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Abstract

Liquid perception is critical for robotic pouring tasks. It
usually requires the robust visual detection of flowing liq-
uid. However, while recent works have shown promising re-
sults in liquid perception, they typically require labeled data
for model training, a process that is both time-consuming
and reliant on human labor. To this end, this paper pro-
poses a simple yet effective framework PourIt!, to serve as a
tool for robotic pouring tasks. We design a simple data col-
lection pipeline that only needs image-level labels to reduce
the reliance on tedious pixel-wise annotations. Then, a bi-
nary classification model is trained to generate Class Acti-
vation Map (CAM) that focuses on the visual difference be-
tween these two kinds of collected data, i.e., the existence of
liquid drop or not. We also devise a feature contrast strategy
to improve the quality of the CAM, thus entirely and tightly
covering the actual liquid regions. Then, the container pose
is further utilized to facilitate the 3D point cloud recovery of
the detected liquid region. Finally, the liquid-to-container
distance is calculated for visual closed-loop control of the
physical robot. To validate the effectiveness of our proposed
method, we also contribute a novel dataset for our task and
name it PourIt! dataset. Extensive results on this dataset
and physical Franka robot have shown the utility and effec-
tiveness of our method in the robotic pouring tasks. Our
dataset, code and pre-trained models will be available on
the project page 1.

1. Introduction

Recent advances have seen the great progress in the ca-
pabilities of grasping and manipulating the rigid objects.
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Figure 1. Our visual closed-loop robotic pouring. Unlike [17], our
approach recovers a 3D point cloud of the liquid using the source
container’s pose and 2D liquid perception data. This allows the
robot to pour accurately based on visual feedback, even without
the depth measurement of the liquid.

However, the manipulation of non-rigid objects such as liq-
uids, cloth, and rope remains a formidable challenge due to
the absence of fixed patterns and geometrical shapes associ-
ated with flexible properties. Perceiving images of liquid is
particularly challenging due to their reliance on refraction
of light as the primary visual cue and the absence of depth
measurement as shown in Fig. 1 (top left). Thus, further
research to enhance liquid perception would be highly ben-
eficial, especially for robots involved in real-world service
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tasks like cooking, drink serving, and plant watering.
Pouring water is a highly relevant task in the field of

liquid manipulation, yet it poses a number of significant
challenges. These challenges include (1) the need for large
amounts of pixel-wise annotated data to facilitate effective
training, (2) the lack of salient visual cues within images,
and (3) the unavailability of a reliable depth measurement
system for accurate liquid pouring. Addressing these chal-
lenges is crucial for advancing the state of liquid manipu-
lation technology and enabling practical applications in do-
mains such as robotics and industrial automation.

To address the aforementioned challenges, researchers
have explored the use of extra sensors to generate ground-
truth labels for robotics pouring. For example, Schenck et
al. [26] skillfully utilize the thermal camera and heating wa-
ter to obtain the ground-truth annotations. However, this
approach is time-consuming and relies on additional equip-
ment. Other methods [15, 34, 36, 9, 18, 32] rely on the
audio but not visual signals to help robotics pouring, which
limits their efficacy in noisy environments. Lin et al. [17]
simply utilize the estimated container’s pose and size to cal-
culate the initial pouring point without any liquid percep-
tion (Fig. 1), thus cannot guarantee whether the liquid is
poured into target container in a closed-loop manner. More
recently, a self-supervised method [20] has been proposed
to transfer colored liquid into transparent liquid without the
need for manual annotations. However, this approach’s re-
liance on colored liquid and a statically placed transparent
container limits its applicability in more general environ-
ments. Therefore, the challenge of robustly perceiving dy-
namically out-flowing liquid during pouring operations re-
mains an open question that requires further research.

This paper presents a simple yet effective framework
PourIt! that solves challenges in robotic pouring tasks, par-
ticularly during the pouring stage. Our open-source library
is positioned similarly to existing tools such as MoveIt! [7]
for motion planning and GraspIt! [19] for grasping plan-
ning. We address three specific challenges, including lim-
ited annotated real-world data for training, non-salient vi-
sual cues of liquid, and unavailable depth measurement of
the liquid. (1) To address the first challenge, we design an
semi-automatic pipeline that will collect images with two-
class labels, indicating whether the liquid flows from the
bottleneck of the source container. This pipeline enables
the robot to collect more data, thereby improving the perfor-
mance of the network. (2) To tackle the second challenge,
we classify the images by distinguishing between the two
types of collected data (existence of out-flowing liquid or
not). However, such a classification task may not fully fo-
cus on the entire liquid region. To overcome this, we use
a feature contrast strategy to pull foreground local features
close and separate foreground-background local features to
identify the liquid region. (3) To resolve the third challenge,

we make the gravitational assumption that the liquid stream
aligns along the body of container. This enables us to ap-
proximate the liquid’s 3D shape with estimated container
pose, providing valuable visual feedback for robot control.

Technically, we first collect two types of real-world data
by robot or human executing pouring action with using
empty or full container, and turning on or off the taps as
shown in Fig. 2. The data is divided into positive samples
if there is flowing liquid, otherwise negative samples. Then
we train a classification network to distinguish the positive
and negative samples, which drives the network to focus on
the difference of the two types of data, i.e., existence of liq-
uid or not. Thus the derived Class Activation Map (CAM)
will coarsely focus on the liquid regions. We further uti-
lize this initial CAM to separate the feature maps into fore-
ground and background local features. Then, we bridge the
distance between foreground-foreground pairs while widen-
ing the distance between foreground-background pairs.
This generates a better CAM which aligns with low-level
boundaries and completely covers the target liquid region.
Then, we use the off-the-shelf category-level pose estima-
tion, e.g., SAR-Net [17] to recover the pose of the source
container for calculating the plane equation aligned with
gravity and orientation of container’s neck. Finally, the
3D point cloud of liquid is approximated by calculating the
line-plane intersections, where the lines are the rays back-
projected from estimated 2D liquid region.

In summary, the main contributions of this paper are:
(1) We first propose a novel weakly-supervised pipeline to
transfer the 2D liquid perception problem into a classifica-
tion task. We also propose a feature contrast strategy to
improve quality of CAM. (2) We first propose the method
of approximate 3D shape of liquid by utilizing the 6-DoF
pose of source containers and estimated liquid mask for
robotic pouring-related task. To the best of our knowledge,
we are the first work to perceive and model the 3D liq-
uid from a single image without temporal information. (3)
We deploy our real-time framework (10Hz) on the physi-
cal Franka robot to serve as visual feedback to pour liquid
more accurately into target container. (4) We also propose
the PourIt! dataset, which could be a test bed benchmark
of the self/weakly-supervised liquid segmentation task for
computer vision and robotics community. We believe that
PourIt! framework should endow the ability for robots in
continuous self-supervised learning. For example, extend-
ing the tasks in Fig. 1 to continuously make the robot mutu-
ally pour liquid from two containers to collect data in a self-
supervised manner, thus fine-tuning the model using more
data for better liquid perception.

2. Related Work
Liquid Perception. Accurately perceiving the liquid is
challenging as the lack of fixed patterns of geometry shape.
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The simulator [25, 24] that can synthesize the fluid is a
good choice to generate an amount of labeled data to train
a model. But the real-synthetic image domain gap usu-
ally degrades the performance of the synthetically-trained
models. Thus our method directly uses the real-world data
for training which avoids the so-called reality gap. Re-
cent approaches [26, 27, 24] skillfully use the thermal cam-
era aligned with the color image to generate the accurate
ground-truth label for transparent liquid perception. How-
ever, the extra calibrated thermal sensor and heating wa-
ter requirement are usually cost-consuming and human-
labor intensive. Another line of works utilize the spe-
cialty of liquid motion, such as the optical flow [37] or the
sound [15, 34, 36, 9, 18, 32] to perceive the liquid. For ex-
ample, Yamaguchi et al. [37] adopt the optical flow of the
liquid motion to perceive the water. However, this method
demands no redundant motion when executing the pouring
action, as the optical flow is sensitive to the background
change, which will easily introduce the outlier pixels. An-
other works [15, 34] capture and analyze the cue of the au-
dio vibration to estimate the weight or height of liquid in the
container. These methods cannot be applied to perceiving
the regions of liquid drop. Narasimhan et al. [20] first pro-
pose the self-supervised method by taking generative model
CUT [22] to transform the color liquid into transparent one,
further facilitating background subtraction for training the
segmentation model. But it is only suitable for liquid de-
tection inside static transparent containers. Our proposed
method employs simple image-level labels to weakly super-
vise the model for perceiving and estimating the 3D shape
of the regions of liquid drop. Thus, our proposed method
can reduce the cost of either human-labor or equipment.

Weakly-supervised Semantic Segmentation. Weakly-
supervised Semantic Segmentation (WSSS) usually uses
coarse labels [3, 13, 11, 21, 4, 8, 16] for supervision but
produces pixel-level localization maps. The image-level
supervised WSSS approaches usually take the CAM tech-
nique [42, 28] to train a classification network, and thus
generate the initial pseudo pixel-level labels for supervision.
However, the primary objective of classification leads the
CAM to focus solely on the most discriminative regions,
rather than all parts of the objects. Some methods address
this problem by using saliency maps [14, 29], erasing strat-
egy [30, 33, 39, 5], or accumulation strategy [10, 12, 38]
to help the CAM attend to more complete objects. Re-
cent Transformer architecture has proven superior perfor-
mance in semantic segmentation tasks [6, 35, 41]. In the
field of WSSS, for example, AFA [23] exploits the seman-
tic affinity from multi-head attention in Transformers and
pixel-adaptive refinement that incorporates low-level image
appearance information to refine the pseudo labels. How-
ever, accurately localizing transparent liquid still remains
challenging due to non-salient visual cues of boundaries.

3. Methodology

Task overview. This paper focuses on perceiving dynami-
cally flowing liquid when poured into the target container.
This task is very challenging, as the target container maybe
moving or its neck is narrow. Such a task requires real-time
visual and control feedback to accurately control the liquid
motion to avoid liquid spilling out of the target container.
Problem Formulation. Given a monocular RGB image
I ∈ RH×W×3 of the pouring liquid, our goal is to estimate
the pixel-wise segmentation M ∈ RH×W×1 of a stream of
liquid which is poured out from the source container’s neck.
This paper supposes that the 6-DoF rigid pose transforma-
tion {R; t} ∈ SE(3) of the source container is known be-
forehand with the 3-DoF rotation R ∈ SO(3) and 3-DoF
translation t ∈ R3. Due to the gravity, the direction of liquid
is always kept consistent with the plane that aligned with the
orientation of the container’s neck and gravity. Thus, given
the camera intrinsic parameters, we finally recover the ap-
proximate 3D point cloud P by using the pose of container
{R; t} and estimated liquid mask M.

3.1. Data Collection

As there are no available mask annotations of liquid in
our experiment, thus it is essential to guide the network to
focus on the region of liquid drop. Inspired by the idea
of weakly-supervised segmentation, we aim to collect data
with image-level labels for liquid segmentation by utiliz-
ing the CAM technique. Lin et al. [17] tackled the task
of pouring solid objects (beans) from the source into the
target container. Using their method, we can collect much
data of pouring actions. Then we design the semi-automatic
pipeline to collect two kinds of samples.

Particularly, (1) we will first construct the N positive
samples with the stream of liquid by the robot or human ex-
ecuting pouring action by using liquid-fulled container as in
Fig. 2 (row 1). During the stage of the source container hor-
izontal with the ground, we record and save the RGB frames
where the liquid drop always exists. (2) Then, we replicate
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Figure 2. The exemplar of our proposed PourIt! dataset. It in-
cludes images with liquid and non-liquid, totaling 3354 training
images, 374 seen test images, and 336 unseen ones.
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Figure 3. The workflow of our proposed PourIt! framework. Given the positive and negative samples of images with simple 0/1 image-
level labels, we first use the Transformer backbone to extract features and the MLP layers to predict the image classes. Then, the derived
CAM is used to index the localization of foreground and background pixels within the feature maps by using the threshold ϵ. In order to
improve the quality of CAM, we force the network to pull close the foreground-foreground features while pulling apart the foreground-
background ones. At the inference stage, we use a pose estimation network to recover the 6-DoF poses of source and target containers and
a perception network to estimate the potential liquid mask from derived CAM. The trajectory of the liquid is then extracted according to
the morphological shape of the mask. Finally, the point cloud of liquid is reconstructed by using the predicted 6-DoF object poses and 2D
liquid trajectory, which provides real-time visual feedback of liquid-to-container distance as high-level guidance of robot control.

the same action but use the empty source container as in
Fig. 2 (row 2), to collect the negative samples. We also add
other images by turning on or off the tap for data augmen-
tation Fig. 2 (column 3). Finally, To balance distribution of
positive and negative samples, we individually sample 1677
images for each part.

3.2. Transformer Encoder

Our liquid perception framework uses Transformer as
the backbone and an MLP layer to classify the images as
in Fig. 3. Given an RGB image I ∈ RH×W×3, we first
split it into multiple h × w patches of size 4 × 4. Then
these patches are further flattened and linearly projected
into h×w tokens. The Transformer layer comprises a multi-
head self-attention block that outputs n attention maps. For
each self-attention head, the patch tokens are projected into
queries, Qi ∈ Rhw×dk , keys Ki ∈ Rhw×dk , and values
Vi ∈ Rhw×dv , i = 1, 2, · · · , n. Then the attention map is
estimated by the scaled dot-product mechanism as follows,

Attention(Qi,Ki, Vi) = Softmax(
QiK

⊤
i√

dk
)Vi (1)

where
√
dk is the scalar factor; dk and dv are the feature

dimension of the keys and values, respectively. Then we

concatenate all attention maps and feed them into the feed-
forward layers to obtain the feature maps. Similar to [23],
we use four stacked Transformer blocks in our case, thus
outputting the multi-level feature maps F (i), i = 1, 2, 3, 4
at { 1

4 ,
1
8 ,

1
16 ,

1
16} of the original image resolution.

3.3. CAM Generation

After obtaining the feature maps, we apply a pooling op-
eration on features maps F (4) ∈ Rh′w′×d that are output
from the last transformer block, and send it into Multi-Layer
Perception (MLP) layers for binary classification. We use
the binary cross-entropy loss BCE(·, ·) as the supervision,

Lcls = BCE(ŷ, y) (2)

where ŷ and y are the predicted and ground-truth image-
level label. At the stage of inference, we generate the Class
Activation Map (CAM) Ac belonging to the class c accord-
ing to the weights wc

j of the feature maps contributing to
class c. We simplify the Ac as A in our binary classifica-
tion task, denoted as,

A = ReLU(
∑
j

wjF
(4)
j ) (3)

where wj is the element of weight matrix in the MLP lay-
ers, and ReLU function removes the negative activation.
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Finally, we apply the min-max normalization to scale the
values of A within (0, 1).

3.4. CAM Adjustment

However, the derived CAM above usually focuses on the
part regions of the object, as the single label classification
task does not enforce the model to attend to all parts of the
object. Thus, our goal is to help the network to capture
the regions with the same appearance or textures to tightly
cover this object.
Feature Contrast. As CAM is the sum of weighted feature
maps, it is intuitive to improve the quality of the feature
maps to get a precision CAM. We observe that the derived
CAM usually focuses on discriminative regions, which can-
not cover the whole region of dropping liquid. Thus, we pri-
marily use the contrastive strategy to supervise feature maps
to force the network to gather foreground and background
regions, respectively.

Give the activation map A, we index the location i which
makes A ≥ ϵ and retrieve the equal-sized feature maps
F (4) to get the foreground local features ffg

i ∈ R1×d as
in Fig. 3; d is the dimension of the feature maps F (4).
By analogy, the background local features are denoted as
f bg
j ∈ R1×d, where A<ϵ. Then we aim to narrow the dis-

tance between foreground local features, and push apart the
distance between foreground-background ones. We use the
cosine similarity metric sim(·, ·) to measure the distance
between each location of feature maps. For the positive
contrastive loss, we aim to pull the features from similar
regions together, supervised as,

Lpos = − 1

m2

m∑
i=1

m∑
i=1

log(sim(ffg
i ,ffg

i )) (4)

We also encourage the network to push apart the foreground
and background features to obtain the more complete re-
gions belonging to the actual flowing liquid.

Lneg = − 1

mn

m∑
i=1

n∑
j=1

log(1− sim(ffg
i ,f bg

j )) (5)

where m is the number of indexed local features ffg
i , and

n is the number of f bg
j . Finally, the overall loss is the sum

of Lcls, Lneg and Lpos, which is formulated as

L = Lcls + Lpos + Lneg (6)

3.5. 3D Modeling of Flowing Liquid

We extract the final region mask M of liquid from the
CAM using a threshold σ, where A ≥ σ. Due to the trans-
parency of the liquid, the depth camera cannot well calcu-
late the depth of liquid pixels. Thus, we further take the
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Figure 4. 3D modeling of the liquid. For better illustration, we
exchange the position of 3D coordinate and 2d pixel coordinate.

container pose to model the approximate depth of the liq-
uid as in Fig. 4. The pose {R = [Rx|Ry|Rz]; t} of source
container in the camera frame is acquired by category-level
pose estimator, i.e., SAR-Net [17]. Then, the plane aligned
with gravity and orientation of container’s bottleneck (the
green vector Ry) can be formulated as,{

(p− t)⊤ ·Rz⊥g = 0

Rz = Rz⊥g +Rz||g
(7)

where p = [x, y, z]⊤ is the point on the plane, and t is
the estimated 3D center of the source container in the cam-
era frame. Rz⊥g and Rz||g are the components of Rz that
are vertical and parallel to gravity vector g in the camera
frame, respectively. Given the camera intrinsic matrix K,
the discrete ray r(u, v) emitted from the camera is formu-
lated as, {

r(u, v) = o+ κd, κ ∈ R
d = K−1 · [u, v, 1]⊤

(8)

where (u, v) is the pixel coordinate. κ is a scalar, which
makes it possible to define any position along the ray. o and
d indicate the origin and direction of the ray, respectively.
Finally, we calculate the 3D intersection position p of the
ray and the plane.

p = κd, κ =
t⊤ ·Rz⊥g

d⊤ ·Rz⊥g
(9)

With this processing, we back-project 2D pixel (u, v) of
liquid region from pixel coordinate into the actual 3D coor-
dinate space. Finally, given the pixel (u, v) inside the mask
M, we can get the approximate 3D point cloud of the liq-
uid P = {p(u, v)|(u, v) ∈ M}. Actually, we post-process
the mask M by using the skeletonization algorithm [40].
Although the 3D liquid modeling is based on gravitational
assumption, further real-world robotics experiment in Tab. 4
shows that such an assumption is reasonable and robust
enough to serve the robot as visual feedback for control.
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4. Experiment
Dataset. (1) PourIt! Dataset. This dataset has 4064 RGB
images recorded by a Kinect Azure camera with different
backgrounds (Fig. 2). We partition them into 3354 training
images and 710 testing images. The testing set has 374 im-
ages of familiar scenes and 336 images of new scenes. We
labeled only the testing set for evaluation since annotating
every liquid pixel is tough. It includes images of a person
pouring liquid, a robot pouring liquid using pose estima-
tion, and water flowing from various taps in a bathroom. It
serves as a test bed for self-supervised methods. (2) UW
Liquid Pouring Dataset [27]. It contains 648 pouring trials
on the dual-arm Baxter robot. The robot rotates its wrist to
pour the liquid from the source container to the target one.
Each trial involves controlling six variables: (1) left or right
arm grasping the source container; (2) different source con-
tainers; (3) different target containers; (4) initial volume of
liquid in the source container; (5) pouring trajectory; and
(6) proportion of a person appearing in the background. We
split the sequences of each scene into liquid and non-liquid
images, center-cropped to 300 × 300 to remove irrelevant
background. We finally sample 6387 training images and
1598 testing images. More details refers to our Appendix.
Evaluation Metric. To evaluate the segmentation accu-
racy of the segmented mask generated by different methods,
we calculate the Intersection over Union (IoU) between the
ground-truth segmentation labels and predicted ones and the
mean IoU(%). For our method and EPS [14], we generate
the segmented mask using threshold σ of 0.5 and 0.7, where
A ≥ σ. And the mIoU = 1

2

∑
σ=0.5,0.7 mIoU(σ).

Implementation Details. We use six 2080Ti GPUs for
training with a batch size of 2 on each GPU. It takes 14000
iterations (nearly 1.5h) to converge on the PourIt! dataset
while 18000 iterations on the Liquid Pouring dataset (nearly
2h). We use the AdamW optimizer with the initial learning
rate of 6× 10−5 for the backbone parameters. The learning
rate of other parameters is ten times the parameters of back-
bone, i.e., 6 × 10−4. We also adopt the data augmentation
with random re-scaling with a range of [1.0, 1.1], random
horizontally flipping, and random cropping with a cropping
size of 512×512, respectively. Our model is warmed up by
only using Lcls for the early 2000 iterations to get an initial
CAM. We set ϵ = 0.7 in our experiment.

4.1. Comparison to Baseline

Baselines. Liquid [24] is the first supervised method for
liquid segmentation, we implement this method as the upper
bound to help compare performance. Then, we compare an-
other three types of baseline methods, including (1) optical
flow method (RAFT [31]), (2) image-to-image translation
method (CUT [22]) and (3) CAM-based methods (EPS [14]
and AFA [23]). Particularly, RAFT is used to detect pixel
displacement between frames from the sequences of images

for liquid region detection as in Fig. 5 (column 1). Sim-
ilar to [20], CUT is utilized to transfer the liquid images
into non-liquid images as in Fig. 5 (column 2), and then use
background subtraction algorithm to estimate the visual dif-
ference between the original and non-liquid translation im-
ages. AFA and our method all use the MiT-B1 backbones.
Results on PourIt! Dataset. We compare several base-
line methods in our proposed PourIt! dataset and report
the results in terms of mIoU in Tab. 1. We observe that
our method has significantly outperforms the state-of-the-
art WSSS method AFA, by a large margin of 10.1% on seen
images and 10.8% on unseen images. This also validates
the generalize ability of our proposed method. Although
AFA uses the pixel-adaption refinement strategy, but the
liquid is very different with the solid object which usually
have salient boundaries. Such a strategy fails to get a better
pseudo labels for segmentation training.

The RAFT, CUT and EPS methods cannot well handle
the images with liquid on PourIt! dataset, thus we also pro-
vide the qualitative results to illustrate the failed cases as in
Fig. 5. Concretely, RAFT [31] fails to segment the liquid
due to the background movement. Thus, the optical flow
method is only suitable for simple static scenes where the
containers and background are relatively stationary. Never-
theless, the translation images from CUT method [22] have
poor results due to the various contextual information across
images. It simultaneously erases the foreground but also
unexpectedly modifies the background context, making cal-
culating the mask of the liquid region unavailable. EPS [14]
has poor performance as the saliency maps cannot focus on
the actual liquid region for supervision.
Results on UW Liquid Pouring Dataset. The comparison
results on this dataset are summarized in Tab. 2 and Fig. 5.
Our method achieves 54.0% mIoU on the test set, and sur-
passes AFA method by 4.6%. The RAFT and CUT methods
are still failed in this dataset, by analogy to the aforemen-
tioned analyse of the failed cases in PourIt! dataset. We also
adopt the fully-supervised method Liquid [24] as the oracle
approach, thus to help us understand the upper bound of the
performance of liquid segmentation.
Discussion on limitations of UW Liquid Pouring dataset.
The annotations in this dataset contain liquid out-flowed
from bottleneck, and liquid stayed in the container. While
the original purpose of the dataset [26, 27] was to estimate
the volume of liquid to be poured into the container, we
thus provide experimental results that serve as a test bed
to validate our proposed method. We acknowledge that the
model trained on this dataset cannot directly apply to con-
trol the real-world robot for accurate pouring, but our ap-
proach presents a valuable contribution to the field. Please
refer to Appendix for more details.
Qualitative Results. We also compare our CAM results
with the baseline on two datasets as shown in Fig. 6. Ob-

246



Table 1. Segmentation results on PourIt! dataset. We report the
performance between our method and the baseline methods in
metric of mIoU(%). Sup. denotes supervision type. I: image-
level labels. S: saliency maps. † denotes our implementation.

Method Sup. Backbone seen unseen

RAFT [31] ECCV’20 – ResNet 9.4 10.8
CUT† [22] ECCV’20 I ResNet 38.1 24.3
EPS† [14] CVPR’21 I + S ResNet38 47.2 42.0
AFA† [23] CVPR’22 I MiT-B1 55.8 52.8
Ours I MiT-B1 65.9 63.6

Table 2. Segmentation results on Liquid dataset. We report perfor-
mance between ours and baseline methods in metric of mIoU(%).
Sup. denotes supervision type. F : full supervision; I: image-level
labels. S: saliency maps. † denotes our implementation.

Method Sup. Backbone seen

Liquid† [24] Upper bound F FCN 69.0

RAFT [31] ECCV’20 – ResNet 5.5
CUT† [22] ECCV’20 I ResNet 38.2
EPS† [14] CVPR’21 I + S ResNet38 41.6
AFA† [23] CVPR’22 I MiT-B1 49.4
Ours I MiT-B1 54.0
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Figure 5. Qualitative intermediate results of CUT, RAFT and EPS
methods. For RAFT method, per-pixel displacement vector is col-
orized in different colors (left). For CUT, we show the image-
to-image translation results of transferring the liquid images into
non-liquid ones (center). For EPS, we visualize the saliency maps
used for supervision (right).

viously, our method outputs more accurate CAM covering
the liquid regions, especially for the thin stream of liquid.
The results on novel scenes show that our method is ro-
bustly generalized to images with different kinds of liquid,
containers, and background contexts.

4.2. Ablation Study and Analysis

We perform ablation studies to validate the contribution
of each loss employed in our method. We conduct a com-
parison between the full model and its variants, wherein we
disable the losses Lpos, Lneg , and both of them together
Lpos+neg . We test these variants on the PourIt! dataset. We
summarize the results in Tab. 3.

Even without Lpos and Lneg , the results outperform the
state-of-the-art method AFA [23]. This is because the pixel-
adaptation refinement strategy in AFA does not help and
instead reduces the performance due to non-salient visual

Table 3. Ablation study for different losses on PourIt! dataset un-
der the metric of mIoU(%).

Variants w/o Lneg+pos w/o Lneg w/o Lpos Full

seen 61.6 46.7 60.6 65.9
unseen 59.2 36.7 63.2 63.6

cues of boundaries. It is evident that Lneg is the most sig-
nificant among them, as it helps the network better distin-
guish the foreground and background regions. It also helps
the network generalize to different liquids, containers and
backgrounds, thus maintaining the performance, i.e., 63.2%
on unseen images. Interestingly, the single use of Lpos neg-
atively influences the performance of the network. One ex-
planation is that the highly responsive area of the imperfect
initial CAM may contains foreground and background pix-
els; and only using Lpos will guide the network to be im-
properly optimized to pull together the actual foreground
and background features. This can lead to confusion when
distinguishing the foreground and background pixels, espe-
cially reducing the overall performance, with the results of
46.7% on seen images and 36.7% on unseen images.

Especially, the combination of Lpos and Lneg encour-
age the network to differentiate clear partition between the
foreground and background pixels, even though the initial
regions that CAM puts focus on may contain some pixels
from background. The final results reveal that our well-
designed losses benefit network learning and help boost the
final performance.

4.3. Generalization Analysis

For training images in PourIt! dataset, we use three types
of source and target containers, respectively. The liquid
contains transparent water, coffee, and tea. Furthermore,
we use another three types of source and target containers
for unseen test images. The liquid contains milk, juice of
grape, and melon. Surprisingly, our trained model could
be naturally generalized well across images of different liq-
uids, containers, and even the background as in Fig. 6 (col-
umn 3). This verifies that our model is well-trained to learn
the category-level feature representations of liquid with dif-
ferent appearances. Thus, this category-level generalization
ability further endows the feasibility of our model in differ-
ent real-world scenes.

4.4. Robotics Experiments

Hardware Experimental Setup. We use a Franka-Emika
Panda 7-DoF robotic arm [2] with a parallel jaw gripper
to perform object grasping and manipulation for pouring
tasks. The Azure Kinect camera [1] provides RGB-D sens-
ing, which is mounted on the tripod opposite the robot’s
workspace. This camera is also calibrated to the robot’s
base frame. In our experiment, three desktop computers
were utilized: one computer for the real-time control of
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Figure 6. CAM visualization of different methods. Note that the quality of AFA’s CAM is similar to its segmented mask results, thus we
only visualize CAM but not AFA segmented masks [23] for consistency of visual contrast. The comparison results show that our CAM
results focus more tightly on complete liquid region, with well alignment of low-level boundaries and generalization across novel scenes.

Franka, two for real-time visual perception, i.e., the pose es-
timation network is distributed on a laptop with an NVIDIA
RTX 3070 GPU which runs at 20Hz per object, and the liq-
uid perception network is deployed on a desktop with an
NVIDIA RTX 2070 GPU which runs at 15Hz.
Task Description. We design two kinds of tasks for robotic
pouring, including static scenes of pouring liquid into a sta-
tionary positioned target container and dynamic scenes of
pouring liquid into a moving target container. For the mov-
ing target container, the experimenter will hold the con-
tainer in hand with linear or random motion. We use six
groups of different source and target containers for testing.
Baselines. We primarily compare with two baseline meth-
ods. (1) Lin et al. [17]. It uses the estimated poses and
sizes of source and target containers to calculate the initial
pouring point, i.e., the container-to-container distance. (2)
AFA [23]. This baseline utilizes Lin et al. [17] to determine
the initial pouring point and then use the AFA [23] provides
2D perception results, which are then lifted into 3D liquid
by using the modeling strategy (discussed in Sec. 3.5) for
visual feedback.
Evaluation Metric. We perform 15 attempts for each scene
type and tally the overall successful outcomes. Both the
baseline methods and our approach adopt the technique
from Lin et al. [17] to compute initial pouring points.
Nonetheless, these initial points can lead to imperfections,
leading to liquid spillage as demonstrated in our supplemen-
tary video. In such situations, our method and AFA are still
considered successful if it manages to rectify the initial im-
perfection by adjusting the source container, allowing the
liquid to be accurately poured into the target container and
maintaining this state until the pouring process concludes.
Control Strategy. During pouring, the robot fine-tunes the
source container’s position on its gripper to precisely regu-
late liquid outflow into the target container. By measuring
the distance error between the target container’s center and
the liquid endpoint, we feed this error to the PID controller

for calculating gripper adjustments. This ensures the liq-
uid’s endpoint consistently aligns with the target container’s
center, maintaining accurate pouring. Further insights are
available in our supplemental video.

Results and Analysis. We report the success rate of the
pouring tasks in Tab. 4, which proves the efficacy of our
method. The method of Lin et al. [17] only uses the es-
timated object pose and size for calculating container-to-
container distance as the initial pouring point. Such a
strategy sometimes fails due to an imperfect initial pour-
ing point, as the transparent bottleneck results in inaccu-
rate object size estimation. Our method utilizes only object
pose information to compute the liquid-to-container dis-
tance, providing feedback for adjusting the pouring point,
which is less affected by inaccurate size estimation. Addi-
tionally, it meets the requirement for the pouring point to
adapt dynamically in response to liquid levels within the
source container. However, the AFA method performs less
effectively than [17] due to the imperfect 2D mask lead-
ing to incorrect visual feedback for adjusting the pouring
point, resulting in liquid spillage from the target container.
Figure 7 demonstrates the visualization of intermediate re-
sults from the experiments. Significantly, we recover the
3D point cloud of liquid due to the unavailable depth mea-
surement for transparent liquid. We observe that the depth
of milk liquid is still roughly measurable, and our recon-
structed point cloud (cyan points in column 3) is aligned
well with the shape recovered from the sensor-measured
depth. This verifies that our method can accurately recon-
struct the shape of a stream of liquid.

Generalization to other applications. Our approach ex-
cels in liquid-pouring tasks, as validated in this paper, and
demonstrates tremendous potential for seamlessly perceiv-
ing 3D liquid from taps when robots are filling containers
in both kitchen and plant watering scenarios. With the con-
tinuous advancement of pose estimation technology, obtain-
ing the tap’s pose has become effortlessly achievable using
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Table 4. Success rate of robotics pouring. ‘Static’ indicates that
the target container is placed statically on the desktop. ‘Dym.(L)’
means the target container is held on experimenter’s hand moving
by linear motion, and ‘Dym.(R)’ denotes the random motion.

Method
Scene Success Rate (%)

Static Dym.(L) Dym.(R)

Lin et al. [17] 66.7 53.3 40.0
AFA [23] 60.0 46.7 33.3

Ours 93.3 73.3 60.0
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Figure 7. Visualization of the output results from PourIt! frame-
work. We show the RGB images, predicted CAM, skeletonized
2D liquid trajectory and estimated 3D (cyan) point cloud of liquid.

off-the-shelf solutions. This significant development further
enhances the practicality of our approach in a wide array of
liquid-filling scenarios. Its versatility proves to be highly
valuable for various liquid-filling applications.
Discussion on Uncertainty of Results. Liquid perception
provides the feedback signal to the robot. Thus, the un-
certainties of the perception results are important for robot
controller. Reducing uncertainty in the feedback signal mit-
igates error triggers during robotic action. In our experi-
ment, the main uncertainties in the final 3D perception stem
from 2D segmentation and pose estimation. We minimize
the impact of 2D segmentation uncertainty using a high
threshold σ = 0.7 when extracting mask from CAM. The
uncertainty arsing from pose estimation is reduced to an ac-
ceptable level, thanks to the accurate results provided by
SAR-Net [17].

4.5. Failure Mode Analysis

This paper presents a novel approach for accurate liquid
perception and 3D shape recovery for robotic pouring tasks.
However, the method relies on the pose of source containers
to calculate the approximate depth of detected 2D liquid.
We demonstrate a scenario in which our method may en-
counter challenges. When dealing with transparent contain-
ers, the depth of the source container’s surface becomes im-
measurable, as depicted in Fig. 8. Only a fraction of the ob-
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Figure 8. Jitter in the estimated object pose caused by the trans-
parent surface. The object’s transparent surface leads to inaccurate
depth measurements, resulting in jitter of the estimated pose.

servable surface is accessible, posing a significant challenge
for depth-based pose estimators. While SAR-Net exhibits a
commendable degree of robustness to this challenge, it does
introduce pose jittering in certain frames. Thus, the inaccu-
racy in pose estimation for transparent objects can adversely
affect the modeling of the liquid. Actually, pose estimation
for transparent objects remains a highly challenging task,
not only in our specific case but also in the broader research
field of pose estimation. Additionally, the category-level
pose estimator we employed typically yields an estimated
error within 1cm during our experiments, making the pre-
cision of our system closely tied to the accuracy of object
pose estimation. However, compared to previous methods
that rely on both object pose and size, our approach pri-
marily leverages object pose, reducing its susceptibility to
inaccurate container size.

5. Conclusion
This paper introduces PourIt!, a simple and effective

framework for visual closed-loop robotic pouring. It uti-
lizes image-level labels and CAM technique for liquid seg-
mentation, enhanced by a feature contrast strategy to better
localize potential liquid regions. The container’s pose fa-
cilitates 3D point cloud recovery of the liquid, and liquid-
to-container distance is used as feedback signal for robot
control. Future work will explore the application of the re-
covered 3D liquid shape in various pouring-related tasks.
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