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Abstract

Multi-object tracking (MOT) at low frame rates can re-
duce computational, storage and power overhead to bet-
ter meet the constraints of edge devices. Many existing
MOT methods suffer from significant performance degra-
dation in low-frame-rate videos due to significant location
and appearance changes between adjacent frames. To this
end, we propose to explore collaborative tracking learn-
ing (ColTrack) for frame-rate-insensitive MOT in a query-
based end-to-end manner. Multiple historical queries of
the same target jointly track it with richer temporal de-
scriptions. Meanwhile, we insert an information refine-
ment module between every two temporal blocking de-
coders to better fuse temporal clues and refine features.
Moreover, a tracking object consistency loss is proposed to
guide the interaction between historical queries. Extensive
experimental results demonstrate that in high-frame-rate
videos, ColTrack obtains higher performance than state-
of-the-art methods on large-scale datasets Dancetrack and
BDD100K, and outperforms the existing end-to-end meth-
ods on MOT17. More importantly, ColTrack has a sig-
nificant advantage over state-of-the-art methods in low-
frame-rate videos, which allows it to obtain faster pro-
cessing speeds by reducing frame-rate requirements while
maintaining higher performance. Code will be released at
https://github.com/yolomax/ColTrack

1. Introduction
The goal of multi-object tracking (MOT) is to esti-

mate bounding boxes and identities of objects of interest
in videos. In high-frame-rate videos, the velocities of ob-
jects are slow, which makes the difference between adjacent
frames small. State-of-the-art MOT methods [2, 28, 24, 34,
33, 37, 16, 30] achieve impressive results in the high-frame-
rate situation. However, limited by storage, computing, and
network bandwidth, low-frame-rate videos are very com-
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Figure 1. The comparison of the computing time for different
methods to achieve the required HOTA score when tracking in a
one-second video. These data are calculated based on the HOTA
score and FPS of different methods on the MOT17 validation set.
ColTrack still maintains high HOTA scores when tracking at low
frame rates, so it achieves faster tracking speed by reducing the
frame rate requirement while ensuring a high HOTA score.

mon. In low-frame-rate videos, the difference between ad-
jacent frames is larger, which degrades the performance of
existing methods.

The challenges caused by low-frame-rate videos are
manifold. First, the displacements of objects between ad-
jacent frames become larger, which even leads to no over-
lapping of the object boxes. This requires the model to
match targets over a larger range, which includes more
noisy objects. Furthermore, the position estimation error
of the motion model (e.g. the Kalman filter [14]) is ampli-
fied and leads to significant performance degradation of the
Kalman filter-based methods, e.g., Bytetrack [33] and Fair-
MOT [34]. Second, objects have severe appearance changes
between adjacent frames. The viewpoints, visibilities, and
poses of the objects change greatly. In addition, the sudden
occlusion causes the objects to lose key appearance features
rapidly. This greatly challenges some methods [34, 24] that
rely on appearance features.

Some methods focusing on the detection of emerging ob-
jects [36] or the adjustment of training strategies [12] are
proposed to improve the MOT performance at low frame

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9964



rates, while these methods do not fundamentally solve the
problems of unreliable features and large displacements
in low-frame-rate videos. The end-to-end MOT meth-
ods [16, 30] use the deformable attention-based DETR-like
detection model [8, 39] to match objects in the current frame
based on the queries from the last frame. The utilization
of deformable attention allows the model to adaptively find
targets in a larger range. This helps to alleviate the problem
caused by the large displacements. However, the matching
of objects in this way heavily depends on the quality of the
queries, which cannot be guaranteed due to the unreliable
features in low-frame-rate videos.

In this paper, we propose collaborative tracking learn-
ing (ColTrack) for frame-rate-insensitive MOT, which is
an end-to-end MOT approach. ColTrack utilizes multiple
historical queries belonging to the same object as the col-
laborative tracking queries to track the same target. These
queries contain descriptions of the same target at different
moments. Their combination effectively alleviates the im-
pact of unreliable features. However, the introduction of
multiple historical queries to track the same target is against
the one-to-one matching strategy of the DETR-like detec-
tion architecture. This causes the model to not only lose the
capability of inhibiting duplicate predictions, but also fail to
train with the bipartite matching loss [8].

To address these issues, we propose an information re-
finement module (IRM) and insert it between every two
temporal blocking decoders to enable the information fu-
sion between collaborative tracking queries while retaining
the capability of inhibiting duplicate predictions. IRM con-
tains an information removal branch and an information ad-
dition branch to assist queries to decide how to refine them-
selves based on temporal clues. Furthermore, we propose a
tracking object consistency loss (TOCLoss), which requires
each tracking query to collect discriminative features from
other historical queries for the correct tracking. The joint
use of these modules enables ColTrack to achieve more sta-
ble performance at low frame rates and better track difficult
targets at high frame rates.

As shown in Fig. 1, ColTrack further increases the pro-
cessing speed of the video by reducing the frame rate re-
quirement while ensuring higher accuracy. In contrast, ex-
isting methods [33, 34, 30] require higher frame rates to
achieve high accuracy, which results in more video frames
being processed and lower processing speed.

To summarize, our contributions are as follows:

• We propose a query-based end-to-end model ColTrack
that uses the collaborative tracking of multiple histor-
ical queries to achieve stable performance even at low
frame rates.

• We further devise a IRM module to allow each query
to better fuse information based on temporal cues. The

proposed TOCLoss guides queries to collect valuable
clues from other historical queries.

• ColTrack not only outperforms state-of-the-art meth-
ods on large-scale datasets under high frame rates but
also achieves higher and more stable performance un-
der low frame rates. This allows it to obtain a higher
equivalent FPS by reducing the frame rate require-
ment.

2. Related Works

Classical MOT Methods. Most classical MOT meth-
ods follow the tracking-by-detection paradigm by detect-
ing the object-bounding boxes first and then tracking ob-
jects by data association. For example, SORT [4] , Deep-
SORT [25], and ByteTrack [33] all follow this paradigm.
They use Kalman filters to model tracks and update the un-
derlying locations or features at each time step. JDE [24],
FairMOT [34], and Unicorn [27] further explore the MOT
system that jointly learns object detection and appearance
embedding with a shared model.

Transformer-Based MOT Methods. Recently, the
transformer has been applied in various computer vision
tasks and achieved great success. TransTrack [22] intro-
duces a query-key mechanism based on transformer ar-
chitecture. It uses object features from the last frame as
queries and tracks existing targets by associating bound-
ing box locations. Trackformer [16] and MOTR [30] fol-
low the DETR structure and both introduce autoregressive
track queries to the transformer decoder to achieve implicit
data association between frames. TransMOT [9] augments
the transformer with spatial-temporal graphs to enhance the
modeling capabilities of spatial relationships, which builds
a new tracking-by-attention paradigm to MOT.

MOT Methods with Historical Features. Temporal in-
formation is crucial for MOT as it is essentially a video
analysis task. MTrack [28] extracts discriminative repre-
sentation to track objects in occlusion scenarios. It obtains
the weighted feature representation of the trajectory accord-
ing to the cosine similarity of historical features. GTR [38]
matches current detection results with tracked objects by
calculating the similarity between current features and mul-
tiple historical features. The interaction between historical
features in these methods is limited, and the complementary
information between features is not fully exploited.

MeMOT [6] designs the instance feature memory banks
to generate a better track query for each object. However,
fusing information from multiple historical queries into one
query through only one module inevitably leads to informa-
tion loss. To avoid these problems, we introduce multiple
historical queries as collaborative tracking queries to jointly
participate in the tracking. We allow multiple interactions
of historical queries to fully integrate information.
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Figure 2. The overall workflow of ColTrack. The transformer encoder provides image feature maps and detection queries of emerging
objects. Multiple historical queries of each tracked object constitute its collaborative tracking queries for the joint tracking of it. The
combined queries are fed into multiple temporal blocking decoders to iteratively refine the predictions. An information refinement module
(IRM) is inserted between every two decoders for collaborative tracking queries belonging to the same target to integrate temporal clues
and refine themselves. The tracking object consistency loss guides the consistent tracking of historical queries to the corresponding target.

MOT at Low Frame Rates. The tracking in low-frame-
rate videos is a big challenge for the MOT task due to the
large difference between adjacent frames. APPTracker [36]
adds an appear predictor (APP) head into CenterTrack [37]
architecture to detect objects that newly appear in the cur-
rent frame. Since CenterTrack [37] cannot predict the cor-
rect displacements for objects having visibility flips across
frames, APP improves the performance of CenterTrack at
low frame rates. However, APPTracker focuses more on
the detection of new objects, which limits its performance
in low-frame-rate videos.

FraMOT [12] directly introduces frame rate cues to the
association module to handle the low-frame-rate case and
applies tracking patterns to reduce the gap between the
training phase and the inference one. However, the track-
ing patterns need to be updated periodically, which severely
slows down the training. Besides, the frame rate infor-
mation can only provide coarse clues for matching, which
makes it unable to fundamentally solve the problems caused
by a low frame rate.

Different from these methods, our method is specifically
devised to address the large appearance and location change
problem when tracking at a low frame rate. This enables our
method to achieve satisfactory performance in both high-
frame-rate and low-frame-rate videos.

3. Our Method

3.1. Overview

As shown in Fig. 2, the proposed collaborative tracking
learning model (ColTrack) for frame-rate-insensitive MOT
is built on the encoder-decoder Transformer [32] architec-
ture. Given a sequence of video frames {I1, I2, · · · , IT },
ColTrack tracks objects of interest in each frame and pre-
dicts their class and bounding boxes. For the video frame It,

the CNN model extracts its features, which are then fed to
the transformer encoder to provide feature maps and Ndet

candidate target anchors. Each anchor b̂tj is the predicted
bounding box of one object. These anchors together with
a set of learnable content features constitute Ndet detection
queries Dt = {dtj}j=1:Ndet

. Detection queries are used to
detect new objects appearing in the current frame.

Similar to the existing methods [16, 30, 6], ColTrack
uses the queries output from previous video frames as
the tracking queries to track the tracked targets. But un-
like these methods that only construct one tracking query
for each tracked target, ColTrack utilizes multiple histori-
cal features of each tracked target to construct collabora-
tive tracking queries for collaborative tracking in the cur-
rent frame. The tracking queries Xt and detection queries
Dt are combined and fed to subsequent multiple temporal
blocking decoders to iteratively refine features and bound-
ing boxes. An information refinement module (IRM) is in-
serted between two adjacent decoders to allow information
fusion of historical features belonging to the same target.

The output queries of each decoder are sent to the bipar-
tite matching loss and the tracking object consistency loss
to guide the training of the model (in Fig. 2, the losses of
the middle decoders are not drawn for brevity). The queries
of the matched targets output by the last decoder are sent to
subsequent frames as new historical queries. After sequen-
tially processing each frame, ColTrack obtains the tracking
results of the entire video.

3.2. Collaborative Tracking Queries

To enhance the model’s tracking at a low frame rate, we
propose a collaborative tracking method based on historical
features. For the ith tracked object, we store its historical
features Ft = {f t−t̂i }t̂=1:Nt

i
, N t

i ≤ Nmax. Nmax is the max
memory size and N t

i is the number of historical features.
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Figure 3. The architecture of the information refinement module
(IRM). It mainly includes two branches: the information removal
branch and the information addition branch. Each branch is mainly
composed of temporal clues collection layer and action module.

f t−t̂i ∈ Rd is the output content feature of the correspond-
ing target in t− t̂ frame. Considering that usually the latest
location prediction b̂t−1

i is closer to the location of the tar-

get in the current frame than {b̂t−t̂i }N
t
i

t̂=2
, we adopt b̂t−1

i as
the target anchor, which is combined with each historical
feature f t−t̂i to construct the tracking query xt−t̂i . The N t

i

queries Xt
i = {xt−t̂i }t̂=1:Nt

i
are considered as collabora-

tive tracking queries and jointly track the same target in the
current frame. They are initialized with different historical
features and the same anchor b̂t−1

i .

The benefits of the introduction of collaborative track-
ing queries are manifold. First, this approach provides
more abundant descriptions of objects to alleviate the im-
pact of unreliable features in low-frame-rate videos. Multi-
ple historical queries containing different temporal clues di-
rectly participate in the tracking of the target in the current
frame. During the iterative refinement of multiple decoders
and IRM modules, each historical query adaptively collects
valuable clues based on the tracking results of other histor-
ical queries to obtain a more accurate feature description
for better tracking in the next decoder. The direct partici-
pation of historical queries enables the contained valuable
information to be mined better.

Second, this approach is more conducive to training a
frame-rate-insensitive MOT model. ColTrack requires his-
torical features of the same target with different time spans
from the current frame to track the target correctly. This is
equivalent to training the model to track targets at different
frame rates. Older features usually have a larger appearance
difference from the current target. This requires ColTrack
to be able to extract more robust features, and the refine-
ment module IRM should be able to better integrate effec-
tive information from other historical features to deal with
the impact of frame rate.

3.3. Information Refinement Module

As demonstrated in [8], benefit from the self-attention
mechanism over the activations in decoders, the DETR-like
detection model [8, 39, 32] can discard the non-maximum
suppression (NMS) post-processing. This means that the
decoder suppresses the case where multiple queries detect
the same object to inhibit duplicate predictions. But in our
method, collaborative tracking queries of the same object
have to track the same object, which is against the design
of the decoder. To address this issue, we propose tempo-
ral blocking decoders, which avoid the interaction between
historical tracking queries of the same target by modifying
the attention mask of the multi-head self-attention module
in the decoder.

The temporal interaction blocking capability provided
by the temporal blocking decoder avoids mutual inhibition
between collaborative tracking queries of the same target,
but it also makes it impossible to exchange information be-
tween collaborative tracking queries to refine themselves.
To solve this problem, we devise a new information refine-
ment module (IRM) to allow the interaction between collab-
orative tracking queries and refine them. As shown in Fig. 3,
the multi-head self-attention layer is the main component of
the IRM. The input of IRM is the N t collaborative tracking
queries of all the tracked objects, where N t =

∑
iN

t
i . The

output is the refined features. We modify the attention mask
to avoid the interaction of features from different objects.

Since the main contribution of IRM is to allow collabora-
tive tracking queries belonging to the same target to interact
and update information, then for each query, it is necessary
to decide how to remove old information and what new in-
formation to add. Inspired by this, the IRM we devised
mainly consists of two branches: an information removal
branch and an information addition branch. Each branch
contains two parts, i.e. the temporal clues collection part
and the action part.

A single multi-head self-attention layer of the trans-
former is not able to compute any cross-correlations be-
tween the queries [8]. This is because a single self-attention
layer can only organize information once based on the sim-
ilarities of features. The model cannot see the global infor-
mation to decide how to output. Therefore, we add a multi-
head self-attention module as the temporal clues collection
part to collect global temporal clues for each tracking query.

For the information addition branch, the action part uses
the collected global temporal clues as queries and uses the
original content features as keys and values to generate the
content features Ftadd ∈ RNt×d that needs to be added.
Compared with the information addition branch, the infor-
mation removal branch has one more fully connected layer
followed by a sigmoid layer to map the embedding to a gat-
ing vector z ∈ RNt×dhead . dhead is the head number of
the multi-head self-attention module. We divide each con-
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tent feature into dhead groups, and use the gating vector z
to control the degree of deletion of each group of features.
Then, we formulate the refinement of content features as

Ftr = LN(2Ft × (1− z) + Ftadd) , (1)

where LN(·) is the layer normalization [1]. Ftr ∈ RNt×d

is the refined content features. Ft × (1 − z) denotes the
reserved features. We double it to increase its weight.
The refined content features Ftr are combined with the cor-
responding anchors to form the refined tracking queries,
which are sent to the next temporal blocking decoder. The
combination of the temporal blocking decoders and IRM
avoids the duplicate predictions problem and ensures ef-
fective information interaction between historical tracking
queries belonging to the same target.

Besides, we insert IRM between every two decoders,
which allows multiple interactions between historical
queries. After each decoder, each query completes a tar-
get detection in the current frame and obtains new fea-
tures and position estimation. During multiple interactions
through IRMs, collaborative tracking queries continuously
exchange varied new observations to obtain a more com-
prehensive description of the target. Collaborative tracking
based on multiple information interactions is very important
for stable tracking at a low frame rate.

3.4. Tracking Object Consistency Loss

In the existing transformer-based end-to-end MOT meth-
ods [30, 6, 16], the bipartite matching loss [8] is adopted to
train the network. In our method, for each tracked target,
due to the introduction of collaborative tracking queries,
predictions of multiple queries belonging to the same tar-
get are matched with the same ground truth. This prevents
us from directly using the one-to-one matching strategy to
calculate the bipartite matching loss. Therefore, we propose
a tracking object consistency loss (TOCLoss) to handle the
training of the collaborative tracking queries. Then, the bi-
partite matching loss Ltbip and the TOCLoss Lttoc make up
the overall training objective L, which is formulated as

L =
∑T

t=1
(Ltbip + Lttoc) . (2)

For collaborative tracking queries Xt
i = {xt−t̂i }t̂=1:Nt

i

of one target, we use {ŷt−t̂i }t̂=1:Nt
i

to denote their predic-

tions in the current frame. Each prediction ŷt−t̂i contains the
predicted class probabilities p̂t−t̂i and box prediction b̂t−t̂i .
We use ψt to denote the identity set of all tracked objects.

As shown in Fig. 2, the tracking predictions {ŷt−1
i }i∈ψt

of the latest tracking queries of all tracks are combined with
the predictions of the detection queries to participate in the
bipartite matching. The mapping πt between predictions

and ground truth objects is determined either via track iden-
tities or costs based on object class and bounding box sim-
ilarity [16]. Then, we calculate the bipartite matching loss
for them by mapping πt, which is denoted as Ltbip. Since

the additional predictions {ŷt−t̂i }t̂=2:Nt
i

of each track are
separated from Ltbip, Ltbip satisfies the one-to-one matching
requirement.

As for the remaining predictions {ŷt−t̂i }t̂=2:Nt
i

of the ith

track, since they and ŷt−1
i have the same identity, they can

share the mapping πt between them and the ground truth
objects. Then, we define the loss of each prediction as

Lt
i(ŷ

t−t̂
i , πt)=

{
− log p̂t−t̂

i (πt(i))+Lb(b̂
t−t̂
i , πt) if i ∈ πt ,

− log p̂t−t̂
i (0) otherwise ,

(3)
where p̂t−t̂i (πt(i)) is the predicted probability of the as-

signed class obtained from mapping πt. p̂t−t̂i (0) is prob-
ability of background class. Lb(b̂

t−t̂
i , πt) is the bounding

box loss [32]. Then, the tracking object consistency loss
Lttoc of the remaining historical tracking queries is formu-
lated as

Lttoc =
∑
i∈ψt

∑Nt
i

t̂=2
Lti(ŷ

t−t̂
i , πt)∑T

t=1N
t
his

, (4)

where N t
his is the number of queries that are assigned

ground truth objects by mapping πt(i) among the remaining
historical tracking queries, which is formulated as

N t
his =

∑
i∈πt

|{ŷt−t̂i }t̂=2:Nt
i
| . (5)

In the inference stage, for a track, given the predictions
of all collaborative tracking queries, only the output ŷt−1

i

of query xt−1
i is adopted as the predicted location and score

of the target in the current frame. The remaining historical
queries provide temporal cues to assist tracking and their
final output is ignored. We consider the object to appear
when the score is greater than a threshold σ, otherwise, the
object is lost. The queries of lost targets are kept for up to
Nkeep frames.

4. Experiment
4.1. Experimental Setup

Datasets. We evaluate our method on three popu-
lar multi-object tracking datasets, including MOT17 [11],
Dancetrack [21] and BDD100K [29]. We use the private
detection protocol for MOT17. Following [33, 34, 30], the
CrowdHuman dataset [20] is added to build the joint dataset
when training on the MOT17 and Dancetrack. MOT17 does
not provide a validation set. In the ablation studies part, we
use the first half of each video in the training set for training
and the last half for validation following [33, 34, 30].
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Figure 4. (a) Performance comparison of ColTrack with existing methods on videos at different frame rates on the validation set of
MOT17. n represents that the videos are downsampled at a sampling interval of n. (b) Performance of ColTrack under different Nmax

in low-frame-rate videos (n = 6). Nmax is the maximum number of collaborative historical queries of each track. (c) Performances of
ColTrack with different numbers of IRMs on the validation set of MOT17 under low frame rate (n = 6).

Evaluation Protocols. We follow the standard evalua-
tion protocols including CLEAR metrics (MOTA, IDs) [3],
Identity F1 Score (IDF1) [19], and HOTA [15]. MOTA fo-
cuses more on the detection performance, while IDF1 fo-
cuses more on the association performance. HOTA [15]
balances the impact of detection and data association well.
Therefore, we take HOTA as the main metric.

Implementation Details. ColTrack extends the DETR-
like deformable detection model DINO [32] and takes
ResNet50 [13] as the CNN feature extractor. The tracking-
by-detection version of the baseline method is represented
as Baseline+Bytetrack, which directly trains a detection
model and uses Bytetrack [33] to associate objects. The
model is trained for 40 epochs. The end-to-end (E2E) ver-
sion of the baseline method is denoted as Baseline+E2E,
which directly takes the tracking results of the last frame as
the tracking queries [16, 30] in the current frame. To reduce
the GPU memory usage and increase the video clip length
during training, we use the detection model trained by Base-
line+Bytetrack to initialize the CNN and encoders of Base-
line+E2E and ColTrack, whose parameters are frozen. The
decoders and 300 learnable query embeddings are trained
from scratch. The model is trained 60 epochs on MOT17,
40 epochs on Dancetrack and 20 epochs on BDD100K.

Following [33], the input frames are resized to 1440 ×
800. The data augmentation includes multi-scale training,
Mosaic [5] and Mixup [31]. All the models are trained by
AdamW algorithm with an initial learning rate of 1× 10−4

and weight decay of 1 × 10−4. The learning rate is scaled
by ×0.1 during the last 10 epochs. The batch size is 8 video
clips and each has 4 frames. Ndet = 300, dhead = 8, σ =
0.6, Nkeep = 5, Nmax = 3. Following [33], we measure
FPS with FP16-precision and batch size of 1 on a single
V100 GPU.

To obtain videos under different frame rates, follow-
ing [36], we sample frames at a fixed interval n from the

ColTrack
YOLOX+
Bytetrack

FairMOT MOTR

FPS∗ 10.8 27.7 25.6 8.3
FPSeq 32.4 27.7 25.6 16.6
HOTA 67.7 67.5 56.9 62.9

Table 1. FPS and the highest HOTA score comparison of differ-
ent methods on the validation set of MOT17. FPS∗ denotes the
FPS we obtained by reproducing the methods on the same ma-
chine. FPSeq is the equivalent FPS, which is obtained by multi-
plying FPS∗ by the downsampling interval n when each method
obtains the highest HOTA score. The corresponding maximum
HOTA score is also listed.

original dataset to obtain low-frame-rate videos. n varies
from 1 to 30. The larger n, the lower the frame rate, and the
larger difference between adjacent frames.

4.2. Effect of Frame Rate on MOT

Performance at low frame rates. In Fig. 4(a), we
compare the performance of ColTrack with existing meth-
ods [33, 34, 30] at different frame rates on MOT17 dataset.

MOTR [30] has stable HOTA when n is less than 6. The
HOTA of ColTrack is stable when n is varied from 1 to
10. This is benefited from the deformable attention-based
end-to-end architecture, which relies on content features to
track the target. This approach has more advantageous in a
low-frame-rate situation that has large displacements.

Compared to MOTR, the HOTA performance and frame
rate robustness of ColTrack are significantly better, which
benefits from the introduction of collaborative tracking
queries and the exquisite design of each module. They pro-
vide more temporal cues for the model to obtain more com-
prehensive and accurate descriptions of objects.

For YOLOX+Bytetrack [33] and ReID-based Fair-
MOT [34], the ablation models use the officially provided
weight. Both of them show a rapid performance drop when
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Method MOT17 Dancetrack BDD100K

n=1 n=10 n=1 n=6 n=10 n=1 n=6 n=10
IDF1

APPTracker 68.7 70.3 - - - - - -
BL+Bytetrack 77.5 64.4 47.1 31.6 27.3 41.3 22.6 20.3
BL+E2E 77.6 74.8 50.6 55.5 49.9 51.0 50.7 47.4
ColTrack 78.1 78.6 54.6 61.6 51.3 54.0 52.7 51.4

MOTA

APPTracker 68.7 65.5 - - - - - -
BL+Bytetrack 75.3 61.0 89.4 72.2 62.3 29.4 14.6 13.2
BL+E2E 73.8 64.9 88.9 86.3 79.7 36.1 34.7 30.6
ColTrack 76.5 68.7 86.6 86.5 80.7 40.0 37.0 35.7

HOTA

FairMOT 56.9 51.1 37.6 26.3 23.4 - - -
Bytetrack 67.5 57.6 46.1 32.3 29.4 - - -
OC-SORT 66.1 56.1 52.2 35.9 30.3 - - -
MOTR 62.1 60.0 51.7 52.2 47.3 - - -
BL+Bytetrack 65.2 55.9 45.8 30.8 26.8 33.7 22.1 21.3
BL+E2E 64.9 62.5 55.6 58.4 52.8 42.3 43.0 41.0
ColTrack 65.5 65.8 57.9 61.9 53.7 45.0 45.3 44.6

Table 2. Performance comparison of different methods on videos
at different frame rates on the validation set of three datasets. BL
denotes Baseline. APPTracker [36] is an existing method devised
for MOT under low frame rates.

the frame rate is lowered. This is because these methods
all rely on the Kalman filter and IOU matching, which are
unreliable for fast-moving objects.

Equivalent FPS. The HOTA accuracy of ColTrack when
n = 3 is higher than that of YOLOX+Bytetrack when
n = 1. Therefore, as shown in Table. 1, although ColTrack
doesn’t have the highest FPS, it achieves a higher equivalent
FPS by reducing the frame rate requirement. This allows
it to process a video in a shorter time while ensuring high
accuracy. Baseline+E2E has an 11.3 FPS running speed.
Comparing the FPS of Baseline+E2E and ColTrack, it can
be seen that the calculation overhead caused by the intro-
duction of historical queries and several IRM modules is
small. This is because these only slightly affect the calcu-
lation of the decoder part, and the calculations of CNN and
encoders are not affected.

Verification under various scenarios. Further, in Ta-
ble. 2, we compare the performances of different methods
in videos at varied frame rates on three datasets. Compared
with APPTracker[36] devised for MOT in low-frame-rate
videos, ColTrack achieves higher performance on both low-
frame-rate videos as well as high-frame-rate videos. APP-
Tracker pays more attention to the detection and association
of emerging targets and does not fully solve the problems in
the follow-up tracking of fast-moving targets.

Compared with Baseline+Bytetrack and Baseline+E2E,
ColTrack has a significant performance improvement. The
erratic movements and similar appearance of the dancers
in Dancetrack make tracking difficult for the classical asso-
ciation method ByteTrack [33] based on Kalman filtering.
Meanwhile, the large driving dataset BDD100K with mul-

Method MOT17 Dancetrack

HOTA IDF1 MOTA HOTA IDF1 MOTA
BL+Bytetrack 59.3 69.1 66.5 30.8 31.6 72.2
BE (BL+E2E) 64.5 78.1 67.3 58.4 55.5 86.3
BE+CTQ 65.1 78.5 70.4 59.3 57.1 86.1
BE+CTQ+IRM (rem) 66.1 79.2 71.7 60.0 57.3 86.0
BE+CTQ+IRM (add) 66.6 79.9 71.1 60.6 58.6 86.6
BE+CTQ+IRM 66.7 80.0 72.2 61.0 58.9 87.6
BE+CTQ+IRM+TOC 67.0 80.6 74.1 61.9 61.6 86.5

Table 3. Ablation study of the components in ColTrack on the vali-
dation set of MOT17 and DanceTrack with downsampling interval
n = 6. BL means Baseline. BE means BL+E2E. CTQ denotes
collaborative tracking queries. IRM is the information refinement
module. IRM (add) means only the addition branch in IRM is kept.
IRM (rem) means only the removal branch is kept. TOC denotes
the tracking object consistency loss (TOCLoss).

tiple categories contains more fast-moving objects. This
makes object tracking very challenging in its low-frame-
rate videos. Benefiting from the introduction of collabo-
rative tracking queries, ColTrack still has satisfactory per-
formance when n is varied from 1 to 10 on BDD100K.

4.3. Ablation Study

In Table. 3, we analyze the impact of each module on
the model performance under low frame rates (n = 6). In
BL+E2E+CTQ, although collaborative tracking queries are
used, there is no interaction between historical queries of
the same track. They can only assist the model training
by interacting with queries of other tracks as negative sam-
ples through temporal blocking decoders. Therefore, the
improvement BL+E2E+CTQ brings is very small.

When IRM is adopted, the performance of the model is
significantly improved. This is because IRM enables col-
laborative tracking queries to interact with each other and
refine themselves with temporal clues. We also analyze
the impact of the information removal branch and the infor-
mation addition branch in IRM on the model performance.
Experimental results show that having both information re-
moval and information addition capabilities helps the model
refine features better.

After adding TOCLoss, the performance of the model is
further improved. TOCLoss forces collaborative tracking
queries to refine themselves with IRM to better track corre-
sponding targets. Then, they provide better temporal clues
during iterative refinement in the following decoders.

In Fig. 4(b) we analyze the effect of the max number
of collaborative tracking queries Nmax on the tracking per-
formance of ColTrack. The results indicate that ColTrack
achieves best performances when Nmax = 3. A too large
Nmax results in too many historical features being included,
which introduces too much noise.

Analysis of the location and number of IRMs. We
also compare the performance of ColTrack with the differ-
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Method Source HOTA IDF1 MOTA IDs
TraDes [26] CVPR’21 52.7 63.9 69.1 3555
FairMOT [34] IJCV’21 59.3 72.3 73.7 3303
MTrack [28] CVPR’22 - 73.5 72.1 2028
Unicorn [27] ECCV’22 61.7 75.5 77.2 5379
YOLOX+Bytetrack [33] ECCV’22 63.1 77.3 80.3 2196
OC-SORT [7] CVPR’23 63.2 77.5 78.0 1950
P3AFormer (Swin) [35] ECCV’22 - 78.1 81.2 1893

E2E methods
CenterTrack [37] ECCV’20 52.2 64.7 67.8 3039
Chained-tracker [18] ECCV’20 49.0 57.4 66.6 5529
TransTrack [22] arXiv’20 - 63.9 74.5 3663
TrackFormer [16] CVPR’22 - 68.0 74.1 2829
MeMOT [6] CVPR’22 56.9 69.0 72.5 2724
MOTR [30] ECCV’22 57.8 68.6 73.4 2439
ColTrack - 61.0 73.9 78.8 1881

Table 4. Performance comparison between ColTrack and the
state-of-the-art methods under the “private detector” protocol on
MOT17 test set.

Method Source HOTA IDF1 MOTA AssA
FairMOT [34] IJCV’21 39.7 40.8 82.2 23.8
TransTrack [22] arXiv’20 45.5 45.2 88.4 27.5
CenterTrack [37] ECCV’20 41.8 35.7 86.8 22.6
TraDes [26] CVPR’21 43.3 41.2 86.2 25.4
QDTrack [17] CVPR’21 54.2 50.4 87.7 36.8
YOLOX+Bytetrack [33] ECCV’22 47.7 53.9 89.6 32.1
MOTR [30] ECCV’22 54.2 51.5 79.7 40.2
OC-SORT [7] CVPR’23 55.1 54.2 89.4 38.0
MOTRv2 [23] CVPR’23 69.9 71.7 91.9 59.0
MOTRv2 [23] (+val+ens) CVPR’23 73.4 76.0 92.1 64.4
ColTrack - 72.6 74.0 92.1 62.3
ColTrack (+val) - 75.3 77.3 92.2 66.9

Table 5. Evaluation results on the test set of Dancetrack. +val
means adding the validation set for training. +ens denotes test
ensemble.

ent number of IRM modules in Fig. 4(c). 6 decoders can
add up to 6 IRM modules. We gradually remove the cor-
responding IRM in the shallow decoder layers. The exper-
imental results indicate that removing the IRM before the
first decoder layer and adding an IRM before each of the fol-
lowing decoder layers achieves the best performance. This
is because queries have not interacted with the features of
the current frame before passing through the first decoding
layer, which makes tracking queries unable to adjust the fu-
sion of temporal information according to the current frame.
After the first decoder, more IRM modules allow queries to
have more opportunities to communicate new observations
with each other to gather more valuable information.

4.4. Comparison to the State-of-the-art Methods

In Table. 4, Table. 5 and Table. 6, we compare ColTrack
with the state-of-the-art methods on three datasets. MOT17
is a small dataset containing only 7 training videos and 7
testing videos. Although such a small amount of data is
difficult to train an end-to-end model to learn temporal rela-
tionship modeling, ColTrack still outperforms existing end-

Method Source Split mMOTA mIDF1 IDs
Yu et al. [29] CVPR’20 val 25.9 44.5 8315
DeepBlueAI [10] CVPRC’20 val 26.9 - 13366
QDTrack [17] CVPR’21 val 36.6 50.8 6262
MOTR [30] ECCV’22 val 32.0 43.5 3493
Unicorn(ResNet) [27] ECCV’22 val 35.1 - -
YOLOX+Bytetrack [33] ECCV’22 val 39.4 48.9 27902
ColTrack - val 40.0 54.0 3741
Yu et al. [29] CVPR’20 test 26.3 44.7 14674
DeepBlueAI [10] CVPRC’20 test 31.6 38.7 25186
QDTrack [17] CVPR’21 test 35.5 52.3 10790
ColTrack - test 40.4 56.0 6249

Table 6. Comparison of the state-of-the-art methods on BDD100K.

to-end methods and achieves comparable performance to
existing tracking-by-detection methods. Dancetrack con-
taining 100 videos is a large challenging dataset due to
the irregular movements, similar clothing, and severe oc-
clusions of the dancers. ColTrack outperforms all methods
on Dancetrack. This is benefited by our introduction of col-
laborative tracking queries, which provide more abundant
descriptions of targets and makes ColTrack less susceptible
to similar appearances and occlusions. BDD100K contain-
ing 2000 driving videos is also a challenging dataset due to
complex scenes and more fast-moving objects. ColTrack
also achieves the best performance on BDD100K, espe-
cially for the IDF1 metric that focuses more on association
performance.

These sufficient experimental results show that on more
challenging datasets, our method not only achieves higher
performance than existing methods under high frame rates
but also better tracks objects in low-frame-rate videos. This
fully proves that ColTrack is a frame-rate-insensitive model.
It achieves faster processing speed while ensuring high per-
formance at different frame rates.

5. Conclusion
In this paper, we propose a collaborative tracking learn-

ing method (ColTrack) to address the challenges introduced
by low frame rates in multi-object tracking (MOT). By in-
troducing multiple historical queries to track the same tar-
get, rich temporal clues are used to obtain more compre-
hensive and accurate descriptions of the targets. We care-
fully devise the temporal blocking decoders and the infor-
mation refinement module (IRM) such that the model al-
lows collaborative tracking queries to better integrate the
information while retaining the ability to inhibit duplicate
predictions. Meanwhile, the proposed tracking object con-
sistency loss (TOCLoss) forces each historical query to inte-
grate valuable clues from other queries for the correct track-
ing. Thanks to the collaboration of these modules, ColTrack
outperforms existing methods and achieves faster process-
ing speeds on more challenging datasets Dancetrack and
BDD100K at both high and low frame rates.
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