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Abstract

Understanding 4D scene context in real world has be-
come urgently critical for deploying sophisticated AI sys-
tems. In this paper, we propose a brand new scene un-
derstanding paradigm called “Context Graph Generation
(CGG)”, aiming at abstracting holistic semantic informa-
tion in the complicated 4D world. The CGG task capitalizes
on the calibrated multiview videos of a dynamic scene, and
targets at recovering semantic information (coordination,
trajectories and relationships) of the presented objects in
the form of spatio-temporal context graph in 4D space. We
also present a benchmark 4D video dataset “RealGraph”,
the first dataset tailored for the proposed CGG task. The
raw data of RealGraph is composed of calibrated and syn-
chronized multiview videos. We exclusively provide manual
annotations including object 2D&3D bounding boxes, cat-
egory labels and semantic relationships. We also make sure
the annotated ID for every single object is temporally and
spatially consistent. We propose the first CGG baseline al-
gorithm, Multiview-based Context Graph Generation Net-
work (MCGNet), to empirically investigate the legitimacy
of CGG task on RealGraph dataset. We nevertheless re-
veal the great challenges behind this task and encourage
the community to explore beyond our solution. Our project
page is at https://github.com/THU-luvision/RealGraph .

1. Introduction

Understanding our natural world in 4D space-time is
the fundamental challenge in building sophisticated AI sys-
tems. Recently, significant progress has been made in this
area, including 3D object detection [12, 44] and 3D multi-
object tracking [5, 30, 47]. In addition to detecting and
tracking 3D objects, understanding the interaction and re-
lationships between humans and objects in dynamic envi-
ronments are also essential to intellectual perception and
cognition science [59, 25]. Take for instance, deploying

1These authors contributed equally to this work.
2Lu Fang is the corresponding author (www.luvision.net).
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Figure 1. From multiview videos (bottom) to context graph (top).
The holistic understanding of 4D scenes empowers the noise-
robust, context-aware, and scene-adaptive visual analysis.

embodied AI [24, 17] in a café, as shown in Fig. 1, re-
quires scene understanding in complicated 4D space-time
in order to make prompt decisions: service robots need to
estimate objects’ 3D trajectories and to understand their se-
mantic relationships (e.g. ⟨man− sit at− table⟩) to infer
human intention and to offer help. A legitimate solution to
approach 4D scene understanding is to interpret the scenes
in the form of a semantic graph, which encompasses 4D
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information and is denoted as a context graph1.
Existing approaches may not even work to generate con-

text graph. Current scan-based method for 3D scene graph
generation [2, 52, 66] can only deal with static indoor
scenes, given spatial relationship annotation like ⟨sofa −
close to−table⟩ and static attribute like geometry and color.
Owing to the time consuming and complicated 3D scan
(e.g. with RGB-D camera or LiDAR) processing procedure,
it’s hard to capture semantic information of the complete
scene in real-time. Therefore, there is a high demand for a
novel approach to representing 4D semantics as a context
graph, which is currently unexplored and presents a signifi-
cant challenge.

Given the numerous inherent benefits of multiview
videography, such as easy accessibility, comprehensive
coverage, robustness, and high reliability, we believe it
is practically valuable to consider a brand new modeling
paradigm, named as context graph generation (CGG)
from multiview videos. Specifically, CGG takes multiple
synchronized 2D videos of the same dynamic scene as in-
put, and the goal is to estimate 3D coordination and trajec-
tory of targeted objects, and the inference on semantic re-
lationships between them within the 4D space-time, and fi-
nally generate a context graph that is consistent across tem-
poral and spatial contexts. With the information from con-
text graph, questions subject to temporal clues like “when
did the man sit down on the chair” or “what did the man
do after eating a cake” becomes easier to address, which is
crucial for successful deployment of embodied AI system.
However, without explicit 3D information, it’s non-trivial
for annotators to accurately annotate 3D labels, and it is
even more challenging for algorithms to process these in-
formation in 4D space. In general, CGG requires both large
scale annotated data and tailored model to succeed.

By taking into account the above considerations, we pro-
pose the first multiview video (4D) dataset tailored for con-
text graph generation (CGG), named RealGraph. In gen-
eral, RealGraph dataset captures 13 real-world scenes, with
more than 2.4M video frames, and provides various human
annotated labels, including 2.3M 2D bounding boxes, 760K
2D relationships, 420K 3D bounding boxes and 130K 3D
relationships out of 37 object categories and 18 relationship
categories in total, and each object has a unique identifier
across different views and frames. Apart from CGG, Real-
graph supports the deployment of several traditional tasks
like 2D scene graph generation, 3D detection, 3D Multi-
object tracking. The multiview cameras in RealGraph are
synchronized and uniformly distributed in each scene. We
demonstrate one example frame of café in Fig. 1 with anno-
tations, certain objects are occluded or missing in a single
view, while the missing information can be complemented
from the other views, depending on the spatial-temporal

1Formal definition is presented in Sec. 3.1.

context. This could compensate for the limitation of in-
ference from single view, but also remains as a challenge
in terms of information fusion across different views in dy-
namic scenes.

To solve the CGG task, models face two major chal-
lenges: tracking objects of various scales from multiview
with random occlusion and out-of-view problems; and in-
ference of semantic relationships from multiple views with
large perspective disparity. We propose a tailored learning-
based model to address these problems. For multi-object
tracking, we adopt a multi-scale feature fusion module to
better detect small-scale objects, and a double association
scheme to improve tracking performance. For relationship
prediction, we reuse the 3D feature volume from the de-
tector and apply a sequential network to extract context in-
formation. We nevertheless encourage the community to
explore alternative solutions on the new task.

To summarize, our contributions are three-folds:

• Inspired by 3D scene graph [2], we propose a new task:
context graph generation (CGG) from multiview 2D
videos, which aims to describe dynamic 3D objects
and their relationships as an abstract of the 4D real
world in the form of graph. We hope the paradigm
of CGG could further benefit downstream applications
like VQA, robotics and augmented reality.

• We propose a new benchmark dataset RealGraph, the
first dataset tailored for CGG task. This dataset con-
sists of multiview synchronized videos for various
scenes along with CGG annotations. RealGraph also
provides benchmarks on basic 3D tasks like 3D ob-
ject detection, 3D multi-object tracking and 3D scene
graph generation.

• We propose the first baseline method to solve the CGG
task based on RealGrpah dataset. Extensive experi-
ments demonstrate that CGG task is non-trivial, and
remains as an intriguing and open problem that is of
potential interests of the community.

2. Related work

Dataset Video #Views #Frames #ObjClass #RelClass Calibration
3DSG[2] # - - 80 7 ✓
3DSSG[52] # - - 187 40 -
SGNet[66] # - - 51 6 -
KITTI[16] ✓ 4 15K 8 - #

Waymo[47] ✓ 5 230K 4 - ✓
nuScenes[5] ✓ 6 40K 23 - ✓
STCrowd[9] ✓ 1 11K 1 - -
HOI4D[32] ✓ 1 2.4M 16 54 -
LEMMA[22] ✓ 4 4.6M 14 16 #

BEHAVE[4] ✓ 4 15.2K 20 1 #

HAKE-3D[29] ✓ 1 9K 40 48 -
RealGraph (ours) ✓ 8∼15 2.4M 37 18 ✓

Table 1. Comparisons between RealGraph and relevant datasets.
#ObjClass: number of object classes. #RelClass: number of rela-
tionship classes.
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2.1. Object detection and tracking

The collection of 2D object detection datasets [15, 42,
31, 43, 21, 62, 63, 53] has contributed to remarkable
progress of the object detection in 2D images. Recently,
there are also growing interests in 3D perception tasks,
along with an increasing need for large-scale 3D datasets.
For instance, SUN RGB-D [44] provides labeled 2D poly-
gons and 3D cuboids for various indoor scenes. Scan-
Net [12] is an RGB-D video dataset annotated with cam-
era poses, surface reconstruction, and semantic segmen-
tation. These annotations are generally obtained through
3D-2D projection techniques based on the dense depth
information collected from RGB-D cameras. More ad-
vanced and elaborated labels such as geometry primitives
and instance segmentations can be generated from a photo-
realistic simulations, such as SceneNet RGB-D [35] and
Structured3D [65]. However, these datasets only consider
data collection in static indoor rooms, making it hard to ap-
ply to 3D perception in dynamic environments.

Another line of research focuses on robust 3D analysis
for autonomous driving [34]. Datasets in this domain in-
clude [16, 30, 47, 5, 39, 8]. These works often rely on data
collected from mixed multi-modal sensors, including syn-
chronized cameras, radar and LiDAR point cloud. Though
these datasets usually contain temporal information, the an-
notations are always in the form of 3D bounding boxes
and trajectories of objects, neglecting semantic relation-
ships and interactions within the scene.

Nevertheless, we still believe the tasks of 3D object de-
tection and tracking form the very foundation of 3D scene
understanding. Therefore, our proposed RealGraph dataset
also provides rich annotations for these tasks. The main dif-
ference is that RealGraph is not confined to specific appli-
cation like autonomous driving, and contains various scenes
both indoor and outdoor.

2.2. Scene understanding

The perception of 3D scenes plays a critical role for
human vision system. Early works investigate room lay-
out estimation with cuboids [13, 20, 27] or primitives [11,
67, 46, 40]. With the advance of deep learning, many
works start to estimate 3D bounding boxes and object
poses [7, 50, 51, 14]. Some works [61, 37] explore further
to jointly solve multiple scene understanding tasks, includ-
ing estimating the room layout, object poses and shapes.
Human-Object Interaction (HOI) in 3D [32, 22, 29] has
made great progress these days, it provides elaborate under-
standing on how human interact with objects in daily life.
However, most of HOI works focus on local actions of hu-
man during specific interaction, neglecting various semantic
relationships within the whole scene in long-term observa-
tion.

Among existing scene understanding techniques, scene

graph [25, 26, 23] provides a compact yet comprehensive
structure to abstracting semantic from the scene. Apart
from object class and location, it includes object attributes
and semantic relationships between objects. Video Scene
Graph [10, 48, 57, 28], extends this structure to temporal di-
mension for dynamic scene understanding. 3D scene graph
[60, 2, 52] borrows the idea of scene graph and apply it to
the realm of 3D vision. Some works[7] introduces physi-
cal commonsense to help improve the 3D relationship esti-
mation. Beyond that, context priors can also be employed
to give a more holistic understanding with larger respec-
tive field in a 3D context network [1]. However, the related
datasets [3, 6, 65, 60, 2, 52] usually lack pose annotations
or human interactions in dynamic environments, which hin-
ders the algorithms from general scene understanding.

Compared to the previous paradigm, our proposed 4D
context graph generation (CGG) task leverages multiview
videos to parse semantic relationships in dynamic 3D envi-
ronments. CGG waives the need of 3D signals from RGD-D
or LiDAR equipment, and provides more robust and com-
pact representation for 3D scene understanding. Relatively,
our proposed RealGraph dataset is the first dataset exclu-
sively designed for CGG task. It’s most suitable for real-
world 4D scene understanding, especially for those with
human activities and interaction with objects. We believe
the proposed RealGraph dataset can benefit the community
in better understanding dynamic 3D scenes, and encourage
the development of real-world perception algorithms.

3. Dataset and problem formulation
We always prioritize the privacy issue during the collec-

tion of the dataset: we ensure that all participants appeared
in the dataset are aware of the data collection process and
provide their formal consent for the usage of their informa-
tion.

3.1. Formal definition

The CGG task aims to construct a 4D context graph, a
structured representation of context information of a dy-
namic scene, from multiview calibrated videos. Context
graph requires scene graph generation process respect ad-
ditional 4D “context” consistency constraint imposed both
temporarily and spatially. Beyond the definition of conven-
tional 3D scene graph [60], the new context graph con-
tains four parts: 1) a set of 3D bounding boxes B =
{B1, ..., Bn}, Bn = (x, y, z, l, w, h, θ) indicates the 3D
location, size, rotation angle of the 3D box; 2) a corre-
sponding set of object labels O = {o1, ..., on}, on ∈ C,
where C is all object categories; 3) a set of object “global”
tracking ID I = {i1, ..., in}, in ∈ N (by “global”, we
mean the annotated ID is spatially and temporally consis-
tent across all the views, 3D space and timestamps); 4) a
set R = {r1, ..., rm} of relationships between those ob-
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Figure 2. The annotation pipeline of one timestamp in RealGraph. (a) The 3D regions of objects are firstly labeled on each 2D frame
separately. (b) Each object is manually assigned with a global ID across different views and timestamps. (c) Then we annotate the semantic
relationships between the objects on 2D images. (d)(e) The 3D location of objects are firstly initialized from multiview triangulation with
2D boxes, then manually adjusted for better quality. (f) Relationships in 3D are automatically gathered from 2D annotation and objects’
global ID. We continue this procedure along all the views and frames to annotate the whole scene.

jects. Each relationship rm ∈ R is a triplet of a “head”
node (Bh, oh, ih) ∈ B ×O×I, a “tail” node (Bt, ot, it) ∈
B ×O×I, and a predicate label xh→t ∈ P , where P is all
predicate categories. A demonstration of the context graph
is shown in Fig. 1. Major categories of objects on ∈ C
and predicates xh→t ∈ P can be found in Fig. 3. Example
scenes and extra statistics are in supplementary materials.

3.2. Data collection

The raw data in RealGraph dataset is a set of mul-
tiview RGB videos captrued with GoPro Hero 10 cam-
eras. The capture mode is cinematic, with the resolution
of 5312× 2988, the frame rate of 30 FPS, and the horizon-
tal field of view (FOV) of 87◦. For each scene, we set up
several synchronized GoPro cameras and fix their position.
The principle of arranging camera position is to ensure the
union of camera views covers as much 3D space as possi-
ble. This multiview setup aims to provide abundant visual
information of the scene. Before the start of recording, we
carefully calibrate all the fixed cameras. Example scenes of
camera distribution and detailed calibration process can be
found in supplementary materials.

Currently, RealGraph dataset covers 13 dynamic scenes2

with human activities. Each scene is captured with 8 to 15
cameras with 3 to 20 minutes’ 30Hz HD video, the number
of camera is determined by the scale and complexity of the
scene. We manually synchronize all the camera recordings
in post-processing. Compared with single-view recording,
the multiview setup helps to capture the missing informa-
tion due to occlusion and out-of-view problems in dynamic
scenes.

2We will continue to update the dataset by collecting new scenes and
providing more annotations.

3.3. Data annotation

We provide fully manually annotated labels on Real-
Graph dataset, including 2.3M 2D bounding boxes, 760K
2D relationships, 420K 3D bounding boxes and 130K 3D
relationships out of 37 object categories and 18 relationship
categories in total, each object has a unique identifier across
different views and frames. Note that the raw data of Real-
Graph is 30 FPS, we only annotate semantic labels at 1 FPS.
The general statistics of semantic annotations are illustrated
in Fig. 3.

In the following sections, we introduce the annotation
procedure of each component. A demonstration of the an-
notation pipeline is shown in Fig. 2.

3.3.1 2D annotations

We specify the bounding boxes of humans and objects for
2D detection in each view, in the form of bn = (x, y, w, h).
Besides, we carefully assign each object a global identifier
in, which is shared across different views and frames. The
identifiers will be used in 3D initialization during annota-
tion, and as a part of ground truth in 3D tracking and CGG
tasks. We omit the objects having severe occlusions, only
annotate 2D objects obscured for less than 30% in areas in
an image.

3.3.2 3D annotations

The 3D spatial annotation refers to specifying objects’ 3D
bounding boxes Bn = (x, y, z, l, w, h, θ), where (x, y, z)
are the coordinate of the center, (l, w, h) are length, width
and height, and θ are the rotation angle around x-axis.
Given annotated 2D bounding boxes (with label and id) and
camera poses, an initial 3D bounding box is calculated by
multiview triangulation [58]. By back projection, the 2D
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Figure 3. Number of 3D instances of different semantic categories in RealGraph dataset.

bounding boxes of the same ID in each view forms a view
frustum in 3D space, and the initial 3D bounding box lies in
the intersection of these frustums. Detailed illustration can
be found in supplementary materials. After initialization,
we manually adjust the parameters of each 3D bounding
box so that its projection into all 2D views fits well with
original 2D boxes.

3.3.3 Relationship annotations in 4D

After object annotation, we proceed to annotate the rela-
tionships between annotated objects from 2D images. The
majority of object-object relationships defined in existing
datasets [25, 2] tends to simply reflect view-dependent spa-
tial relationships such as “in front of” and “near”. In con-
trast, we constrain the object-object relationships in Real-
Graph dataset to be “supportive” (on) or “containing” (in).
For example, these relationships may include ⟨box − in −
bag⟩ or ⟨book− on− table⟩, where objects need to demon-
strate actual physical contact with each other. Since context
graph is constructed in 4D space, most view-dependent spa-
tial relationships mentioned above can be directly inferred
from relative 3D location of the objects.

The human-object3 relationships include actions like
“hold” and “drag”, and activities like “drink”, “read” and
“ride”. To minimize the ambiguity in the start and end
moments of the action, the relationships are only labeled
between objects that are in physical contact . We connect
pairs of objects (including human) with relationships in 2D
views, where relationships can be clearly observed. The
annotated relationships will be displayed in all other views
simultaneously based on objects’ identifier across different
views. Once the annotation in 2D is complete, the relation-
ships in between 3D objects can be directly inferred based
on objects’ global ID.

3We slightly abuse the term of “object” in this paragraph to only indi-
cate non-human objects in the dataset

4. Method
Intuitively, context graph generation from multiview

videos has to tackle three major points: 1) detecting ob-
jects of various scales; 2) predicting semantic relationships
from multiple views with great perspective disparity; 3)
dealing with unpredictable occlusion in dynamic scenes and
fuse information effectively. To tackle these challenges,
we introduce Multi-view Context Graph inference Network,
MCGNet, a multi-stage model to extract the context multi-
view videos in 4D space. The specific design of MCGNet
is explained as follows.

Detection. Let In ∈ R3×H×W be one of the images
among all N multiview RGB images {In}Nn=1 in timestamp
τ , we omit notation of τ in this timestamp without loss
of generality. We firstly extract features Fn = F (In) ∈
RC1×H×W from each view separately with a pretrained
2D backbone and a multi-scale Feature Pyramid Network
(FPN), C1 is the feature dimension. The extracted 2D fea-
tures are then back-projected into the 3D space with cam-
era calibrations, and then aggregated by an element-wise
averaging to construct the 3D feature volume V , with the
size of HV × WV × DV . A detailed explanation of the
back-projection procedure can be found in supplementary
materials. Following [41, 58], we apply a Feature Fu-
sion (FF) network to fuse 3D features in different levels.
The FF network has three down-sampling residual blocks,
each with three 3D convolutional layers, and three up sam-
pling blocks, each with a transposed 3D convolutional layer
followed by another 3D convolutional layer. The network
outputs 3 feature maps P = [P1, P2, P3] with the size of
HV

4 × WV

4 × DV

4 , HV

2 × WV

2 × DV

2 , HV ×WV ×DV , and of
the same channel size C2. In comparison, a baseline model
without feature fusion applies a simple 3D CNN to refine
3D feature volume.

Following [41, 49], the 3D detection head takes the 3-
level feature maps from the 3D feature decoder, and pre-
dicts a set of class distribution pn, centerness cn and 3D
bounding boxes Bn. We adopt the loss function Ldet as
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Figure 4. The network architecture of our proposed MCGNet for the CGG task. At the timestamp T = τ , a 2D backbone extracts features
from each image independently. The features are then back-projected into a 3D feature volume. A Feature Fusion network refines the
accumulated 3D features. The detection head predicts 3D bounding boxes and their class labels, and the relationship head infers the
relationships between the detected objects. The tracker uses detected 3D boxes to match the tracklets and update their states. A context
graph is generated and updated frame by frame in this pipeline. Detailed demonstrations are explained in Sec.4.

in [41], Ldet sums up a focal loss for classification Lcls, a
cross-entropy loss for centerness Lcntr, and an IoU loss for
3D location Lloc. The detection head produces a set of 3D
bounding boxes B with class labels O and scores.

Relationship prediction. In terms of the relationship in-
ference, we follow [60] by applying a bidirectional LSTM
network to refine and propagate the context feature across
the object proposals from the detection head. Inspired by
[18], we design a 3D ROI align based layer Fextr to ex-
plicitly encode the object feature E = [en]

npos

n=1 and the
context feature C = [cn]

npos

n=1 as: E = Fextr(P,B),C =
BiLSTM(E,O), where npos is the number of positive pro-
posals from the detection head. Then the n2

pos edge features
are modeled as the combination of “head” and “tail” object
context: fn,m = (cn ⊕ cm)⊙ ên∪m. We use the union box,
i.e., the convex hull of the union of two bounding boxes, to
pool their joint volume feature ên∪m. The ⊕ denotes the
element-wise sum, and ⊙ denotes the element-wise prod-
uct. Finally, a softmax layer produces the probability dis-
tribution of the relationships. Unlike some previous works,
we do not require bounding box overlap to recognize the
relationship between objects.

Tracking. The tracking model of MCGNet mainly con-
sists of two parts: the motion model and the association
model. Following [55, 38], we adopt Kalman filter as the
motion model for it fits better for high-frequency cases be-
cause of more predictable motions; and we adopt Intersec-
tion over Union (IoU) as association metric and Hungar-
ian algorithm as matching strategy [55]. Besides, to bet-
ter associate low-score detection results due to occlusion
and scale variation, we introduce a double association ap-

proach [38, 64] by splitting detection results with two score
thresholds thr1 and thr2. In the first association we fol-
low the conventional procedure [55, 54] with boxes whose
scores are higher than thr1. Then we match the left boxes
with scores higher than thr2 to the unmatched tracklets.
However, we do not use low-score boxes to update motion
states. Instead, we use KF predictions as the latest tracklet
states as in [38].

5. Experiments
RealGraph dataset supports a broad spectrum of CV ap-

plications, including 3D Detection (3D Det), 3D Multi-
Object Tracking (3D MOT), 3D Scene Graph Generation
(3D SGG) and 4D Context Graph Generation (CGG). In
this section, we first provide detailed experiment setups, and
then evaluate our method on RealGraph dataset. The exper-
imental results highlight the challenges behind the proposed
CGG problem. In RealGraph dataset, there are 13 scenes in
total, we split the dataset in the unit of scenes: 10 scenes for
training and 3 scenes for testing. For 3D MOT and CGG
tasks which consider temporal consistency, we split each
scene into 30-second clips, training and evaluating of the
model will base those clips.

5.1. Tasks & Metrics

3D Object Detection (3D Det). We follow the existing
standard metric Average Precision (AP) and mean Average
Precision (mAP) for 3D detection as in [15, 16]. We adopt
3D intersection over union (IoU), requiring IoU of a detec-
tion over 25% to be true positive, redundant detection of
the same object is identified as false positive as mentioned

3763



in [12, 44]. As an extra evaluation, we examine the perfor-
mance of the model when using only half of the 2D views
of each scene.

3D Multi-Object Tracking (3D MOT). We evaluate
standard MOT metrcis as in [30, 5, 55]: multi-object
tracking accuracy (MOTA), multi-object tracking precision
(MOTP) in centimeters, identity switches (IDs), False Pos-
itive (FP) and False Negative (FN).

3D Scene Graph Generation (3D SGG). Similar to pre-
vious works [33, 56], we adopt criteria recall @ K (R@K)
and mean recall @ K (mR@K) on 3D SGG task. We set up
three graph generation experiments as in those works:

• Scene Graph Detection (SGDet). The input is a set of
multiview images with camera calibration, the task is
to construct 3D scene graph of the scene, i.e., to detect
3D objects and predict possible pairwise predicates at
the same time.

• Scene Graph Classification (SGCls). Apart from im-
ages and camera calibration, the input includes ground
truth 3D bounding boxes. The task is to predict the la-
bels of these 3D objects and the relationships between
each pair of them.

• Predicate Classification (PredCls). Apart from im-
ages and camera calibration, the input includes ground
truth 3D bounding boxes and labels. The task is to pre-
dict relationships between each pair of these annotated
3D objects.

There are two ways to evaluate SGG tasks: with/without
constraint. The constraint forbids the model to predict mul-
tiple relationships between the same object pair. Note that
the true positive relationships are those whose head object,
tail object are true positive in detection and relationship is
correctly classified.

Context Graph Generation (CGG). In comparison to
previous 3D Scene Graph Generation task, CGG focuses on
daily activity in dynamic scenes and takes temporal consis-
tency into account. Based on that point, we propose a new
metric, Context Graph Recall (CGR) to evaluate the perfor-
mance of models on CGG task:

CGR = 1− IDs+ FN

TP + FN

Compared to traditional recall, we add an extra punishment
term IDs (number of identity switches occurred in all the
tracklets) to assess temporal consistency of the result. The
idea is borrowed from MOTA [45]. We also evaluate CGG
task with/without constraint.

5.2. Implementation details

3D Det. Following previous 3D volume-based networks
[36, 60], we estimate the spacial limits of all the scenes in

our dataset as (8 × 8 × 2.4) meters, and set the voxel size
0.08m. We use ResNet-50 [19] as 2D backbone. The output
feature channels of each layer are set to C1 = 256, C2 =
128. We use Adam optimizer with initial learning rate =
2 × 10−4 and weight decay = 10−4. We train the detection
model for 14 epochs on the training set of RealGraph. The
learning rate is reduced by 10 times after the 6th and 8th
epoch. In the benefit of subsequent tracking and relation-
ship prediction tasks, we apply non-maximum suppression
(NMS) to the detection results with IoU threshold 25%.

3D SGG. We use the feature volume generated in de-
tection model and ground-truth bounding boxes to train the
relationship prediction model in Sec. 4. During inference,
the predicted boxes from detection model are used instead.
To represent the feature of the relationship between boxes
Bn, Bm, we resize the edge feature fn,m to 7×7×7×128.
We use SGD optimizer with initial learning rate 8 × 10−4

and reduce it by 10 times after 2 epochs. We train the de-
tection and relationship prediction models on 8 Nvidia 3090
GPUs.

3D MOT. For 3D MOT, we adopt a 3D Kalman Filter
as motion model as in [55]. We choose thr1 = 0.25 and
thr2 = 0.05 for double association. Similar to 3D Det, a
minimum 3D IoU over 0.25 with the ground truth is consid-
ered as a successful match.

CGG. The proposed MCGNet for CGG task is a multi-
stage model composed of detection, relationship prediction
and tracking models mentioned above. During inference,
we run the whole pipeline on input multiview videos and
eventually output the context graph of the scene.

5.3. Results

In this section, we evaluate the results of aforementioned
tasks of MCGNet on RealGraph dataset.

FF #views chair table person laptop cup box whiteboard mAP

half 43.96 12.27 23.36 58.93 0.85 12.32 12.07 18.70
✓ half 53.38 20.32 38.57 64.49 2.10 16.28 19.52 23.33

full 71.52 32.77 61.19 80.98 5.04 19.73 38.26 34.96
✓ full 75.14 33.70 68.44 80.29 7.16 22.49 43.29 38.29

Table 2. Performance of MCGNet on 3D detection on RealGraph.
AP@0.25 on typical object classes is also shown. “FF” denotes
feature fusion, “#views” denotes views used as input during train-
ing and inference.

FF DA MOTA↑ MOTP↓ IDs↓ FP↓ FN↓

35.16 18.12 3379 8603 13246
✓ 37.06 16.60 2658 6859 9933

✓ 35.20 18.08 1921 8096 11853
✓ ✓ 37.17 16.54 1658 6269 8773

Table 3. Performance of MCGNet on 3D MOT on RealGraph
dataset. The tracker is based on AB3DMOT [55]. MOTP is in
centimeters. “FF” denotes feature fusion module in the detector,
“DA” denotes double association in the tracker.
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Task FF With Constraint No Constraint

R@20 R@50 R@100 mR@20 mR@50 mR@100 R@20 R@50 R@100 mR@20 mR@50 mR@100

SGDet 27.4 32.4 33.2 17.8 20.3 22.1 30.6 32.8 33.5 18.0 21.6 22.9
✓ 28.8 35.4 36.3 19.0 22.1 22.9 32.4 33.6 34.2 21.7 23.5 25.7

SGCls 36.1 38.9 40.4 22.3 25.6 28.6 38.0 40.1 41.4 25.7 31.4 33.2
✓ 36.5 39.4 40.5 22.9 26.0 28.8 38.6 40.5 41.4 28.2 31.7 33.3

PredCls - - - - - - - - - - - -
✓ 58.3 64.5 66.3 31.3 35.2 37.9 66.7 69.4 71.6 39.2 41.5 43.0

Table 4. Performance of MCGNet on RealGraph dataset in 3D SGG tasks. 3D SGG includes three sub-tasks: scene graph detection
(SGDet), scene graph classification (SGCls) and predicate classification (PredCls). With Constraint forbids the model to output multiple
results of the same object pair which could promote the recall. “FF” makes little difference in PredCls sub-task since groud-truth boxes are
given, so we omit the comparison.

FF DA With Constraint No Constraint

CGR@20 CGR@50 CGR@100 mCGR@20 mCGR@50 mCGR@100 CGR@20 CGR@50 CGR@100 mCGR@20 mCGR@50 mCGR@100

25.9 30.9 31.7 16.3 18.8 20.6 29.1 31.3 32.0 16.5 20.1 21.4
✓ 27.7 34.3 35.2 17.9 21.0 21.8 31.3 32.5 33.1 20.6 22.4 24.6

✓ 26.6 31.6 32.4 17.0 19.5 21.3 29.8 32.0 32.7 17.2 20.8 22.1
✓ ✓ 28.2 34.8 35.7 18.4 21.5 22.3 31.8 33.0 33.6 21.1 22.9 25.0

Table 5. Performance of MCGNet on CGG on RealGraph dataset. CGR@K and mCGR@K are new evaluation metrics proposed in this
work and detailed in Sec. 5.1. “FF” denotes feature fusion module in the detector, “DA” denotes double association approach in the tracker.

3D Det. We compare the results of the 3D volume based
MCGNet with/without feature fusion module on full/half
view settings in Table 2. Apparently, MCGNet with feature
fusion outperforms the vanilla version in most object cat-
egories, especially small-scale ones like “cup” and “box”,
showing improvement on AP by 2.12 and 2.76 respectively,
and in general, FF model achieves higher mAP by 3.3. The
primary reason is the random occlusion and largely diverse
object scale that makes detection of small objects difficult.
Another interesting observation is, the performance of the
same model trained and tested with only half views drops
significantly as shown in Table 2. This reveals that suf-
ficiency and proper arrangement of cameras are necessary
to provide adequate information to construct good context
graphs.

3D MOT. As in Table 3, the model with feature fusion
(FF) and double association (DA) outperforms other ver-
sions. Similar to 3D SGG, models with FF produces bet-
ter detection results hence achieves higher performance in
tracking task. Comparing two models with FF with/without
double association, we see DA contributes to higher MOTA
by 0.11 and lower MOTP by 0.06. As analyzed in Sec. 4,
it’s mainly due to the low-score detections could carry extra
information of object motion.

3D SGG. Test results on 3D SGG task show similar trend
to 3D Det, where the method with feature fusion module un-
doubtedly make better detection results with higher recall
on SGG. Specifically, MCGNet with feature fusion outper-
forms the vanilla model on SGDet sub-task with constraint
by 1.2, 1.8 and 0.8 of mR@20, mR@50 and mR@100 re-
spectively as in Table 4.

CGG The overall performance shown in Table 5 indi-
cates that the proposed 3D feature volume based MCGNet

effectively learns the complex spatial and semantic infor-
mation in a dynamic scene. Different from 3D SGG task,
CGG task takes temporal perception into account. There-
fore we can see a boost in CGR (0.5 on average) with dou-
ble association, which lowers the ID switches just like in
3D MOT task. However, the proposed MCGNet is a multi-
stage pipeline, and suffers from accumulated error through
each stage. We encourage the community to further present
joint optimization schemes for more robust, efficient and
effective models.

6. Conclusion

The capability of understanding the semantics in the real
world is critical for AI systems. In this paper, we rethink
the way of 3D scene graph generation, and propose a new
paradigm called 4D context graph generation (CGG) from
multiview images to better parse dynamic scenes of hu-
man activities. We correspondingly propose a multiview
video dataset “RealGraph” tailored for the proposed CGG
task. The RealGraph dataset provides multiple synchro-
nized videos for daily scenes along with various semantic
annotations. This paper reveals the great challenges be-
hind CGG task and we explore a feasible baseline for the
task. Empirical results demonstrate that the proposed base-
line partially addresses the CGG problem, yet we encour-
age future study to propose more effective and efficient so-
lutions, e.g., besides tracking objects, the relationships can
also be constrained with temporal consistency. We believe
CGG could also benefit downstream applications like visual
grounding and robotic intelligence, and will be of interests
of the community.
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