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Abstract

Chamfer distance (CD) is a standard metric to measure
the shape dissimilarity between point clouds in point cloud
completion, as well as a loss function for (deep) learning.
However, it is well known that CD is vulnerable to out-
liers, leading to the drift towards suboptimal models. In
contrast to the literature where most works address such
issues in Euclidean space, we propose an extremely sim-
ple yet powerful metric for point cloud completion, namely
Hyperbolic Chamfer Distance (HyperCD), that computes
CD in hyperbolic space. In backpropagation, HyperCD
consistently assigns higher weights to the matched point
pairs with smaller Euclidean distances. In this way, good
point matches are likely to be preserved while bad matches
can be updated gradually, leading to better completion re-
sults. We demonstrate state-of-the-art performance on the
benchmark datasets, i.e. PCN, ShapeNet-55, and ShapeNet-
34, and show from visualization that HyperCD can signif-
icantly improve the surface smoothness. Code is available
at: https://github.com/Zhang-VISLabh.

1. Introduction

Point clouds, one of the most important data representa-
tions that can be easily acquired, play a key role in modern
robotics and automation applications [54, 33, 44]. However,
raw data of point clouds captured by existing 3D sensors is
usually incomplete and sparse due to occlusion, limited sen-
sor resolution and light reflection [68, 23, 31, 24, 75], which
can negatively impact the performance of downstream tasks
that require high-quality representation, such as point cloud
segmentation and detection. In this paper, we address this
issue by inferring the complete shape of an object or scene
from incomplete raw point clouds. This task is referred to
as point cloud completion [2].

*corresponding author

(a) Euclidean (b) Hyperbolic

Figure 1. Illustration of point matching in the (a) Euclidean space
and (b) hyperbolic space. With the position-aware embeddings in
hyperbolic space, the mismatched point pairs in Euclidean space
may be corrected, leading to better completion performance.

Point cloud completion is usually non-trivial due to the
unordered and unstructured characteristics of point clouds
(especially obtained from real-world environments). Re-
cently, many (deep) learning-based approaches have been
introduced to point cloud completion ranging from su-
pervised learning, self-supervised learning to unsupervised
learning [70, 55, 35, 6, 11, 43]. Amongst them, supervised
learning with a general encoder-decoder structure serves as
the dominant paradigm architectural choice for many re-
searchers and achieves state-of-the-art on nearly all main-
stream benchmarks. Their works largely focus on the de-
sign of different structures in the encoder and decoder for
more informative feature extractions and better point cloud
generation [69, 62, 75, 54, 12], in Euclidean space.

Unequal Point Importance in Point Clouds. Humans of-
ten perceive the visual quality of point clouds in a non-
homogeneous way by putting a higher emphasis on the
points with certain geometric structures such as planes,
edges, corners, etc. For example, point clouds with smooth
surfaces and sharp edges tend to be more visually appealing
than their counterparts [64, 26]. Surprisingly, this simple
yet nontrivial fact in point clouds, however, is hardly ex-
plored in the literature of point cloud completion. For in-
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stance, Chamfer distance (CD) is a widely used metric in
point cloud completion, e.g. [15, 61], to measure the shape
dissimilarity between any pair of point clouds by calculat-
ing the average distance between each point in one set to
its nearest neighbor found in another. While CD can faith-
fully reflect the global dissimilarity between the prediction
and ground truth, the distances of all nearest-neighbor pairs
between both sets are treated with equal importance (even
higher weights to outliers). Thus, CD is sensitive to outliers.

Density-aware Chamfer Distance (DCD) in Euclidean
Space. To address such an equal weighting problem in
CD, recently Wu et al. [61] proposed a DCD metric by ex-
ploring the disparity of density distributions in point clouds.
As illustrated in Fig. 1 (a), due to the different point den-
sity in point clouds, denser points may easily have multiple
matches, while sparser points may not. This phenomenon
is considered in DCD as a weighting mechanism (inverse to
the number of matches for balance) so that sparser points
have higher weights. Meanwhile, DCD also proposed using
an exponential approximation (the first order approximation
of Taylor expansion) of CD to overcome the sensitivity to

outliers, as illustrated in Fig. 2.

Though empirically DCD seems to work better than CD
for point cloud completion, it may have some serious issues:
* Density-aware mechanism in DCD may assign higher

weights to sparser points. This not only tends to obtain
good matches at the edges and corners, but also favors the
matches with outliers that leads to inferior completion.

* CD approximate functions hardly preserve good matches.
From Fig. 2, CD is sensitive to outliers because its gra-
dient assigns higher (or equal) weights to the points with
larger distances. DCD can mitigate this problem, but the
weights either decrease too fast (exponentially) with the
¢4 distance or are small for good matches (even zeros for
perfect matches) with the /5 distance.

Hyperbolic Chamfer Distance (HyperCD). To mitigate
these aforementioned problems in CD for point cloud com-
pletion, in contrast to the literature, we believe that preserv-
ing good matches while improving bad matches gradually
during training is the key to the success in point cloud com-
pletion. We call this matching property position-aware, as
it only depends on the point positions. Recently hyper-
bolic space has been demonstrated as a means to repre-
sent the inherent compositional nature of point clouds us-
ing position-aware embeddings within tree-like geometric
structures, e.g. [36]. Such works highly motivate us to ex-
plore CD in hyperbolic space.

As illustrated in Fig. 1 (b), hyperbolic space provides
more flexibility than Euclidean distance as a measure be-
tween points, and thus it may be possible to correct match-
ing errors in CD. Besides, as illustrated in Fig. 2 (left), with
different power functions, the hyperbolic spaces (defined by
arcosh) can better approximate CD than DCD. Meanwhile,

as we see, the curves of gradients of y = arcosh(l + z)
and y = arcosh(1 + 23/3) are quite similar to those for
DCD, while the gradient of y = arcosh(1 + x2/2) pro-
duces a nice curve that exactly follows what we expect for a
good weighting mechanism in point cloud completion. This
observation provides us new insights on defining HyperCD.

Specifically, by matching the points with nearest neigh-
bors in Euclidean space (represented by x-axis in Fig. 2),
we first obtain the matches between the prediction and
ground truth, and vice versa. We then plug these Euclidean
distances into arcosh to represent them in hyperbolic space.
Empirically we demonstrate that models trained with such a
simple metric can significantly outperform the counterparts
trained with CD as well as DCD.

Contributions. We list our main contributions as follows:

* We propose an extremely simple yet powerful distance
metric, HyperCD, for point cloud completion. To the best
of our knowledge, we are the first to explore hyperbolic
space for point cloud completion.

* We demonstrate state-of-the-art performance on several
benchmark datasets based on popular networks that are
trained with HyperCD.

2. Related Work

3D Shape Completion. Elder methods in 3D shape com-
pletion generally focus on voxel grid, which have network
architecture similar to 2D image networks [34, 8, 22]. How-
ever, information loss will inevitably happen when the inter-
mediate representations have been involved, and voxeliza-
tion will cause high computational cost regard to voxel reso-
lution [56]. Therefore, recent state-of-the-art models are de-
signed to consume raw point cloud data directly. As the pio-
neering work PointNet [42], it independently applies MLPs
on each point and subsequently aggregates features through
max-pooling operation to achieve permutation invariance.
Following this design, a clear-cut way is employing per-
mutation invariance neural networks as a tool to design an
encoder for input partial feature extraction and a decoder
to complete point clouds. As the first learning-based point
cloud completion network, PCN [70] extract global feature
in a similar way PointNet did and generate points through
folding operations [66]. In order to obtain local structures
among points, Zhang et al. [74] extract multi-scale features
from different layers in the feature extraction part to en-
hance the performance. CDN [57] uses a cascaded refine-
ment network to bridge the local details of partial input and
the global shape information together.

Lyu et al. [32] treat point cloud completion as a con-
ditional generation problem in the framework of denois-
ing diffusion probabilistic models (DDPM) [46, 16, 76, 30].
They also mentioned the problem where CD loss is not sen-
sitive to overall density distribution. Their solution is us-

14596



10

ey =X
ey = X2

81— y=1-exp(-x)
—y= 1—exp(—x2/2)
||—y = arcosh(1+x)

y = arcosh(1+x2/2)

—y= arcosh(1+x3/3)

o
Chde
R
o
o

3 -
. ey =X
3 2
L y =x/2
25 y = 1-exp(-x)
~y= 1—exp(—x2/2)
2r ——y = arcosh(1+x)
S y = arcosh(1+x%/2)
%1 57 —y = arcosh(1+x°/3)

Figure 2. Illustration of (left) some distance metrics and (right) their corresponding gradients, where the dotted curves are used in #; and
£2-CD, the dash ones are used in density-aware Chamfer distance (DCD) [61], and the solid curves are special cases of our HyperCD.

ing DDPM to define a one-to-one point-wise mapping be-
tween two consecutive point clouds in the diffusion process,
which uses a simple mean squared error loss function [4] for
training. However, it is computationally intensive and only
works at the coarse point cloud generation stage.

Attention mechanisms like Transformer [53], demon-
strate their superiority in long-range interaction capturing
as compared to CNNs’ constrained receptive fields. For
instance, to preserve more detailed geometry information
for point cloud generation in the decoder, SA-Net [58] uses
the skip-attention mechanism to merge local region infor-
mation from the encoder and point features of the decoder.
SnowflakeNet [62] and PointTr [69] pay extra attention to
the decoder part with Transformer-like designs. PointAttN
[54] further proposes an architecture design solely based on
Transformers. These works have demonstrated the ability
of Transformers in point cloud completion tasks.

Point Cloud Distance. Distance in point clouds is a non-
negative function that measures the dissimilarity between
them. Since point clouds are inherently unordered, the
shape-level distance is typically derived from statistics of
pair-wise point-level distances based on a particular assign-
ment strategy [61]. With relatively low computational cost
fair design, CD and its variants are extensively used in
learning-based methods for point cloud completion tasks
[9, 32, 73, 47]. Earth Mover’s Distance (EMD), which is
another widely used metric, relies on finding the optimal
mapping function from one set to the other by solving an
optimization problem. In some cases, it is considered to
be more reliable than CD, but it suffers from high compu-
tational overhead and is only suitable for sets with exact
numbers of points [27, 1]. Recently, Wu et al. [01] propose
a Density-aware Chamfer Distance (DCD) as a new metric
for point cloud completion which can balance the behavior

of CD and computational cost in EMD to a certain level.

Hyperbolic Learning. Euclidean space has been widely
used in machine learning because it is a natural generaliza-
tion of human intuition-friendly, visual three-dimensional
space, and easy for measuring distances and inner-products
[13, 28, 20, 40]. However, the Euclidean embedding is not
the suitable choice for some complex tree-like data fields
such as Biology, Network Science, Computer Graphics, or
Computer Vision that exhibit highly non-Euclidean latent
anatomy [13, 5]. This encourages the research community
to develop deep neural networks in non-Euclidean space,
such as hyperbolic space, which is a Riemannian manifold
of constant negative curvature. Recently, the gap between
the hyperbolic embeddings and the Euclidean embeddings
has been narrowed by deriving the essential components of
deep neural networks in hyperbolic geometry [13, 45] (e.g.
multinomial logistic regression, fully-connected layers, re-
current neural networks etc.).

Unlike Euclidean space with polynomial volume growth
w.rt. the radius, hyperbolic space H" has exponential
growth that is suitable for tree-like structure data. The
representation power of hyperbolic space has been demon-
strated in NLP [37, 38], image segmentation [00, 3], few-
shot [18] and zero-shot learning [29] as well as metric
learning equipped with vision transformers [10]. For point
clouds of 3D objects, the data naturally exhibit a hierar-
chy property, where simple parts can be assembled into
progressively more complex shapes to form whole objects.
Recently, the work of [36] has shown that the features
from a point cloud classifier could be embedded into hyper-
bolic space that leads to the state-of-art supervised models
for point cloud classification. Intuitively, points near the
boundary of hyperbolic space are sparser compared with
points at the center. While the hierarchy property between
part and whole could provide useful clues in classifying ob-
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jects, it cannot be directly applied in generation tasks like
point cloud completion. However, the property of hyper-
bolic embedding with exponential offers a clue in designing
a new loss for point cloud completion tasks that focus more
on the surface. To the best of our knowledge, we are the first
to introduce hyperbolic space in point cloud completion.

3. Method

In this section, we will introduce HyperCD, its fast cal-
culation and weighting mechanism in backpropagation.

3.1. Chamfer Distance

Notations. We denote (;, y;) as the i-th point cloud pair in
the training data, x; = {x;;} as the incomplete input point
cloud with 3D points z;;, Vj, and y; = {y; } as the ground-
truth point cloud with points y;, Vk. We denote d(-, ) as a
certain distance metric, f as a neural network for generating
a new point cloud from an incomplete input point cloud that
is parametrized by w.

Definition. Based on such notations above, a Chamfer dis-
tance for point clouds can be defined as follows, in general:

D(l‘i,yi)

1 . 1 .
| E mklnd(xijvyik)""iyv‘ § Hljlnd(xijayik)a (D
J ok

|2

where |- | denotes the cardinality of a set. Based on this def-

inition, we can instantiate the distance metric with different

geometric spaces, such as:

* Euclidean distance: For point cloud completion, function
d is usually defined in Euclidean space, referring to

oy _ ) lmij =yl as Li-distance
s, yie) = zij — yirl|®  as L2-distance @)
i~y
where || - || denotes the Euclidean ¢5 norm of a vector. As

we show, such distances make CD sensitive to outliers.

* Hyperbolic distance: Hyperbolic space is a homogeneous
space with a constant negative curvature whose distance
between two points is determined by the curvature that
goes through both points. In general, a hyperbolic space
can be constructed using five different isometric models,
among which Poincaré model is popular in deep learning
[41]. Specifically, supposing that two points x;;, y;x lie
in the Poincaré unit ball, i.e. ||z;;|| < 1, ||yix] < 1, their
hyperbolic distance is defined as

d(x;;,yi) = arcosh (1 +2
! (1= [lzs;12) (X = llyixl?)

3)
Note that the hyperbolic distance can be always defined

based on arcosh, no matter what model is used to repre-
sent the hyperbolic space.

Hﬂﬁij _yikHQ >

Learning Objective for Point Cloud Completion. Based
on the definition of CD in Eq. 1, a simple learning objective
can be written as follows:
min Fi(w) %S min D(f(zi;w), yi) )
e £ ) _UJEQ : 19 s Yi)s
where () denotes the feasible solution space for w defined
by some constraints such as regularization.

3.2. Hyperbolic Chamfer Distance

Challenges. There are several challenges that prevent us
from directly substituting Eq. 3 into Eq. | as listed below:
* Domain constraint: The norm of each 3D point should be
strictly smaller than 1. Some implementation tricks such
as clipping [72] can be applied here to mitigate the issue.
* Computational burden: The calculation in Eq. 3 is much
more complex than the Euclidean distance, leading to sig-
nificantly higher computational burden especially in large
scale settings as the matching complexity per point cloud
pair is O(]z;||y:|), e.g. the numbers of points in point
clouds bigger than 10K. To mitigate this issue, often the
hyperbolic distance is computed in Gyrovector space in-
stead [50, 51, 52, 71], a generalization of Euclidean vec-
tor spaces, based on the Mobius transformations [21].
However, such operations still require too much compu-
tation to be efficient in large scale settings.
So far, we have discovered that (1) computing Euclidean
distances is much faster than computing hyperbolic dis-
tances, and (2) hyperbolic distances are defined based on
arcosh. So, how shall we define hyperbolic Chamfer dis-
tance and accelerate its computation?

3.2.1 Definition

Motivated by hyperbolic distance in Eq. 3, we propose a
novel distance measure based on Eq. 1, namely Hyperbolic
Chamfer Distance (HyperCD), where

d(z;,yix) = arcosh (1 + af|z;; — yik||2) ,a>0. (5

Note that the hyperbolic distance in Eq. 3 can be taken as
a special case of Eq. 5, i.e., o = (1—Hx7:j\|2)2(1—|\ym|\2) as a
function of x;;, y;.. We provide an efficient way to compute
HyperCD between point clouds in Alg. 1, whose complex-

ity is similar to Euclidean CD.

3.2.2 Learning with HyperCD as Loss Function

Now let us discuss the learning process in backpropagation
for updating network weights. Considering the learning ob-

14598



Algorithm 1 HyperCD

Input : a point cloud pair (z;, y;), hyperparameter o > 0
Output: HyperCD D(z;, y;)

Initialize a matrix M, Dy < 0, Dy < 0;
foreach j, k do

| Mk = llzsj — yarll*s
end
foreach j do

| Dy < Dy + arcosh(1 + aminy M;;);
end
foreach £ do

| Dy < Dy + arcosh(1 + amin; Mjy);
end

return D(z;,y;) < ‘%1‘ + %;

jective in Eq. 4, then we have

+

Z ad Izm yzm(j))
|

w |a:l i p Ow

(6)

where z; denotes the output point cloud from the network
f by taking x; as input, and m(j), n(k) denote the corre-
sponding indexes for the nearest neighbor matches. Further,

0d(&ij Yim) _ ,  OlFij — Yim()ll

0w T w7

20| &ij —Yim) |l

\/(1-&-04”5613' —Yim () ||2)2—1
weight for the gradient feature in backpropagation. This im-
plicit weighting mechanism only depends on the Euclidean
distances, and thus it is position-aware. The same gradient
feature, w is also used in CD and DCD. The
only difference among such distance metrics in learning is
the weighting mechanism.

where z;; = € R denotes the

3.3. Analysis on HyperCD

Proposition 1. Consider d(xij,yir) = g(||zi; — vil||) in
Eq. 1 where function g is strictly increasing. It holds that

mkin d(zij,yix) = g (mkin l|zi; — yik”> . )

This proposition states that g and min are switchable for
a strictly increasing function g. In this way, the complexity
of g (ming ||z;; — yix||) is just slightly higher than comput-
ing Euclidean distances (with extra calculation for g).

Proposition 2. Consider a function h(z) = arcosh(1l
ax?),Yx > 0. h is strictly increasing iff a > 0, 8 > 0.
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Figure 3. Illustration of the gradient weights using our HyperCD.
All the numbers are normalized by \/%

This proposition can be easily proven by the fact that the
derivative of h is always positive iff « > 0,5 > 0.

Proposition 3. Considering function h in Prop. 2, then its
B-1 )
afe satisfies that

V(+azh)?—1’

vative b —
derivative, 3 =

Oh(z) . 0B s, —27%0, 0<pB<2

lim = lim —zx2 " = , B=2
r—0+ Ox =0t /2« 0V72a 3>2
)
. Oh(z) B
1 = —. 10
mﬁlrfoo ox T (10)

When z is approaching 0, function h will perform as a
power function, with a single special case where 3 = 2 re-
turns a constant. This analysis coincides with Fig. 2 (right),
and it seems that only f 2 can provide a reason-
able weighting mechanism to preserve good point matches.
When z is approaching infinity, all the curves with the same
[ will converge to a power function as well.

Proposition 4. The weight z;; in Eq. 7 is strictly decreasing
W.rt. (| Zij — Yim(s) |l for an arbitrary o > 0.

Fig. 3 illustrates the change of weights w.r.t. the dis-
tances using different ’s. When « is small, e.g. o < 2,
the curves decrease gradually, which can potentially better
preserve good matches through backpropagation.

4. Experiments

Datasets. We verify and analyze our HyperCD for point

cloud completion on the following benchmark datasets.

* ShapeNet-Part: The benchmark ShapeNet-Part [67] is
a part segmentation subset of ShapeNetCore [7] 3D
meshes. It contains 17,775 different 3D mesh which be-
long to 16 categories. The ground truth point cloud data
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Table 1. Completion results on PCN in terms of per-point L1 Chamfer distance x 1000 (lower is better).

Methods ‘ Average | Plane Cabinet Car Chair Lamp Couch Table Boat
FoldingNet [66] 1431 | 949 1580 12.61 1555 1641 1597 13.65 14.99
TopNet [49] 12.15 | 7.61 1331 1090 13.82 14.44 1478 11.22 11.12
AtlasNet [14] 10.85 | 637 11.94 10.10 12.06 1237 1299 10.33 10.61
GRNet [63] 8.83 6.45 1037 945 941 796 1051 844 8.04

CRN [57] 8.51 479 997 831 949 894 10.69 7.81 8.05

NSFA [74] 8.06 476 10.18 863 853 7.03 1053 735 748
FBNet [65] 6.94 399 905 790 738 582 88 635 6.18

PCN [70] 11.27 | 550 2270 10.63 870 11.00 11.34 11.68 8.59
HyperCD + PCN 10.59 | 595 11.62 9.33 1245 1258 13.10 9.82 9.85
FoldingNet [66] 1431 | 949 1580 12.61 1555 1641 1597 13.65 14.99
HyperCD + FoldingNet 12.09 | 7.89 1290 10.67 14.55 13.87 14.09 11.86 10.89
PMP-Net [59] 8.73 565 1124 9.64 951 695 1083 872 7.25
HyperCD + PMP-Net 8.40 506 1067 930 9.11 6.83 11.01 8.18 7.03
PoinTr [69] 8.38 475 1047 868 939 775 1093 7.78 7.29
HyperCD + PoinTr 7.56 442 977 822 822 6.62 9.62 697 6.67
SnowflakeNet [62] 7.21 429 9.16 8.08 7.89 607 923 655 640
HyperCD + SnowflakeNet | 6.91 395 9.01 788 737 575 894 619 6.17
PointAttN [54] 6.86 387 9.00 7.63 743 590 868 632 6.09
DCD + PointAttN 7.54 447  9.65 8.14 812 675 9.60 692 6.67
HyperCD + PointAttN 6.68 376 893 749 7.06 561 848 625 5.92
SeedFormer [75] 6.74 385  9.05 806 7.06 521 885 605 585
DCD + SeedFormer 2452 1642 2623 21.08 20.06 18.30 26.51 18.23 18.22
HyperCD + SeedFormer 6.54 372 871 779 683 511 861 582 5.76

Table 2. Completion results on ShapeNet-55 based on L2 Chamfer distance x 1000 (lower is better) and F-Score@ 1% (higher is better).

Methods | Table Chair Plane Car Sofa | CD-S CD-M CD-H CD-Avg | Fl
PFNet [17] 395 424 181 253 334 383 38 797 522 | 0339
FoldingNet [66] 253 281 143 198 248 | 267 266 405 312 | 0.082
TopNet [49] 221 253 114 218 236 | 226 216 43 291 | 0.126
PCN [70] 213 229 102 185 206 | 194 196 408 266 | 0.133
GRNet [63] 163 188 102 164 172 135 171 285 1.97 | 0.238
PoinTr [69] 081 095 044 091 079 | 058 088 179 1.09 | 0464
SeedFormer [75] 072 081 040 089 071 ] 050 077 149 092 | 0472
HyperCD + SeedFormer | 0.66 0.74 035 0.83 0.64 | 047 072 140 086 | 0.482

was created by sampling 2,048 points uniformly on each
mesh. The partial point cloud data were generated by ran-
domly selecting a viewpoint as a center among multiple
viewpoints and removing points within a certain radius
from the complete data, which is similar to the generation
of PoinTr’s ShapeNet-55/34 [69] benchmark. The num-
ber of points we remove from each point cloud is 512.

PCN: One of the most popular benchmark datasets for
point cloud completion is the PCN dataset [70]. It
is a subset of ShapeNet [7] with shapes from 8 cate-
gories. The incomplete point clouds are generated by
back-projecting 2.5D depth images from 8 viewpoints in
order to simulate real-world sensor data. For each shape,

16,384 points are uniformly sampled from the mesh sur-
faces as complete ground truth, and 2,048 points are sam-
pled as partial input [70, 75].

ShapeNet-55/34: ShapeNet-55 and ShapeNet-34 datasets
datasets are also generated from the synthetic ShapeNet
[7] dataset while they contain more object categories and
incomplete patterns. All 55 categories in ShapeNet are
included in ShapeNet-55 with 41,952 shapes for training
and 10,518 shapes for testing. ShapeNet-34 uses a subset
of 34 categories for training and leaves 21 unseen cate-
gories for testing where 46,765 object shapes are used for
training, 3,400 for testing on seen categories and 2,305
for testing on novel (unseen) categories. In both datasets,
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Figure 4. Visual comparison of point cloud completion results on PCN. Row-1: Inputs of incomplete point clouds. Row-2: Outputs of
PointAttN with CD. Row-3: Outputs of PointAttN with DCD. Row-4: Outputs of PointAttN with HyperCD. Row-5: Ground truth.

Table 3. Completion results on ShapeNet-34 based on L2 Chamfer distance x 1000 (lower is better) and F-Score@ 1% (higher is better).

Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H CD-Avg F1 CD-S CD-M CD-H CD-Avg F1

PFNet [17] 3.16 3.19 7.71 4.68 0.347 | 529 5.87 13.33 8.16 0.322
FoldingNet [66] 1.86 1.81 3.38 2.35 0.139 | 2.76 2.74 5.36 3.62 0.095
TopNet [49] 1.77 1.61 3.54 2.31 0.171 | 2.62 243 5.44 3.50 0.121
PCN [70] 1.87 1.81 2.97 222 0.154 | 3.17 3.08 5.29 3.85 0.101
GRNet [63] 1.26 1.39 2.57 1.74 0.251 | 1.85 2.25 4.87 2.99 0.216
PoinTr [69] 0.76 1.05 1.88 1.23 0421 | 1.04 1.67 3.44 2.05 0.384
SeedFormer [75] 0.48 0.70 1.30 0.83 0.452 | 0.61 1.08 2.37 1.35 0.402
HyperCD + SeedFormer | 0.46 0.67 1.24 0.79 0.459 | 0.58 1.03 2.24 1.31 0.428

2,048 points are sampled as input and 8,192 points as
ground truth. Following the same evaluation strategy with
[69], 8 fixed viewpoints are selected and the number of
points in the partial point cloud is set to 2,048, 4,096 or
6,144 (25%, 50% or 75% of the complete point cloud)
which corresponds to three difficulty levels of simple,

moderate and hard in the test stage.

Implementation. We take three state-of-the-art networks,
i.e. CP-Net [25], PointAttN [54] and SeedFormer [75], as
our backbone networks for comparison and analysis. We
train all these networks with or without HyperCD from
scratch using PyTorch [39] with the Adam optimizer [19].
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All three networks are designed solely using the dissimi-
larity between generated and ground truth point clouds as
supervision signal. For the lightweight network CP-Net, its
original dissimilarity metric between prediction and ground
truth is only calculated at the first stage. We replace its dis-
similarity metric at this stage using HyperCD in our experi-
ment. For multi-stage networks, i.e. PointAttN and Seed-
Former, the loss functions are introduced at every stage
from coarse to fine point clouds. We replace the loss func-
tions from all the stages with HyperCD so it can participate
in the whole training process. To ensure fairness in compar-
ison, all the other loss functions compared with HyperCD
in this paper are processed in the same way as HyperCD.

All the hyperparameters such as learning rate, batch size
and training epochs are kept consistently with the setting
of baselines for a fair comparison. Hyperparameter « in
HyperCD is tuned with grid search, by default. We conduct
our experiments on a server with 10 NVIDIA RTX 2080Ti
11G GPUs for CP-Net with ShapeNet-Part, on a server with
4 NVIDIA A100 80G GPUs for PointAttN with PCN, on a
server with 4 NVIDIA V100 16G GPUs for SeedFormer
with PCN and ShapeNet-55/34.

Evaluation Metrics. To make a fair comparison, we eval-
uate the performance of all the methods using CD. Fl1-
Score@1% [48] is also used to evaluate ShapeNet-55/34
with the same experiment setting in the literature. For bet-
ter comparison we also list the original results of some other
methods on PCN and ShapeNet-55/34.

4.1. State-of-the-art Comparison

PCN. Following the literature, we report CD with L1-
distance in Table 1 with numbers per category. We also
include the results trained with DCD. As we can see, the
replacement of HyperCD loss enables two baselines to out-
perform their previous state-of-the-art results by a certain
amount, while the performance gets slightly worse when
DCD is used. As we discussed earlier, numerical metric (i.e.
CD) may not faithfully reflect the visual quality, so we also
provide qualitative evaluation results shown in Fig. 4, com-
pared with results generated from the baseline model with
CD and DCD loss functions. As we can see, both models
can reconstruct point clouds in general outline to some ex-
tent, but the reconstructed results with CD are more likely
to suffer from distortion on several areas with high noise
level on the surface. With the introduction of HyperCD loss
during training, the baseline network can further demonstra-
bly well-reconstructed point cloud in general outline while
maintaining the realistic details of the original ground truth
with significantly reduced noise level. Although DCD ex-
hibits better capacity in controlling noise level in generated
point clouds, it fails to preserve fine details and also suffers

Table 4. Completion results of CP-Net with different losses on
ShapeNet-Part in terms of per-point L2 Chamfer distance x1000.

Loss function CD-Avg
L1-CD 4.16
L2-CD 4.82

DCD 5.74

y = arcosh(1 + z) 4.43
y = arcosh(1 + z?) 4.22
Hyperbolic Distance 4.09

HyperCD 4.03

from distortion.

ShapeNet-55/34. We also test on the ShapeNet-55 dataset
to evaluate the adaptability of HyperCD on tasks with
higher diversities. Table 2 summarizes the average L2
Chamfer distances on three difficulty levels and the over-
all CDs. Following the convention, we show results in 5
categories (Table, Chair, Plane, Car and Sofa) with more
than 2,500 samples in the training set. Complete results for
all 55 categories are available in the supplemental material.
We also provide results under the F-Score @ 1% metric. As
we can see from Table 2, the introduction of HyperCD im-
proves the baseline performance to some extent. To have an
intuitive evaluation of reconstructed results, we also provide
qualitative evaluations in supplemental materials compared
with results generated from the baselines. We can clearly
see while reconstructed results have better numerical per-
formance, the model trained with HyperCD works better in
reconstructing the surface areas and preserving the details
with less noise. The improvement in both numerical and
qualitative evaluations indicates that HyperCD is capable to
adapt to point completing tasks with high diversities.

On ShapeNet-34, we evaluate performances within 34
seen categories (same as training) as well as 21 unseen cat-
egories (not used in training). In Table 3, we can observe
that HyperCD is capable of improving baseline model per-
formance in terms of achieving higher scores. The improve-
ment of performance indicates our loss function is highly-
generalizable for point clouds completion tasks with both
seen and unseen categories.

4.2. Analysis

We choose ShapeNet-Part as the dataset to analyze and
compare with different loss functions. As introduced previ-
ously, ShapeNet-Part is a relatively small dataset compris-
ing 16 categories objects, which is sufficient for analysis in
our case. For the model part, we choose a light-weighted
network called CP-Net [25].

Hyperparameters. We provide the relationship between o
with learning rate (Ir) on the effect of training performance
in Fig. 5. As a complimentary to our aforementioned dis-
cuss on arcosh, we train and test the performance of differ-
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ent arcosh-family metrics (as shown in Fig. 2) on CP-Net,
and we reported their results in Table 4. We also provide the
performance of several popular loss functions in Table 4, in
which HyperCD outperforms both CD and DCD by a large
margin.

Computation. Note that our HyperCD has only one more
operation, arcosh, than CD and thus in theory both com-
putational efficiency should be very similar, but both are
much simpler than hyperbolic distance. Numerically, it
takes 0.423940.0019, 0.4298+0.0014 and 0.533540.0368
second per iteration for training CP-Net with CD, HyperCD
and hyperbolic distance, respectively.

Point Correspondences. We also provide an visualiza-
tion on how the point correspondences change during train-
ing. We plot some point correspondences over epochs
(10,70,130), as shown in Fig. 6 where the blue points are
ground truth and the red ones are predictions. HyperCD is
able to help stabilize the (correct) correspondences much
faster in training, leading to better convergence than CD.
Also, as visualized in Fig. 6 at the 10-th epoch, the pre-
dicted airplane head (red) is much smoother and geometri-
cally closer to the ground truth (blue) based on HyperCD
than CD, demonstrating that HyperCD can preserve geo-
metric features much better.

5. Conclusion

In this work, we explore the possibility of introducing
the hyperbolic space into point cloud completion tasks.
Inspired by the exponential growth nature of hyperbolic
space, we extend the CD loss using the hyperbolic space.
Motivated by hyperbolic distance and the recent litera-
ture on CD, we propose a novel distance measure, namely
Hyperbolic Chamfer Distance (HyperCD), to mitigate the
well-known outlier issues in CD. To demonstrate the per-
formance of HyperCD, we evaluate it on several benchmark
datasets with popular networks and achieve new state-of-
the-art performance for point cloud completion.

HyperCD cD

Figure 6. [llustration of point correspondence change over epochs.
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