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Abstract

We propose a minimal path method to simultaneously

compute segmentation masks and extract centerlines of

tubular structures with line-topology. Minimal path meth-

ods are commonly used for the segmentation of tubular

structures in a wide variety of applications. Recent meth-

ods use features extracted by CNNs, and often outperform

methods using hand-tuned features. However, for CNN-

based methods, the samples used for training may be gen-

erated inappropriately, so that they can be very different

from samples encountered during inference. We approach

this discrepancy by introducing a novel iterative training

scheme, which enables generating better training samples

specifically tailored for the minimal path methods without

changing existing annotations. In our method, segmenta-

tion masks and centerlines are not determined after one an-

other by post-processing, but obtained using the same steps.

Our method requires only very few annotated training im-

ages. Comparison with seven previous approaches on three

public datasets, including satellite images and medical im-

ages, shows that our method achieves state-of-the-art re-

sults both for segmentation masks and centerlines.

1. Introduction

Segmentation of tubular structures is an essential task in

many application areas of computer vision, including navi-

gation, delineation of roads in satellite images, and analysis

of blood vessels in medical images (see Fig. 1 for exam-

ples). Beyond segmentation masks, such applications often

also require centerlines with line-topology, i.e., the center-

lines should not contain interruptions, isolated pieces, or

width (Fig. 2). Centerlines with line-topology are usually

represented as sequences of coordinates.

While non-tubular object such as cars often have rela-

tively high variance of appearance (e.g., color or texture)

but low variance of shapes, tubular structures typically have

relatively low variance of appearance but high variance of

(a) Input image (b) Our results
Figure 1. Examples of application areas of tubular structure seg-

mentation. First row: Finding path between two points in a satel-

lite image (navigation). Second row: Segmentation of road net-

work in a satellite image. Third row: Segmentation of the vessel

tree in a image of retinal vessels.

line-topology       interruptions      isolated pieces           width        

a b c d

Figure 2. Illustration of line-topology and non-line-topology.

shapes. For example, blood vessels in medical images of

the same imaging modality typically have similar intensity

distributions, but they may contain very irregular shapes

caused by pathology. General segmentation methods, such

as U-Net [23], are widely used also to segment tubular

structures, but these methods do not take the special prop-

erties of tubular structures into account, and cannot sat-
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isfy certain topological constraints, such as connectivity of

two points. To obtain centerlines with line-topology, post-

processing is usually required. Also, the amount of annota-

tions needed to train such methods is usually quite high.

In contrast, using minimal path methods, such as Dijk-

stra’s algorithm [9] or the fast marching method [7, 26],

points on the centerlines are obtained explicitly, and line-

topology is guaranteed naturally. However, to obtain seg-

mentation masks of the tubular structures, often an ad-

ditional post-processing step is necessary [11]. Alterna-

tively, a new dimension can be introduced into the param-

eter space of the minimal path method to represent the ra-

dius [15, 22, 6], but this leads to significantly higher com-

putational cost. In the recent method of Path-CNN [16],

a CNN is integrated into Dijkstra’s algorithm to obtain

centerlines and masks without post-processing. However,

the masks generated using this method is relatively impre-

cise, since training is only performed using samples along

user-specified centerlines, i.e., samples which are inside the

ground truth masks of tubular structures but do not lie ex-

actly on centerlines are not used. Furthermore, the sam-

ples used to train this CNN are often different from samples

which are actually encountered during the inference.

We propose a method to determine segmentation masks

and centerlines with line-topology for tubular structures in

a unified way. Our method uses a similar framework as

[16], i.e., we integrate a CNN classifier into the minimal

path method. However, we use a novel technique for cre-

ating samples out of existing annotations (see Fig. 6 and 7

for an overview of differences). Instead of using the an-

notation (i.e., ground truth mask) directly and training the

model only once, we introduce an iterative training scheme.

In each iteration, we apply minimal path method with the

CNN classifier trained in the previous iteration to gener-

ate new samples out of the annotations. These samples are

used to re-train the CNN classifier in the current iteration.

The ground truth masks do not change, but by iteratively

re-training and re-sampling, we are able to extract different

samples which are much more realistic and better tailored

for the minimal path method. To our knowledge, this is

the first approach to apply iterative training to minimal path

method, and to use minimal path method itself to improve

samples during the training phase. In this way, we better ex-

ploit the properties of the minimal path method, and achieve

more precise masks and centerlines on three datasets. Also,

our method needs only very few annotated images, making

it especially effective for medical image analysis, for which

the amounts of annotations are often limited.

2. Related Work

Topology enhancement Local features in the neighbor-

hood of a pixel can be used to estimate the tubularity mea-

sure, i.e., probability that this pixel belongs to a tubular

structure. Several widely used methods employ differen-

tial measures based on Hessian matrix [10, 25] or flux [31].

While most of these methods rely on hand-tuned parame-

ters, there also exist learning-based methods, such as [28].

These methods are usually used by other methods as fea-

ture extraction step to achieve segmentation masks or cen-

terlines. More recently methods [12, 27] use deep learn-

ing to enhance tubular structures, but post-processing is still

needed to achieve line-topology of the result.

Approaches based on minimal path Minimal path meth-

ods are commonly used to extract centerlines of tubular

structures with line-topology. These methods often suf-

fer from the short cut problem, i.e., the centerlines may

leak out the tubular structures. This can especially hap-

pen when the tubular structure has high curvature, or two

tubular structures are very close to each other, or the tubu-

larity measure cannot differentiate between foreground and

background. The short cut problem has been approached

using a variety of methods [4, 5, 13, 32, 15, 22, 6]. The re-

cent method [16] integrates a CNN classifier into the min-

imal path method to avoid several types of short cut prob-

lems. However, the classifier in [16] is only trained once,

and minimal path method is only used during inference. In

contrast, our method is trained iteratively, and minimal path

method is used both during training and inference. Further-

more, in [16] a hand-tuned tubularity feature [10] is used

at initialization, but in later steps other learning-based fea-

tures are used. In contrast, we use learning-based features

throughout all steps, thus it is not necessary to tune param-

eters manually for [10].

Training scheme Instead of using annotations directly,

[21] uses more realistic samples provided by a segmenta-

tion network. We use a similar idea, but in our approach,

the training process is iterative, i.e., the classifier is trained

using samples which are generated in the previous iteration

using the classifier itself in conjunction with the minimal

path method. The classifier in [21] is only used to classify

samples created by another segmentation network, while

our classifier is an integral part of the segmentation method

itself. Furthermore, [21] relies on other tubularity features,

which require large amounts of training data. In contrast,

our method does not depend on other features and yields

high-quality results even for small amounts of training data.

Finally, [21] does not achieve segmentation masks.

Road segmentation There are recent methods for the seg-

mentation of road networks [21, 2, 3], and some of them use

minimal path method as a component [21]. However, our

focus is on the methodology itself, and our method can also

be applied to other images, such as medical images.
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3. Minimal Path Method with Integrated CNN

Minimal path methods can be naturally used to segment

centerlines of tubular structures. These methods are effi-

cient since they are usually based on Dijkstra’s algorithm

[9], which is a greedy algorithm, or its continuous coun-

terpart, the fast marching method [7, 26]. Our approach is

based on Dijkstra’s algorithm, but the same idea also applies

to the fast marching method.

3.1. Centerline Extraction

Suppose a graph G = (V, E) is induced by image I ,

where V and E are the sets of vertices and edges, respec-

tively. Each vertex v corresponds to a pixel in I , so that G
can be imagined as a regular grid over the image. The exam-

ple in Fig. 3 shows such an image grid. Neighboring pairs of

vertices u and v are connected by an edge eu,v , which has a

weight w[u, v] depending on the underlying image feature.

For the tubular structure to be segmented, such as the cyan

object in Fig. 3, we assume that the start point xs and end

point xe are given. The requirement for given start and end

points is not a severe limitation, since in many applications

these points can be determined using other methods auto-

matically, such as the method in [21]. Finding the centerline

of this tubular structure is equivalent to determining a path

γ, i.e., a sequence of vertices {v0, v1, . . . , v|γ|}, from xs to

xe in such a way that the total weight
∑|γ|

i=1 w[evi−1,vi ] of γ

is minimized among all possible paths between xs and xe.

This path with minimum total weight is referred to as the

minimal path.

The minimal path is detected by computing the mini-

mum total weight d(u) of paths between xs and any other

vertex u in the graph. In Fig. 3, an orange curve partitions V
into two regions: In the region S , which contains xs, d(u)
is already determined for all vertices, while in the regionQ,

d(u) is not yet determined. For every vertex u inside S , its

predecessor is recorded using the function π(u). By repeat-

edly looking up the predecessor, one can always back-trace

to xs. Paths to xs are illustrated as blue lines exemplarily

for several vertices (black dots) in Fig. 3a. In each iteration

of the minimal path method, one vertex is added to S , so

that S always grows towards xe, while Q always shrinks.

Once S reaches xe, the minimal path can be found by trac-

ing from xe back to xs using π (red line in Fig. 3b). For

details, we refer to standard texts such as [8, 14].

3.2. Segmentation Mask with PathCNN

In the Path-CNN method [16], an additional step is intro-

duced into Dijkstra’s algorithm. Each time when a vertex v0
is added to S , a short path γL (magenta line in Fig. 3a) is

back-traced using π. γL has only a fixed length and usually

does not end in xs. Then an image patch P (red box) is

cropped around γL. If γL is curved, then P is also curved.

patch

(a) (b)
Figure 3. Segmentation of a tubular structure using Dijkstra’s al-

gorithm. (a) An intermediate step. (b) Path extraction: The set

S has reached the end point xe, and the minimal path can be ex-

tracted using the predecessor function π.

(a) Input image (b) Segmentation mask
Figure 4. Result of Path-CNN on an image of retinal vessels from

DRIVE. (a) Input image. (b) The segmentation mask is too large.

P is referred to as sample. Then P is rectified, i.e., warped

into a rectangular patch Pw so that γL becomes a straight

vertical line in the middle of Pw. The patch in Fig. 3a is the

same as its rectified version. After that, Pw is classified by a

CNN classifier C. Further steps depend on the classification

result, and more details are given in Sect. 4.2 below. Since

Path-CNN not only computes π but also classifies each pixel

in the image as foreground or background, consequently its

result contains not only centerlines of tubular structures, but

also a binary segmentation mask of them. However, since

Path-CNN is trained directly using samples along ground

truth centerlines, its classification performance for pixels

off the centerlines is not strong, and often the boundary of

the tubular structures is not delineated exactly. An exam-

ple is shown in Fig. 4, in which the mask for retinal vessels

generated by Path-CNN is too large.

4. Iterative Training with Tailored Samples

In this section, we first present our concept of samples in

the context of minimal path method, and describe the dif-

ferences between samples and annotations. After that, we

show details of our schemes for inference and training.

4.1. Sample and Annotation

An important reason for the inexact boundary in the seg-

mentation mask in Fig. 4 is the discrepancy between sam-

ples used for training and samples encountered actually dur-

ing inference. Similar to the description in Sect. 3.2, a sam-

ple in our method is an image patch defined by its centerline
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(a) Unrealistic (b) Semi-realistic (c) Realistic
Figure 5. Sampling schemes. Positive and negative samples are

shown as red and blue line segments. (a) In Path-CNN [16], sam-

ples are drawn along lines (annotations). Such samples are unreal-

istic. (b) In the initial iteration of our method, samples are drawn

using the predecessor function π computed using the ground truth

mask. They are not very realistic, but better than samples in (a).

(c) In the main iterations of our method, samples are drawn using

π, which is computed using the CNN classifier trained in the pre-

vious iteration. Samples drawn in this way are more realistic.

and a specific width. Instead of using annotations such as

segmentation masks or lines directly, we propose to derive

samples with much more semantic information. Otherwise,

the samples may be generated inappropriately. For exam-

ple, in the sampling scheme of Path-CNN, both positive and

negative samples (image patches) are drawn along annota-

tions (lines), i.e., annotations are used directly. The center-

lines of such positive and negative samples are shown as red

and blue line segments in Fig. 5a, respectively. The positive

training samples lie on the centerlines, but during the min-

imal path computation (i.e., inference), real samples which

should be classified as tubular structure are rarely exactly on

the centerlines. To deal with this discrepancy, we introduce

an iterative training scheme to generate training samples

which are specifically tailored for minimal path methods,

without changing existing annotations. Compared with the

training samples in [16], our training samples contain more

semantic information to improve the minimal path method,

since such training samples are likely to be more similar to

samples encountered during inference (Fig. 5b and c). In

the following, we describe the inference method first, be-

cause it is not only used during the inference phase, but also

used during the training phase.

4.2. Inference

The main steps of our inference method and a compar-

ison with previous methods is given in Fig. 6. In common

minimal path methods, features are computed only once be-

fore the main loop of Dijkstra’s algorithm. In Path-CNN,

hand-tuned features are used to initialize the graph. But

during the main loop, learning-based features are extracted

using a CNN classifier to update the graph. Our method,

which is similar to Path-CNN but does not use hand-tuned

features, is described as Algorithm 1.
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Figure 6. Comparison of the inference step in different minimal

path methods. The operations (boxes with colored border) corre-

spond to functions in Algorithm 1 with the same name.

Algorithm 1: InferenceOnFullImages: Minimal

path method with dynamic weight adaptation.

Input: Image I , start point xs, CNN classifier C

Output: predecessor function π, segmentation

mask M

1 for each e ∈ E do w[e]← ϵ ;

2 for each x ∈ V do

3 π[x]← none; d[x]←∞; M [x]← FG ;

4 d[xs]← 0; Q ← V; S ← ∅;

5 while Q ≠ ∅ do // Main loop

6 u← argmin
x∈Q d(x);

7 Q ← Q− {u}; S ← S ∪ {u};
8 P ← ExtractPatchDynamically(u, π, I);
9 l← ClassifyPatchUsingModel(C,P );

10 M [u] = l;

11 for each v ∈ N (u) ∩ Q do

12 if l = BG then

13 w[eu,v]← w[eu,v] +wp;

14 if d[v] > d[u] +w[eu,v] then

15 d[v]← d[u] +w[eu,v];
16 π[v]← u;

17 return π,M

The input of our algorithm includes the input image, a

start point, and a CNN classifier. We initialize all edge

weights with a small constant ϵ (Line 1). The functions π

and d, an empty segmentation mask M , as well as regions

S and Q are initialized between Line 2 and 4. Line 5 to 16

are the main loop of the inference, which only stops if π is
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determined for all pixels in the image, i.e., ifQ is empty. In

each iteration, the pixel u with currently minimum d value

is moved from Q to S (Line 6 and 7), and a patch P start-

ing at u is extracted dynamically (Line 8), i.e., this patch

can only be extracted during the main loop but not before it.

Patch extraction is also illustrated in Fig. 3a. The patch P

is then rectified, i.e., transformed into a rectangular patch so

that its centerline becomes straight and vertical, and classi-

fied by the CNN classifier (Line 9). The classification label

is added into the mask M (Line 10). In case of background

label, the weights between u and its neighbors insideN (the

4-neighborhood on the image grid) and Q are increased by

a high penalty wp (Line 13), so that it is less possible for the

minimal path to run through u. After that, functions π and

d are updated as in the usual version of Dijkstra’s algorithm

(Line 14 to 16). Finally, π and M are returned. M is the

segmentation mask of all the tubular structures in the im-

age, and π can be used to extract the minimal path between

start point xs and any other point in the image, especially

the end point xe. The centerlines extracted using π have

line-topology, while M does not have this property.

4.3. Training

To use more realistic samples for training, we apply

an iterative scheme. The main steps and comparison with

other training methods are shown in Fig. 7. In particular,

while common methods and Path-CNN draw samples di-

rectly from the annotations, we use minimal path method

itself to get initial samples and then repeatedly refine the

samples. In the N -th iteration, the minimal path method

with trained classifier CN−1 from the (N − 1)-th iteration

is applied to the training images to extract samples. Details

of our method is given in Algorithm 2.

For simplicity reasons, we assume there is only one train-

ing image and one validation image, each with ground truth

mask. In contrast to Path-CNN, hand-tuned features are not

used in our method. Instead, in determine π (Line 1) we

use ground truth mask to define initial weights for edges in

the graph: If both vertices of an edge belong to foreground,

then weight of the edge is set to 1. Otherwise, it is set to a

large positive constant. This graph is used to obtain π with-

out using any classifier. We then use π to extract tailored

samples from the training image Itr (Line 2): Starting from

any pixel x, we generate a path γL by back-tracing using π

for a fixed number of steps, and crop a curved image patch

P along γL. The sample P generated in this way is positive

if x in in foreground. Otherwise, it is negative. The path

γL is a segment on the minimal path between x and xs,tr.

γL is computed not using weights based on image features,

but using weights derived from ground truth, so its shape

is still quite regular (Fig. 5b), but it is more realistic than

samples extracted using manually specified lines (Fig. 5a).

With these samples, an initial classifier is trained (Line 5).
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Figure 7. Comparison of the training step in different minimal

path methods. Each yellow circle with red border corresponds to

a pixel. The operations (boxes with colored border) correspond to

functions in Algorithm 2 with the same name. The red and blue

boxes are the same as the red and blue boxes in Fig. 6.

The steps in Line 6 and 7 is very similar to the steps in

Line 1 and 2, but now π is computed using training image

and classifier, instead of using ground truth. The samples

generated in this way are getting even closer to the realistic

samples, since both of them are generated by applying the

same inference method, i.e., minimal path method with in-

tegrated CNN. These samples are illustrated in Fig. 5c and

Fig. 7. The trained classifier is applied for inference on the

validation image (Line 8) to compute a segmentation mask

M . The iteration terminates if the Dice score between M

and ground truth does not increase anymore (Line 9 to 13).

5. Experimental Results

We applied our method to three datasets and compared

the results with seven previous methods. The accuracy of

centerlines and segmentation masks is studied below, along

with qualitative results.

5.1. Datasets

Three public datasets EPFL [29], MRD [20], and DRIVE

[30] were used for evaluation. In most of our experiments,

the training sets consisted of quite small numbers of images.
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Algorithm 2: Iterative training scheme

Input: Train/val images Itr and Iv with ground

truth GTtr, GTv, start points xs,tr, xs,v,

maximum number of iterations N

Output: Classifier C

// Initial iteration

1 π ← determine π(GTtr,xs,tr);
2 X ← CreateTailoredSamples(π, Itr, GTtr);
3 dprev ← 0;

4 for i← 1 to N do // Main iterations

5 C ← TrainModel(X );
6 π,M ← InferenceOnFullImages(Itr,xs,tr, C);
7 X ← CreateTailoredSamples(π, Itr, GTtr);

// Validation

8 π,M ← InferenceOnFullImages(Iv,xs,v, C);
9 dcur ← ComputeDice(M,GTv);

10 if dcur > dprev then

11 dprev ← dcur;

12 else

13 break

14 return C

EPFL This dataset contains 14 satellite images of roads.

Binary segmentation masks and centerlines for all roads are

provided. The centerlines are presented as sequences of im-

age coordinates. We used 3 images for training and the re-

maining 11 images for testing.

MRD This dataset consists of 1157 satellite images of

roads, divided into a training set of 1108 images, and a test

set of 49 images. Only the road centerlines are provided,

but they are presented as binary masks instead of sequences

of coordinates. We dilated the centerlines slightly and used

the dilated region as an approximation of the foreground

mask. Regions close to the foreground mask were not used

for training. The regions further away from the foreground

were used as background mask. We used 10 image patches

for training and apply the trained model to the test set.

DRIVE In this dataset, there are 40 images of retinal ves-

sels. The dataset is divided into 20 training images and 20

test images. Binary masks for the vessels are provided with-

out centerlines.

5.2. Baselines

Beside minimal path methods, U-Net and its variants

are also widely used to segment tubular structures. Thus,

in addition to minimal path methods, i.e., Dijk-CNN [9],

Prog-CNN [17], and Path-CNN [16], we also compared our

method with the original U-Net [23], U-Net with softDice

loss [19] and clDice loss [27], and FR-UNet [18] (one of

Dataset Dijk-CNN Prog-CNN Path-CNN Ours

EPFL 2.91 2.52 1.71 1.41

MRD 7.36 5.12 3.65 3.54

Table 1. Errors for centerlines measured using Eq. (1). Unit: Pixel.

the best methods to segment retinal vessels [1]). In each ex-

periment, all methods were trained using the same images.

Dijk-CNN is the classical Dijkstra’s algorithm, and edge

weights in the graph are determined using a CNN before

Dijkstra’s algorithm is applied. Prog-CNN is the progres-

sive minimal path method, which also uses a CNN to pre-

compute edge weights. In contrast to Dijk-CNN, Prog-CNN

extracts a short path segment γ in every iteration and adapts

the edge weights on-the-fly, depending on the CNN-based

features along γ. Path-CNN is an extension of Prog-CNN:

In each iteration, not a path segment but an image patch

is extracted (Fig. 3a) to adapt edge weights. The inference

step of our method is similar to Path-CNN (Fig. 6), although

the training step is very different (Fig. 7). The CNN used in

Dijk-CNN, Prog-CNN, Path-CNN and our method was Mo-

bileNetV2 [24]. For Path-CNN and our method, we used a

fixed patch size of 31× 31 for all experiments and datasets.

For Dijk-CNN and Prog-CNN, the usual data augmentation

operations were used, while for Path-CNN and our method

we used only horizontal and vertical flips, and a small rota-

tion of±5 degrees, since further augmentations like rotation

or random cropping would violate the assumption of these

methods that the centerline of a rectified patch must be a

straight vertical line in the middle of the patch (Sect. 3.2).

We compared these minimal path methods in terms of the

accuracy of the centerline points. To evaluate the accuracy

of the segmentation masks, our method was compared with

Path-CNN, U-Net, softDice, clDice, and FR-UNet.

5.3. Accuracy of the Centerlines

We used the mean error between result and ground truth

to evaluate methods which extract lines as sequences of

points. This error measure is defined as

ecl =
1

N

∑

γ

∑

xi∈γ

|xi − xgt(i)|, (1)

where N is the total number of control points on the ex-

tracted centerlines, γ is a centerline, and xgt(i) is the ground

truth point which is closest to a given point xi on γ.

To compare the approaches, we selected 100 paths out of

11 test images of EPFL, and 650 paths out of 49 test images

of MRD. The results are summarized in Table 1. All four

methods used features obtained using the same CNN archi-

tecture, but the performance was rather different. In Dijk-

CNN, the CNN is applied to each pixel individually, and

the relationship between neighboring pixels is only taken

into account by convolutional filters. Since tubular struc-
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(a) Input (b) Results
Figure 8. Determination of the path between given start and end

points on two images from MRD. Result of Path-CNN is shown as

yellow line, and our result is shown as red line. Path-CNN made

several wrong turns, while our method found the correct paths.

tures are typically thin and long, they are difficult to cap-

ture using convolutional filters alone, leading to high errors.

Prog-CNN computes features explicitly for path segments

and yielded mean errors of 2.52 and 5.12 pixels for EPFL

and MRD, respectively, while in both datasets, the width of

most roads was over 10 pixels. By using features of recti-

fied patches, Path-CNN and our method were able to incor-

porate more contextual information, and further reduced the

errors to less than 2 pixels for EPFL and less than 4 pixels

for MRD. Overall, our method achieved the lowest errors.

By using samples tailored for minimal path methods, our

method performed better in complex environments. This is

demonstrated in the qualitative comparison between Path-

CNN and our approach in Fig. 8. In the upper row, Path-

CNN made a wrong turn at a crossing, while in the lower

row it failed to follow the correct road which had strong

shadow. In contrast, our method dealt well with both cases.

5.4. Accuracy of the Segmentation Masks

Dice score is a commonly used metric to compare two

masks M1 and M2. It is defined as

SDice = 2 ·
|M1 ∩M2|

|M1|+ |M2|
, (2)

where |M1∩M2| is the number of pixels in the overlapping

region. For EPFL and DRIVE, we computed the mean Dice

scores (MDS) of the test sets, i.e., the Dice scores are com-

puted for each test image individually and then averaged.

The results are summarized Table 2. For EPFL, we

achieved the highest MDS. Also, the boundary of tubular

structures was delineated more precisely using our method,

as illustrated in Fig. 9. The masks obtained using Path-CNN

Dataset Path-CNN U-Net softDice clDice FR-UNet Ours

EPFL 0.6322 0.9076 0.8803 0.9052 0.8847 0.9125

DRIVE 0.5927 0.7815 0.7644 0.7888 0.8208 0.8065

Table 2. Dice score for segmentation measured using Eq. (2).

(a) Input (b) Path-CNN

(c) FR-UNet (d) Our method
Figure 9. Results for a test image from EPFL. All three models

are trained with only 3 images. Path-CNN could not determine the

boundary precisely, and FR-UNet found false positive regions.

have quite noisy boundary, while in the result of FR-UNet,

several background regions are segmented as foreground.

In contrast, our method successfully avoided false positive

regions, and achieved smoother boundary than Path-CNN.

For DRIVE, our MDS was slightly below FR-UNet but

higher than all other methods. In addition, we ran a fur-

ther experiment using only 3 training images and all test

images on DRIVE. Our MDS was still as high as 0.7578,

while the MDS of U-Net and Path-CNN dropped to 0.5217
and 0.5470, respectively. A comparison is shown in Fig. 10.

Our method not only achieved more precise boundary, but

also made the segmentation of tubular structures more ro-

bust in regions with low image quality, especially when the

training data was scarce. In the example in Fig. 10a, a

large part on the vessel tree is missing in the results of Path-

CNN and U-Net, especially in the right half of the image,

where the image contrast is relatively low. In contrast, our

method correctly segmented most vessels, even the small

ones. These results were achieved using only 3 training im-

ages, which is much less than the amount of annotations

needed by most recent methods. It shows that our method

is especially interesting for medical image analysis, where

it is often difficult to obtain enough annotated images.

5.5. Effects of Iterative Training

The Dice scores on the validation set after each train-

ing iteration are plotted in Fig. 11. For all three datasets,

23649



(a) Input image (b) Path-CNN

(c) U-Net (d) Our method
Figure 10. Results for a test image from DRIVE. All three models

were trained with only 3 images. Path-CNN and U-Net both failed

to segment vessels in image regions with low contrast, while our

method successfully segmented most vessels.
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training iterations

0.00
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Figure 11. Dice scores on the validation set after each iteration.

the Dice score increases fast in the first iterations, and af-

ter three iterations there is no significant change anymore.

Note that there are no ground truth masks for MRD, so

we used dilated centerlines as pseudo-masks to train our

method (Sect. 5.1). Therefore MRD has lower Dice score

than the other datasets in Fig. 11. A qualitative examples in

Fig. 12 shows the improvement of segmentation masks due

to the iterative training scheme, using a test image in MRD.

After the first iteration, the boundary of the roads is still

quite noisy, and there are several false positives in the back-

ground. Also, the width of the roads is imprecise and fluc-

tuates a lot. After the third iteration, false positives are re-

duced significantly, and an overlay with the original image

shows that the shape of the roads is determined well, even

though our method is trained only using pseudo-masks.

5.6. Implementation and Run Time

The major part of our C++ implementation runs on CPU,

only the step of patch classification runs on GPU. It takes

(a) (b) (c)

(d) (e) (f)
Figure 12. Improvement through the iterative training scheme for

MRD. Segmentation mask after the first, second, and third itera-

tion are shown in (a), (b), and (c) respectively. (d) Ground truth

(centerline only). (e) Input image. (f) Overlay of the result after

the third iteration on the input image.

about 15 minutes to segment an image of the size 600×600
using a 3.4 GHz Intel i7 CPU and NVIDIA GTX 1070 GPU.

6. Conclusion

We proposed a minimal path method to segment tubular

structures and extract their centerlines. An iterative train-

ing scheme is introduced so that existing annotations can be

used more effectively without modification. In our frame-

work, minimal path method is not only used for segmenta-

tion and centerline extraction, but also for the generation of

realistic training samples. Our minimal path method con-

tains an integrated CNN classifier. Annotations are not di-

rectly used as samples to train this classifier. Instead, the

minimal path method is used along with the classifier from

the previous iteration to extract training samples out of ex-

isting annotations. Trained with these samples, the classi-

fier in turn is used to steer the minimal path method in the

next iteration to generate better samples. Training samples

obtained in this way are semantically more meaningful and

better tailored for the minimal path method, so our model

is trained more effectively. Experimental results show that

by using this training scheme, our approach outperforms

several recent methods and yields high-quality centerlines

and segmentation masks for tubular structures on several

datasets in different domains, even in cases of very limited

amounts of annotations. We believe that our method is es-

pecially useful for application areas in which annotations

are difficult to obtain, such as medical image processing.
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