 3 and 4, we study the effectiveness of using the
proposed language conditioned queries (LCQ). Specifically,
we apply Eq. (1) to the cross-attention module when LCQ
is checked. Otherwise, the standard cross-attention is used.
We can see that LCQ is important since it helps to guide this
one-to-one mapping between OCR and outputs, which is
required by our proposed formulation.

5. Conclusion

We have presented a new approach for SIE from visually-
rich documents. This approach is based on our novel formu-
lation which includes object detection as part of the problem
setting. This naturally leads us to include a transformer-
based object detector as part of the architecture design and
an object detection based loss in pre-training.

We have empirically shown that our proposed object de-
tection based formulation readily addresses the structured
information extraction task, and our solution outperforms ex-
isting solutions on SIE benchmarks. We hope this approach
will initiate more efforts in combining object detection with
existing vision-language models for document intelligence.

We also note that using anchor words limits the applica-
tion of this approach to text-rich documents, and text-based
entity extraction only. For future work, we explore solutions
that extend the propose formulation for the extraction of non-
textual content (e.g., symbols, logos, etc.) from documents.
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