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Abstract

In this study, we focus on Continual Semantic Segmenta-
tion (CSS) and present a novel approach to tackle the issue
of existing methods struggling to learn new classes. The
primary challenge of CSS is to learn new knowledge while
retaining old knowledge, which is commonly known as the
rigidity-plasticity dilemma. Existing approaches strive to
address this by carefully balancing the learning of new and
old classes during training on new data. Differently, this
work aims to avoid this dilemma fundamentally rather than
handling the difficulties involved in it. Specifically, we re-
veal that this dilemma mainly arises from the greater fluc-
tuation of knowledge for new classes because they have
never been learned before the current step. Additionally, the
data available in incremental steps are usually inadequate,
which can impede the model’s ability to learn discrimina-
tive features for both new and old classes. To address these
challenges, we introduce a novel concept of pre-learning for
future knowledge. Our approach entails optimizing the fea-
ture space and output space for unlabeled data, which thus
enables the model to acquire knowledge for future classes.
With this approach, updating the model for new classes be-
comes as smooth as for old classes, effectively avoiding the
rigidity-plasticity dilemma. We conducted extensive exper-
iments and the results demonstrate a significant improve-
ment in the learning of new classes compared to previous
state-of-the-art methods.

1. Introduction
Deep neural networks have demonstrated their superi-

ority in many computer vision tasks [26, 31, 14]. Con-
ventionally, they are trained in an offline manner with all
data collected beforehand. When novel classes need to
be handled, the networks need to be re-trained using ei-
ther updated training set with both new and previous data,
or directly finetuned on new data. The former has higher
costs and is even impracticable sometimes like, when pri-
vacy raises concerns. The latter is prone to forget previ-

Figure 1. On VOC2012 benchmark, our method boosts the perfor-
mance of new classes by a significant margin, while also achieving
promising performance for old classes, compared to recent state-
of-the-art methods.

ously learned knowledge, which is called catastrophic for-
getting (CF) [25]. To better fit neural networks into real-
world scenarios, we want them to have the ability to learn
new concepts while preserving the old knowledge (or even
improve it using new knowledge). This is known as the
continual learning (CL) problem and receives increasing at-
tention recently. It has been explored first in the field of
image classification [28, 42, 17, 11, 57, 44, 43], and some
methods are proposed recently targeting semantic segmen-
tation [5, 10, 6, 54, 51, 37]. Generally, it is often achieved
by applying forgetting-preventing constraints between cur-
rent and previous networks to prevent CF, which raises the
rigidity (i.e., the ability to preserve old states) but harms the
plasticity (i.e., the ability to learn new knowledge). It is
known as the rigidity-plasticity (R-P) dilemma. A key as-
pect in designing constraints is to balance between rigidity
and plasticity, which is what most works focus on.

Despite that several new constraints have been proposed
for CSS to better tackle the dilemma, existing works still
struggle to learn new classes. Taking the VOC2012 bench-
mark as an example, most methods can only achieve a per-
formance around 70% of that of the upperbound for 15-5
setup and around 50% for 19-1 setup, which is even worse
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for harder setups. To get a clear picture of why this happens,
we first analyze the intermediate features of the network and
find it suffers serious underfitting for new classes, which in-
dicates a large amount of knowledge is not learned. We
then examine the CSS training pipeline and find two main
obstacles causing this phenomenon. (1) R-P Dilemma: the
network has no knowledge w.r.t. new classes until they are
introduced. This generally requires a rather large update to
incorporate the new knowledge, which will be significantly
hindered by the forgetting-preventing constraints punishing
the network from drifting away from its previous states. (2)
Inadequate data for training: the amount of data available
in incremental steps is usually limited, and this problem be-
comes more severe when a single class is added, resulting
in a tiny training set with only a few negative samples. This
can significantly limit the network to properly discriminate
between old and new classes. This problem has never been
explicitly considered before.

Unlike existing works trying to tackle the R-P dilemma
directly, we are the first to argue that this obstacle can be
elegantly avoided by exploring future knowledge in an un-
supervised way. Assume that the network has obtained par-
tial knowledge of future classes in advance, then the net-
work needs fewer updates to learn the upcoming knowl-
edge, which consequently lowers the impacts of the R-P
dilemma. The more future knowledge it learns in advance,
the fewer the impacts will be caused. Considering an ex-
treme situation where all the future knowledge is learned
beforehand, the network does not need any update, and thus
the influence of constraints could be totally avoided. On
top of this, it makes us the first attempt to explicitly tackle
the second obstacle by utilizing the abundant data in previ-
ous steps to optimize discriminability between old and new
classes. Based on these understandings, we design a novel
framework where unsupervised contrastive learning is per-
formed on intermediate features to optimize future classes
with both visual similarity and feature affinity as supervi-
sions. One step further, an auxiliary classifier is trained
using pseudo labels of future classes generated via cluster-
ing, which is used to initialize the actual classifier for fu-
ture steps. Our method surpasses existing works by a huge
margin as shown in Figure 1 and the effectiveness is fur-
ther demonstrated with extensive experiments. Our contri-
butions are summarized as follows.

• We propose to pre-learn future knowledge for CSS with
the aim of improving the performance especially for
new classes, which can simultaneously tackle the R-P
dilemma and the obstacle of inadequate data.

• We design a novel framework that can pre-learn future
knowledge in an unsupervised way, where both the fea-
ture space and output space are handled.

• We have validated the effectiveness of our proposed

approach through extensive experiments. The results
demonstrate significant improvement on standard CSS
benchmarks.

2. Related Work
Continual Learning (CL). Continual learning has been
studied for years in image classification. Existing tech-
niques can be roughly divided into regularization methods,
rehearsal methods, and architectural methods. Regulariza-
tion methods apply consistency constraints between current
network and previous network to avoid drifts from previous
states. They can be applied on network weights [53, 25, 1],
the intermediate features [9, 11, 45, 13, 22] or the output
logits [28, 42, 17, 48]. Parameter regularization is rarely
seen recently due to the lack of plasticity, while the other
two are mostly based on knowledge distillation (KD) [16].
To better solve the forgetting problem, rehearsal methods
replay previous data in the incremental steps, including im-
age replay [42, 41, 3], generative replay [49, 39], feature
replay [20, 57], and memory management [30, 29]. Archi-
tectural methods use a dynamic network to handle incom-
ing knowledge, like sub-netwok [32, 33], complementary
network [47, 40] or expandable network [27, 50, 52].
Continual Semantic Segmentation (CSS). Some works
extended the aforementioned techniques to semantic seg-
mentation tasks. For the KD-based methods, MiB [5] for-
malized and targeted background shift problem with output
space distillation. PLOP [10], SDR [36], and RCIL [54]
use feature space distillation to further mitigate forget-
ting. For the rehearsal-based methods, SSUL [6] and RE-
CALL [34] utilize memory or external data to overcome
forgetting and work well in multiple-step learning. For the
architectural methods, RCIL [54] proposes a structural re-
parameterization design to better learn new knowledge.
Unsupervised Semantic Segmentation. These works fo-
cus on learning to cluster semantically related pixels with-
out human labeling. Existing works can be roughly di-
vided into three types. PiCIE [8] iteratively performs clus-
tering and uses it to refine network features. This relies
on the architectural prior and is prone to degenerate solu-
tions. IIC [21] maximizes the mutual information between
two augmentations of the same image which enforces spa-
tial stability on them. But this solution has trouble dealing
with complex scenes. The last type uses visual similarity.
These works [19, 55, 46, 23] use handcrafted priors, like
boundary, superpixels, or saliency detectors to first group
pixels by visual similarity. This is then used to learn pixel-
level representations using contrastive learning.

3. Preliminaries
In this section, we first explain the definition of CSS

(Sec. 3.1), and present the underfitting phenomenon of new
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Figure 2. Feature fitness analysis of different methods using L1 norm (Left), activation strength (Mid), and cosine similarity (Right) on
VOC2012 15-5 setup. It is demonstrated that existing works suffer underfitting on both intra-class level (left and mid) and inter-class level
(right) for new classes. Our method effectively addresses this problem.

classes (Sec. 3.2). After that, we analyze how the perfor-
mance is impacted in CSS (Sec. 3.3). Finally, we discuss
the solutions to boost new class performance (Sec. 3.4).

3.1. CSS Definition

In CSS, the training procedure is composed of a series
of T learning steps. At each step t where t ∈ {1, ..., T}, a
set of new categories Ct are introduced with a training set
Dt = {(xn, yn)} where xn is an image and yn is the cor-
responding label. Only Ct is labeled in yn and all the other
classes are labeled as background. It is assumed that the cat-
egories learned at each step are disjoint, i.e., Ci ∩ Cj = ∅.
The network is trained sequentially on each step, where it
learns the knowledge w.r.t. Ct and expands its output space
to C1:t = C1:t−1 ∪ Ct. After all learning steps, the network
is expected to perform well on all classes.

3.2. Analysis of Feature Fitness

To get a clear view of why new classes perform poorly
in existing methods, we analyze the intermediate features
of two works: MiB [5] based on conventional logits distil-
lation, and a more recent work, RCIL [54], based on feature
distillation and structural re-parameterization aiming to bet-
ter tackle the R-P dilemma. To simplify the situation, we
opt for the two-step 15-5 setup on VOC2012 to conduct the
analysis. The results are reported in Figure 2 (Detailed in-
formation about incremental setups and validation set can
be found in Section 5.). The results of joint training (i.e.,
performance upperbound) and initial state (i.e., backbone
is initialized with ImageNet pre-trained weights while the
other parts are randomly initialized) are also provided for
reference. Ideally, the results are expected to be close to that
of the upperbound in order to achieve good performance.
Intra-class Fitness. We first evaluate how well the net-
work fits to each individual class. In neural networks, each
channel in the feature vectors could represent a certain pat-
tern [4] which composes the learned classes [58]. When the
network fits a class well, the output feature vector should
have specific channels being activated while the others de-
activated, resulting in sparsity in the feature vector. The

activation strength further shows how strong the network’s
response is to each pattern. Both of them can serve as clues
indicating how well the network fits a class. We use the av-
erage L1 norm of L2-normalized feature vectors to measure
the sparsity, and the average top activation values to mea-
sure the response strength. As can be seen in Figure 2 (left
and mid), the new classes of both MiB and RCIL have high
L1 norm and low activation strength, indicating a serious
underfitting problem.
Inter-class Fitness. We further evaluate how well the net-
work learns to distinguish different classes, which is mea-
sured by the cosine similarity between the feature vectors
of different classes. The better the network can distinguish
each class, the lower the cosine similarities will be. We
compute the mean cosine distance of a class to any other
classes, which is then averaged based on class group to get
the final results, as shown in Figure 2 (right). It can be
seen that the network has good discriminative power on old
classes, but the new classes again present poor results. It in-
dicates the network cannot distinguish a new class between
other classes well.
Discussion. From the above analyses, it is evident that new
classes suffer serious underfitting on both intra-class and
inter-class aspects. This exactly explains why most meth-
ods show low performance on new classes, even in simple
setups with only a single incremental step.

3.3. Understanding Training Pipeline

In this part, we dive deeper to investigate why the under-
fitting problem happens for new classes in the conventional
training pipeline. We use Figure 3 to give a clear view of
how the two obstacles impact the performance in a conven-
tional pipeline (green background). Without loss of gener-
ality, a two-step situation is adopted as an example.

Starting from step 1 where C1 is labeled in the given
data D1 while others are marked as background, the net-
work acquires most knowledge of C1 (i.e., distinguish be-
tween classes in C1) after finishing this step. Considering
that it only accesses partial data at this step compared to
joint training, the knowledge of C1 remains to be updated
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Figure 3. Illustration of the difference between knowledge learn-
ing in a conventional training pipeline (green background) and our
solution (blue background). We jointly optimize new classes to-
gether with old classes in an unsupervised way before new classes
are introduced.

in the next step. However, even though the future classes
C2 do exist in D1, they do not receive explicit supervision,
thus the network obtains almost no knowledge of C2 after
finishing step 1.

Moving to step 2, a constraint is usually applied to avoid
forgetting previous knowledge by punishing the network
from drifting away from its previous states. In this step, the
network needs to update its knowledge of C1 on D2. Given
that C1 is already properly optimized at step 1, the network
only needs a small adjustment to complete its knowledge of
C1 and receives little punishment from the constraint. How-
ever, the network is also intended to learn the knowledge
w.r.t. C2 (i.e., distinguish the classes in C2 and distinguish
between C2 and C1) from the start, which requires a rather
large update. Based on the fact that the constraints make
more punishment for greater changes, this update will be
suppressed more severely compared to that of C1, making
more knowledge w.r.t. C2 cannot be learned. This is why
the R-P dilemma often leads to low performance for new
classes. To make matters worse, the scale of the training set
is usually limited in incremental steps, especially for the sit-
uation when a single class is added with only a few samples
of C1. Such limited data could impede the network from
successfully distinguishing between C1 and C2, which is the
inadequate data obstacle. Both of these factors result in
the inability to properly learn knowledge w.r.t. C2 and con-
tribute to the aforementioned underfitting phenomenon.

3.4. Discussions for Solutions

Pre-learning future knowledge. Based on the analysis, if
we modify the training pipeline by adding explicit supervi-
sion to C2 before it is introduced (blue background in Fig-
ure 3). The knowledge w.r.t. C2 could be learned in advance.
By doing so, we first avoid the R-P dilemma by reducing the
great update to learning the knowledge w.r.t. C2 at the next

step. Meanwhile, we can use the abundant samples of C1 at
step 1 to make the network better learn how to distinguish
between C2 and C1, mitigating the influence of inadequate
data of C1 at next step. Consequently, both obstacles are
tackled in a uniform and elegant way. The main challenge
falls to how we can learn knowledge w.r.t. C2 as accurately
as possible in an unsupervised way in order to reduce the
extent of updates required in the future.
Memory. Memory is a widely used technique in CL and
has been adapted to CSS recently [6, 34]. Based on our
analysis above, here we clearly explain the effect of mem-
ory in CSS. Memory is applied only in incremental steps.
With the help of it, new classes are possible to be optimized
with partial previous data, which can also alleviate the im-
pact of inadequate data. Meanwhile, memory helps to ease
the forgetting problem, which makes it possible to relax the
constraints without forgetting. As a result, new knowledge
can be more easily learned. We would like to point out that
memory can be used to solve the two obstacles at a different
aspect. It could further boost the performance in conjunc-
tion with our solution.

4. Method
In this section, we introduce a novel framework based

on pre-learning future knowledge as depicted in Figure 4.
It takes into account future knowledge in an unsupervised
way, both in the feature space (green background) and the
output space (blue background).

4.1. Learning Future Knowledge in Feature Space

Contrastive learning. Contrastive learning is a widely used
technique in unsupervised learning [7, 15]. In our work,
we resort to it to optimize future classes in feature space.
In semantic segmentation, directly using feature vectors at
pixel level to perform pixel-pixel contrastive is redundant
and results in high computational cost. Therefore, we fol-
low [24, 46, 18] to perform contrast in a pixel-segment man-
ner. Formally, supposing an image I is partitioned into seg-
ments S by a given prior. Let fi be the unit-length feature
vector of pixel i, we define the (normalized) prototype p of
a segment s ∈ S by the average of feature vectors within
this segment.

ps =
1

|s|
∑
i∈s

fi, ∥ps∥ = 1 (1)

We adopt the InfoNCE [38] loss and formalize our loss as

L(fi, S) = − log
exp(fi·ps+/τ)

exp(fi·ps+/τ) +
∑

s−
exp(fi·ps−/τ)

(2)
where τ is a temperature hyper-parameter. Ideally, it pulls
fi close to the positive segment s+ and pushes it away from
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Figure 4. Overall framework. Given an image at step t, a projec-
tion head maps the features from feature extractor Ft into an em-
bedding space where Lc is used to optimize future classes (green
block). Next, the features from Ft are also used to train an aux-
iliary classifier Gaux to initialize the classifier for future classes
(blue block). Last, the pseudo label technique together with a
knowledge distillation loss are adopted to mitigate forgetting (yel-
low block).

all the negative segments s−. For a given pixel, the seg-
ment it belongs to serves as s+, whereas other segments,
including those from other images, serve as s−.
Contrast by Visual Similarity. In pixel-segment con-
trastive learning, the partition scheme determines how the
network is optimized. We first resort to visual boundaries as
a prior to partition the images into visual coherent segments
Sv by OWT-UCM [2], which is a decent choice in unsuper-
vised segmentation [19, 55, 23]. By utilizing visual sim-
ilarity as supervision, we can bootstrap the representation
learning and ground the features to respect low-level visual
cues. But using this supervision alone makes the network
hard to capture semantic-level information of future classes,
and still needs further updates to properly learn them. This
contradicts our goal to make the necessary updates as few
as possible in the future.
Contrast by Feature Affinity. We also need a partition
method that can match actual future classes accurately to
serve as another supervision. Due to the bootstrap effect of
the previous contrast, we can resort to clustering methods to
explore feature affinity as semantic-level supervision with-
out relying on architectural prior like [8]. However, apply-
ing clustering directly cannot generate satisfying results. In
practice, we find that by hierarchically combining an over-
clustering result, we could obtain much more accurate re-
sults. More in detail, starting from an over-clustering gen-
erated using intermediate features, we merge the two most
similar segments each time till all segments are merged as
one. The similarity between segments is measured by the
cosine similarity between their prototypes. This procedure

Figure 5. Segments obtained using visual similarity and feature
affinity respectively. Top: Segments generated by OWT-UCM [2]
using boundaries. Bottom: Segments that are likely to match the
actual classes are selected from a hierarchical combination of fine-
grained clustering results.

generates consistent segments across all granularities. But
different classes naturally have different levels of granular-
ities, directly selecting segments from a single granularity
is often suboptimal. We further propose a confidence score
to evaluate how likely a segment matches a class accurately
to select segments across granularities. The design of the
confidence score is based on the following observations. In
the combination procedure where the most similar segments
are merged each time, the longer a segment can remain not
merged, the more different it is to all other segments, and is
more likely to match a class. What’s more, given that this
procedure starts from an over-clustering, the segments in
later steps have a higher chance to match a class and should
be assigned higher weights. A possible choice is to use the
cosine distance between the segments to be merged at each
step as a weight factor, which monotonously increases by
step. Formally, assuming segments a and b are merged into
a new segment c at step n in this procedure, set Sn indicates
all segments that are merged from start till now (include a
and b). The confidence score u for a segment s at step n is
defined recursively as follows.

un
s =


0 if s = c,
un−1
s elif s ∈ Sn,

un−1
s + (1− pa · pb) otherwise.

(3)

After finishing this procedure, we use the final score of each
segment to select those with scores above the threshold to
serve as high-confidence segments Sf and participate in
contrastive learning. If two selected segments are partially
overlapped, we only reserve the one with a higher score.
This procedure is performed for each training sample be-
fore each epoch to select high-confidence segments as the
network updates itself, except for the first epoch since the
feature cannot be clustered at that moment.
Overall Contrastive Loss. In our contrastive learning, the
pixels of Ct with ground truth annotations and C1:t−1 with
pseudo labels are excluded. Meanwhile, they can naturally
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serve as high-confidence negative segments in contrastive
learning. Since the batch size is limited in segmentation
while the number of negative samples is crucial in con-
trastive learning [7, 15], we use a memory bank to cache
the features of recent four batches to increase the number of
negative samples. Given the segments Sv generate by visual
similarity and segments Sf generated by feature affinity, our
contrastive loss is formalized as

Lc =
1

|Sv|
∑
i∈Sv

i/∈C1:t

L(fi, Sv) +
1

|Sf |
∑
i∈Sf

i/∈C1:t

L(fi, Sf ) (4)

where |S| means the pixel number in all segments within S.

4.2. Learning Future Knowledge in Output Space

Previous work [5] has claimed that a proper initializa-
tion of classifier weight at step t > 1 could also benefit the
performance and is widely adopted by other works [10, 54].
This motivates us to further introduce future knowledge to
the output space. Existing practice eases the misalignment
between features and classifier weights by using the weight
of the background to initialize that of the new classes. But
in the update process, the weights of new classes should be
updated to separate them from the background. Making the
classifier weights to be identical to that of the background
has the risk of increasing the necessary update, which has a
negative effect based on previous analysis.

To address this issue, we want the classifier to be ini-
tialized as close to the final optimal value as possible.
When optimizing feature space, we manage to obtain high-
confidence segments of future classes, and the intermediate
features are also optimized accordingly. We could naturally
utilize them to train an auxiliary classifier that can classify
future classes in advance and use its weights as initializa-
tion. More in detail, we first perform clustering on the pro-
totypes of segments to assign an auxiliary semantic label to
each segment, which is then used to optimize the auxiliary
classifier using cross-entropy loss. Note that the network re-
ceives no gradient from this classifier. In the next step when
initialization is needed, we compute the prototype of each
new class and select the auxiliary classifier weight which
is closest to the prototype to initialize the actual classifier
weight of it. On the one hand, we can make the classifier
converge more easily and avoid the R-P dilemma. On the
other hand, it solves the inadequate data obstacle in output
space by utilizing the data of current step to serve as the
negative samples of future classes, which can further boost
the discriminability of the classifier compared to training it
directly on the future steps.

4.3. Overall Framework

Our proposed framework is depicted in Figure 4. Lce and
Laux are both cross-entropy loss to learn new classes and to

train the auxiliary classifier, respectively. To complete our
framework, we still need a KD loss to overcome forgetting.
Since our focus is not on this part, we adopt the CKD loss
in MiB [5] as Lkd to assist our training, with the addition
of a temperature parameter as in original KD loss [16] to
enhance its ability in knowledge preserving. This makes
the overall loss function of our framework as follows.

L = Lce + αLkd + βLc + Laux, (5)

where α and β are hyper-parameters.

5. Experiments
5.1. Implement Details

Datasets. Following previous works, we evaluate our
method on VOC2012 [12] and ADE20K [56], which are the
standard CSS benchmarks. We report the performance on
the official validation set of each dataset. We also exclude
20% of the training set as a validation set to tune hyper-
parameters and perform all analyses.
Protocols. There are two settings in CSS benchmarks: dis-
joint and overlapped. The disjoint setting limits the given
images to contain pixels only belong to C1:t, while the lat-
ter does not have this restriction, which means the pixels
can also belong to the future classes, i.e., Ct+1:T . Note that
the overlapped setting is considered to be more realistic and
more challenging by all existing works [5, 10, 6, 37], and
the disjoint setting is even ignored in some works [6, 37].
In design, our work is fully based on the overlapped setting.
Evaluation. The CSS benchmark setups are denoted as
No −Nn where No and Nn are the number of classes to be
learned at the initial step and each incremental step, respec-
tively. For example, the 15-1 setup of VOC2012 gives 15
classes at the initial step and adds one class per incremen-
tal step, resulting in a total of 6 steps. On VOC2012, we
conduct experiments on four setups: 19-1 (2 steps), 15-5 (2
steps), 15-1 (6 steps), and 10-1 (11 steps). On ADE20K, we
use three setups: 100-50 (2 tasks), 50-50 (3 tasks), and 100-
10 (6 tasks). The network is evaluated after finishing all
learning steps using mean Intersection over Union (mIoU)
as metric. The performance of initial classes C1, incremen-
tal classes C2:T , and all classes C1:T are denoted as old, new,
and all, respectively.
Training. Following previous works [5, 10], we adopt
DeepLab-V3 with an output stride of 16. ResNet-101 serves
as the backbone, which is pre-trained on ImageNet. We use
the SGD optimizer with momentum set to 0.9. The learning
rate is set to 1e-2 for the initial learning step and 1e-3 for the
following learning step. The learning rate is adjusted by the
polynomial decay schedule with power set to 0.9. The net-
work is trained on VOC2012 for 30 epochs, and 60 epochs
on ADE20K, both with a batch size of 16. The image is
cropped to 512× 512 for both training and validation, with

11915



Table 1. Results of different methods on VOC2012. The best is in bold while the second best is in underline. Results are averaged over 3
runs with standard deviation provided.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks) 10-1 (11 tasks)
Method old new all old new all old new all old new all

ILT [35] 67.1 12.3 64.4 66.3 40.6 59.9 4.9 7.8 5.7 - - -
MiB [5] 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7 12.2 13.0 12.6

PLOP [10] 75.3 37.3 73.5 75.7 51.7 70.0 65.1 21.1 54.6 44.0 15.5 22.9
SDR [36] 69.1 32.6 67.4 75.4 52.6 69.9 44.7 21.8 39.2 - - -
SSUL [6] 77.7 29.6 75.4 77.8 50.1 71.2 77.3 36.5 67.6 71.3 45.9 59.2
RCIL [54] - - - 78.8 52.0 72.4 70.6 23.7 59.4 55.4 15.1 34.3

ALIFE [37] 76.6 49.3 75.3 77.1 52.5 71.3 64.4 34.9 57.4 - - -
Ours 77.7 59.8 76.8 79.1 67.7 76.4 75.2 52.2 69.7 68.1 54.5 61.6

±0.22 ±1.38 ±0.35 ±0.21 ±0.46 ±0.29 ±0.75 ±1.33 ±1.09 ±0.96 ±1.57 ±1.13

RECALL [34] 68.1 55.3 68.6 67.7 54.3 65.6 67.8 50.9 64.8 65.0 53.7 60.7
SSUL-M [6] 77.8 49.7 76.4 78.4 55.8 73.0 78.3 49.0 71.3 74.0 53.2 64.1

ALIFE-M [37] 76.7 52.2 75.5 77.6 55.2 72.3 66.0 38.8 59.5 - - -
Ours-M 77.9 67.7 77.4 79.3 70.2 77.1 77.1 60.4 73.1 69.5 63.2 66.5

±0.19 ±0.74 ±0.32 ±0.22 ±0.29 ±0.24 ±0.65 ±0.73 ±0.68 ±0.60 ±1.25 ±0.78

Joint 77.6 77.7 77.6 79.5 71.5 77.6 79.5 71.5 77.6 78.5 76.6 77.6

Table 2. Results of different methods on ADE20K. The best is in bold while the second best is in underline. Results are averaged over 3
runs with standard deviation provided.

100-50 (2 tasks) 50-50 (3 tasks) 100-10 (6 tasks).
Method old new all old new all old new all

ILT [35] 18.2 14.4 17.0 3.5 12.8 9.7 0.1 1.3 0.5
MiB [5] 40.5 17.1 32.7 45.5 21.0 29.3 38.2 11.1 29.2

PLOP [10] 41.8 14.8 32.9 48.8 20.9 30.4 40.4 13.6 31.5
SSUL [6] 41.2 18.0 33.5 48.3 20.1 29.5 40.2 18.7 33.1
RCIL [54] 42.3 18.8 34.5 48.3 25.0 32.9 39.3 17.6 32.1

ALIFE [37] 42.1 23.0 35.8 48.9 25.6 33.5 41.0 22.7 34.9
Ours 43.1 26.0 37.4 49.1 28.3 35.2 41.4 25.5 36.1

±0.17 ±0.36 ±0.25 ±0.24 ±0.43 ±0.33 ±0.28 ±0.45 ±0.35

SSUL-M [6] 42.7 17.5 34.3 49.1 20.1 29.7 42.8 17.6 34.4
ALIFE-M [37] 42.2 23.5 36.0 49.0 26.1 33.8 41.1 23.0 35.1

Ours-M 43.1 26.2 37.5 49.2 28.5 35.4 41.6 25.8 36.3
±0.15 ±0.29 ±0.21 ±0.12 ±0.27 ±0.18 ±0.21 ±0.26 ±0.22

Joint 43.5 29.4 38.8 50.3 32.7 38.8 43.5 29.4 38.8

Figure 6. mIoU comparison between CSS methods over steps on VOC 15-1 setups. The performance of initial classes and each new class
added per step are plotted separately from left to right. Our method shows great ability in learning new classes.

a random scaling and a random left-right flip additionally
applied to training.

5.2. Results

We provide the results on VOC2012 and ADE20K in Ta-
ble 1 and Table 2, respectively. Some works [6, 34] exploit
memory or external data to assist training. We also report
the results obtained using memory (denoted by -M) follow-
ing the implementation of [6] to fairly compare with these
methods. The result of joint training is also provided as the
upperbound for reference.

For all setups on VOC2012, our method surpasses all
existing methods by a large margin on new classes. This
demonstrates the strong ability of our method to learn new
classes. Note that our method also shows promising re-
sults on old classes even with a simple approach to pre-
serve old knowledge. This is due to that a higher perfor-
mance on new classes indicates that there also might be less
confusion between old and new classes, which also benefits
the mIoU of old classes. On the more challenging setups
with multiple steps (15-1, 10-1), the new classes cannot be
properly learned in the first place for most methods. To
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make matters worse, these poorly optimized new classes
will suffer forgetting in the following steps which further
reduces their performance. Even in these challenging cir-
cumstances, our method still shows great performance in
learning new classes, as shown in Figure 6. We can also see
that even though SSUL shows higher performance on old
classes on long-term setups, it relies on completely freez-
ing the feature extractor to prevent forgetting, which does
help a lot for old classes on these steps, but also harms its
flexibility greatly. We believe that if equipped with a mod-
ern knowledge-preserving constraint, our method could of-
fer another boost in performance.

On the more challenging ADE20K benchmarks, we ob-
tain similar results as that of VOC2012. Our method shows
some improvement on old classes and is significantly better
on new classes. On top of the results of VOC2012 bench-
mark, this further demonstrates that our approach works
well on more complex datasets, and has the ability to handle
both scenes and objects centric datasets.

When memory is applied on both benchmarks, our
method receives further improvements and holds the lead-
ing position. This also indicates that our proposed training
method has a non-overlapping effect with the memory tech-
nique. They can be used as two complementary techniques
as pointed out in Section 3.4

5.3. Ablation Study

We investigate the effects of the proposed components
in our framework using both 15-1 and 15-5 setups on
VOC2012. Starting from a baseline composed of Lce, Lkd

and pseudo label, we add the components one by one and
show the ablation results in Table 3. As can be seen, the
performance increase steadily as each proposed component
is gradually added. Only applying contrast by visual sim-
ilarity does not receive much improvement since it can-
not instruct the network to capture semantic-level informa-
tion. After applying contrast by feature affinity, the perfor-
mance receives the highest gain, indicating the necessity to
add semantic-level supervision and make the network learn
more accurate knowledge. On top of that, the performance
receives another boost from our classifier initialization tech-
nique which introduces future knowledge to output space.

Table 3. Ablation study on VOC2012 15-1 and 15-5 setup.

15-1 (6 tasks) 15-5 (2 tasks)
Method old new all old new all

baseline 65.3 18.8 54.2 76.9 51.3 70.8
+ visual similarity contrast 67.1 26.3 57.4 77.2 54.5 71.8
+ feature affinity contrast 74.5 45.1 67.5 78.7 65.4 75.5
+ classifier initialization 75.2 52.2 69.7 79.1 67.7 76.4

Figure 7. Visualization of clustering results of direct clustering and
our practice. The high-confidence segments selected by our crite-
rion are also presented on the right.

Figure 8. Performance comparison between different classifier ini-
tialization over training epochs on VOC2012 19-1 setup.

5.4. Further Discussion

Feature Quality Analysis. To further demonstrate the ef-
fect of our method to solve the underfitting problem pointed
out in Section 3.2, we conduct the same analysis on our
method and incorporate the findings into Figure 2 (denoted
by Ours). As can be seen, pre-learning future classes can
significantly improve both intra-class and inter-class fitness.
Segment Generation. We provide a qualitative compari-
son between direct clustering and our proposed hierarchical
combination at different granularities to validate our design
in Section 4.1. The results are generated from the same
intermediate features and are plotted in Figure 7. As can
be seen, our practice consistently generates better results
across different granularities. We also present the high-
confidence segments selected by our criterion for each im-
age, which match the actual classes with high precision.
Classifier Initialization. We give a comparison of perfor-
mance over training epochs for different classifier initial-
ization methods in Figure 8. As can be seen, the initializa-
tion technique proposed by MiB [5] converges much slower
due to larger update paces. Random initialization converges
fast but the performance stops increasing shortly afterward.
Among all of them, our method stands out with its fast con-
vergence speed and superior performance.
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6. Limitation and Conclusion

Our method has two limitations. Firstly, it relies on the
natural attribute of CSS that unlabeled future classes exist
in current training data. So it may not perform well when
there are only a few unlabeled future classes in the current
training data. However, in such cases, we can still leverage
external unlabeled data, such as web-crawled data as used
in RECALL [34]. Secondly, we point out that even though
our proposed framework achieves great performance, it as
a practicable solution might not be able to unleash the full
potential of the training method, which requires further ex-
ploration in future works.

In this work, we present an in-depth analysis of the rea-
son why existing methods suffer low performance on new
classes. Building on this analysis, we introduce a novel
training pipeline for CSS that optimizes potential future
classes in the current training step. This offers a new per-
spective for enhancing new class performance in contrast to
existing works that focus on addressing the R-P dilemma.
We propose a framework based on this pipeline and it shows
a significant improvement for new classes, while also ben-
efiting the performance of old classes. We believe that this
work can provide valuable insights for the research commu-
nity on CSS.
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