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Abstract

Deep neural networks are vulnerable to universal adver-
sarial perturbation (UAP), an instance-agnostic perturba-
tion capable of fooling the target model for most samples.
Compared to instance-specific adversarial examples, UAP
is more challenging as it needs to generalize across various
samples and models. In this paper, we examine the serious
dilemma of UAP generation methods from a generalization
perspective – the gradient vanishing problem using small-
batch stochastic gradient optimization and the local optima
problem using large-batch optimization. To address these
problems, we propose a simple and effective method called
Stochastic Gradient Aggregation (SGA), which alleviates
the gradient vanishing and escapes from poor local optima
at the same time. Specifically, SGA employs the small-batch
training to perform multiple iterations of inner pre-search.
Then, all the inner gradients are aggregated as a one-step
gradient estimation to enhance the gradient stability and
reduce quantization errors. Extensive experiments on the
standard ImageNet dataset demonstrate that our method
significantly enhances the generalization ability of UAP and
outperforms other state-of-the-art methods. The code is
available at https://github.com/liuxuannan/
Stochastic-Gradient-Aggregation.

1. Introduction
Deep neural networks (DNNs) have achieved significant

success in computer vision [9, 35, 34, 8, 11, 12], but are
widely known to be vulnerable to adversarial examples [36,
23, 26, 7, 15, 19, 39]. A more critical property of adver-
sarial examples is that they have shown good transferability
between different models [18, 25, 5, 6, 17, 40, 50, 38, 29].
Unlike the instance-specific adversarial examples, a recent
work [22] reveals the existence of universal adversarial per-
turbation (UAP) which can deceive the majority of samples.

Compared to the instance-specific adversarial examples,
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Figure 1. A universal adversarial perturbation is applied to images
belonging to different categories to get visually similar adversarial
examples with high attack success rates in the white-box scenario.
Left images: the original natural images. Central image: the
UAP by applying SGA on the VGG16 model (rescaled to [0,255]).
Right images: the adversarial images.

the generation of UAP is more challenging. Since most
UAPs are generated with limited training samples and are
expected to be applied to various unknown samples [14, 28,
33, 16] and even a variety of tasks [41, 4, 30, 1, 27, 51], the
diversity of samples and models has created dual demands
for higher generalization ability of UAPs. Therefore, we
aim to investigate the limitation of the current UAPs and
improve the generalization ability.

Despite many works on UAP, there are two main issues
in the generation of UAP. (1) Gradient instability. Due to
the inherent difference of samples and model parameters,
the optimization paths for adversarial perturbations vary
widely, as shown in Fig 2 (a). Such instability may hin-
der the optimization of adversarial attacks in the correct di-
rection [38, 42, 37]. (2) Quantization error. The adversar-
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Figure 2. Illustration of the two issues, i.e., gradient instability and
quantization error, under previous UAP attacks and our attacks,
respectively. Where g̃m and gAggs denote the pre-search gradi-
ent and the aggregated gradient respectively. In (b), we use the
subscript i to distinguish between different gAggs

i in the outer iter-
ation. (a) and (c): Previous works sequentially quantize the unsta-
ble gradients to accumulate the adversarial perturbations, resulting
in severe gradient deviation. (b) and (d): Our work accumulates
the pre-search gradients as a one-step gradient update with low
variance before quantization to reduce the gradient deviation.

ial attack methods generally exploit the sign operations for
quickly crafting adversarial perturbations according to the
linearity of models. Frequent use of sign will accumulate a
large amount of quantization errors [2, 48] in Fig 2 (c). Fur-
thermore, when quantizing gradients with high fluctuations
using the sign operations, the large values of the gradients
in the forward optimization process can be easily eliminated
by the negative small gradient values in the backward pro-
cess, leading to the gradient vanishing phenomenon.

The generation of UAP can be described as a non-convex
optimization problem and adopt stochastic gradient descent
(SGD) with mini-batch training. Therefore, an intuitive idea
is to use large-batch methods to stabilize gradient update di-
rections, thereby suppressing gradient vanishing. However,
when optimizing via SGD, small-batch methods have been
shown to converge more easily to flat local minima than
large-batch methods, thus effectively reducing the general-
ization gap [13]. Inevitably, the generalization of UAP faces
the grim dilemma of choosing small-batch training with the
gradient vanishing problem or choosing large-batch training
with the local optima problem.

In this paper, we propose a novel method called stochas-
tic gradient aggregation (SGA), to address the gradient van-
ishing and the local optima problems to enhance the gen-
eralization of UAP. Specifically, our method consists of the
inner-outer iterations. At each outer iteration for the gra-
dient estimating, we randomly select multiple small-batch

samples to perform the inner iterations for pre-search. Then
we aggregate all inner gradients as a one-step iterative gra-
dient for updating UAP, as illustrated in Fig 2 (b) and (d).
The key idea is to cope with gradient vanishing by enhanc-
ing the gradient stability and decreasing the use of quantiza-
tion operations while introducing the noisy gradients to es-
cape from sharp local optima. To the best of our knowledge,
this is the first work to investigate the limitation of existing
universal attacks through the perspective of generalization.
The main contributions of our paper are as follows:

• We investigate two issues behind the low generaliza-
tion ability of existing UAP works, i.e., gradient insta-
bility and quantization error, and further identify the
gradient vanishing phenomenon when the iterative gra-
dients have high fluctuations.

• We propose stochasitc gradient aggregation (SGA) that
stabilizes the update directions and reduces quantiza-
tion errors to alleviate the gradient vanishing in the
small-batch optimization.

• Our method can be easily integrated with transferabil-
ity attack methods. Extensive experiments demon-
strate the superior generalization of UAP generated
by the proposed SGA compared to the state-of-the-art
methods under various attack settings.

2. Related work
Instance-specific attack methods. Szegedy et al. [36]

first found the adversarial example and proposed an attack
method based on box constraints, named as L-BFGS. By ex-
ploiting the decision boundary, Moosavi-Dezfooli et al. [23]
proposed to generate the minimal perturbation at each step,
called DeepFool. Moreover, Papernot et al. [26] constructed
adversarial saliency maps to search for critical input regions
for generating adversarial examples. To improve efficiency,
Goodfellow et al. [7] performed a one-step attack updating
along the sign direction of the gradient, widely known as the
fast gradient sign method (FGSM). Kurakin et al. [15] fur-
ther extended it to an iterative version of the FGSM, called
I-FGSM. In addition, projected gradient descent (PGD) [19]
is another gradient-based iterative attack and has demon-
strated excellent attack performance. To ensure the natu-
ralness of adversarial examples, Xiao et al. [39] proposed
to exploit Generative Adversarial Networks to directly syn-
thesize tiny perturbations.

Universal attack methods. Previous works on UAP
mainly focus on the cross-sample university. Moosavi-
Dezfooli et al. [22] first revealed the existence of UAPs
and generated them by iteratively aggregating perturbation
vectors obtained by the DeepFool method. SV-UAP [14]
exploited a few feature maps to calculate the singular vec-
tors of the Jacobian matrices for crafting UAP. Poursaeed et
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al. [28] and Mopuri et al. [24] both proposed to use gener-
ative models to synthesize UAP, named GAP and NAG re-
spectively. To make UAP only misclassify the target class,
Zhang et al. [43] proposed a class discriminative UAP (CD-
UAP). Other works of Zhang [44, 45] utilized dominant fea-
tures and the cosine similarity loss to generate UAP, denoted
as DF-UAP and Cos-UAP respectively. Besides, Shafahi et
al. [33], Matachana et al. [21] and Co et al. [3] all intro-
duced stochastic gradient method for efficiently generating
UAP by using PGD with mini-batch training. Recently,
Li et al. [16] proposed to integrate instance-specific and
universal attacks from a feature perspective to generate a
more powerful UAP, called AT-UAP. However, unlike re-
search [13, 10, 20, 47, 46] on the generalization of model
training, there are few works on the generalization of UAP.

Gradient optimization. Various of gradient optimiza-
tion methods are proposed to improve the model transfer-
ability of adversarial examples. Dong et al. [5] proposed
to add the momentum item to stabilize update directions
and escape from poor local maxima. Furthermore, Lin et
al. [17] introduced Nesterov accelerated gradient and scale-
invariant property. Wang [38] proposed to shrink the gradi-
ent variance at each step to converge to better local optima.
To encourage adversarial examples to converge flat local
minimums, Qin et al. [29] proposed a new attack method
by additionally injecting worst-case perturbations at each
step to avoid overfitting to the surrogate model.

3. Methodology
3.1. Preliminaries of UAP

Problem formulation. The objective of universal ad-
versarial attack is to craft a single perturbation δ to fool the
target model f for most sample xi ∈ X . In this way, we
can consider the following optimization problem,

argmax
δ

1

n

n∑
i=1

L (f (xi + δ) , yi),

s.t. ∥δ∥∞ ⩽ ϵ,

(1)

where f (x) represents the output of the model f with the
input x, yi is the corresponding label of the input xi calcu-
lated by yi = argmax f (xi). L (·) denotes the adversarial
loss used for generating adversarial perturbations. ϵ limits
the maximum deviation of UAP.

SPGD. Among existing adversarial attack methods,
PGD [19, 32] is considered to be a strong and efficient
method. To accelerate the generation of UAP, Shafihi et
al. [33] first combined the stochastic gradient method with
the PGD attack method to solve the above optimization
problem, termed SPGD by:

g̃k =
1

|Bk|
∑

xi∈Bk

∇δL (xi + δk), (2)

δk+1 = δk + α · sign (g̃k) , (3)

where Bk is a batch of samples in the data set, α is a step
size and sign (·) denotes the sign function.

Loss function. Two widely used adversarial loss func-
tions are the cross-entropy (CE) loss [40] and the logit
loss [49], which will be both implemented in later exper-
iments. To prevent the infinite cross-entropy loss value of a
single sample from dominating the optimization of the en-
tire objective function, we use the clipped version [33] of
cross-entropy loss L̃CE = min {LCE, β}, where β repre-
sents the threshold for cross-entropy loss.

3.2. Stochastic gradient aggregation

3.2.1 Gradient vanishing

In UAP attacks, gradient instability is a normal issue due
to the sample diversity and sign is a regular operation for
quickly crafting adversarial examples. However, we dis-
cover that the sign operations will lead to huge optimization
errors when the iterative gradients are strongly unstable. To
illustrate this phenomenon, consider a simple toy example.
Let g̃m and g̃m+1 be gradients at iteration m and m+ 1:

g̃m = [· · · ,−0.01, 0.10, 0.05, 0.70, · · · ]T , (4)

g̃m+1 = [· · · , 1.00, 0.02, 0.30,−0.01, · · · ]T . (5)

When using sign on the gradients for accumulating pertur-
bation δ, large value for the right region of g̃m is eliminated
by the small negative value of g̃m+1. Similarly in the left
region, the sign operations lead to a significant deviation in
the current optimization direction:

sign (g̃m) = [· · · ,−1, 1, 1, 1, · · · ]T , (6)

sign (g̃m+1) = [· · · , 1, 1, 1,−1, · · · ]T , (7)

δ = α · sign (g̃m) + α · sign (g̃m+1)

= α · [· · · , 0, 2, 2, 0, · · · ]T .
(8)

Here we refer to this phenomenon as gradient vanishing,
which is caused by the combination of gradient instability
and sign operations.

3.2.2 Large-batch or small-batch

Since the optimization problem for the generation of UAP
can be solved by stochastic gradient algorithm with mini-
batch training, it is easy to find using large-batch methods
can effectively cope with gradient vanishing. However, in
the deep learning tasks, recent works [13, 10, 20] verify that
the large-batch methods tend to be attracted to sharp min-
ima leading to the large generalization gap. Similarly, when
UAP locates at a sharp local extremum in large-batch opti-
mization, the difference in samples and models will result in
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Figure 3. Analysis of two issues, i.e., gradient instability and quantization error under different batch sizes in stochastic gradient universal
attacks. (a) represents the gradient cosine similarity between iterations; (b) represents the number of times the sign operator is used for
the updates of UAP; (c) represents the average fooling ratio of five models. The gradient cosine similarity is used to describe the gradient
stability and is obtained by calculating the cosine value between the forward gradient and the backward gradient, with a larger cosine
similarity indicating a more stable gradient update direction.

a significant change in attack loss, making the UAP unable
to generalize to unknown samples and models. The small-
batch optimization has the advantage of escaping from poor
local optima by exploiting the inherent noise in the gradient
estimation. However, as shown in Fig 2 (a) and (c), we em-
pirically find that, it will further deteriorate two issues, i.e.,
gradient instability and quantization error, which will cause
severe gradient vanishing, as illustrated in Section 3.2.1.

To further illustrate the impact of gradient instability and
quantization error, we explore the relationship between two
issues and attack performance under different batch sizes.
First, in Fig 3 (a), the stability between the gradients ob-
tained by small-batch training in the regular UAP attacks
is poor. The large-batch methods can effectively stable the
gradient update directions. Second, Fig 3 (b) illustrates that
the sign operators are much more frequently used for the
UAP iteration in small-batch methods than in large-batch
methods, indicating that it is easier to accumulate larger
quantization errors. Furthermore, Fig 3 (c) suggests that by
enhancing gradient stability and reducing the usage of sign,
large-batch methods can mitigate the gradient vanishing to
improve the attack performance, but optimization with over
large batch size also inhibits the generalization of UAP. In
this way, both the gradient vanishing in small-batch training
and the optimization problem in large-batch training will
make the generalization of UAP in trouble.

3.2.3 Attack algorithms

As discussed above, our target is to enhance gradient sta-
bility and reduce quantization errors when optimizing with
small-batch methods.

In this paper, instead of using the average gradient of a
batch sample in conventional UAP attacks, a simple strat-
egy is to aggregate multi-step noisy forward gradients for a
one-step quantization update at each iteration. Specifically,
we first randomly select multiple small-batch samples xSB

m

Algorithm 1: The SGA attack algorithm
input : A surrogate model f , loss function L
input : The training image set X , large-batch xLB,

small-batch xSB

input : Maximum perturbation magnitude ϵ,
number of epochs T , step size α

output: A universal adversarial perturbation δ
1 Initialize δ = 0;
2 for t = 0 to T − 1 do
3 for xLB ∈X do
4 δinner0 = δ;
5 gAggs = 0;
6 for m = 0 to M − 1 do
7 Random select xSB

m ∈ xLB;
8 g̃m = 1

|xSB|∇δL
(
xSB
m + δinnerm

)
;

9 δinnerm+1 = Clipϵδ
(
δinnerm + α · sign (g̃m)

)
;

10 gAggs ← gAggs + g̃m;
11 end
12 δ ← Clipϵδ

(
δ + α · sign

(
gAggs

))
;

13 end
14 end
15 return δ.

from a large-batch set xLB to perform pre-search by updat-
ing the inner adversarial perturbation δinnerm :

g̃m =
1

|xSB|
∇δL

(
xSB
m + δinnerm

)
, (9)

δinnerm+1 = Clipϵδ
(
δinnerm + α · sign (g̃m)

)
. (10)

Then, we accumulate the stochastic gradients g̃m for updat-
ing the aggregated gradient gAggs:

gAggs ← gAggs + g̃m. (11)
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After aggregating all the inner gradients into a one-step gra-
dient of the outer iteration, we update the outer adversarial
perturbation δ using the aggregated gradient:

δ ← Clipϵδ
(
δ + α · sign

(
gAggs

))
, (12)

where α is a step size and Clip(·) operation constrains the
perturbation amplitude under the l∞ norm.

By means of accumulating more important gradient in-
formation, the iterative gradient estimate items are more
accurate with a small variance while greatly decreasing
quantization operations, thus suppressing gradient vanish-
ing. Moreover, the existence of noise gradients can help
escape from poor local optima. The algorithm of stochastic
gradient aggregation is summarized in the Algorithm 1.

In short, our method differs from SPGD in that SGA has
inner iterations, where SGA obtains multiple noisy gradi-
ents through M updates. Model transferability methods in
instance-specific adversarial attacks (e.g. Momentum [5],
Nesterov accelerated gradient [17], etc.) can be easily in-
tegrated with SGA in the inner iteration.

Method AlexNet GoogleNet VGG16 VGG19 ResNet152 Average

UAP [22] 93.30 78.90 78.30 77.80 84.00 82.46
SV-UAP [14] - - 52.00 60.00 - 56.00

NAG [24] 96.44 90.37 77.57 83.78 87.24 87.08
GAP [28] - 82.70 83.70 80.10 - 82.17

DF-UAP [44] 96.17 88.94 94.30 94.98 90.08 92.89
Cos-UAP [45] 96.50 90.50 97.40 96.40 90.20 94.20
AT-UAP [16] 97.01 90.82 97.51 97.56 91.52 94.88

Ours 97.43 92.12 98.36 97.69 94.04 95.93

Table 1. The fooling ratio (%) in the white-box setting by vari-
ous UAP attack methods. The UAPs are crafted on five normally
trained models, i.e., AlexNet, GoogleNet, VGG16, VGG19, and
ResNet152.

4. Experiment
4.1. Experimental setup

Dataset. Following [22], we randomly choose 10 im-
ages from each category in the ImageNet training set [31], a
total of 10,000 images, for the generation of UAP. Then we
evaluate our method on the ImageNet validation set which
contains 50,000 images.

Models. We use five normally trained models including
AlexNet [9], Googlenet [35], VGG-16 [34], VGG-19 [34],
and ResNet152 [8].

Evaluation metrics. To effectively evaluate the at-
tack performance of our method, we report the fooling ra-
tio metric which is most widely implemented in the UAP
tasks [22, 28, 24, 44, 45, 16]. The fooling ratio is ob-
tained by calculating the proportion of samples with labels
changes when applying UAP.

Baselines. The proposed method is compared with
the following UAP methods in the white-box attack sce-

nario: UAP [22], SV-UAP [14], NAG [24], GAP [28],
DF-UAP [44], Cos-UAP [45] and AT-UAP [16]. In the
black-box attack setting, we regard SPGD [33] as our base-
line, and also consider other regular methods, i.e., UAP and
GAP. To evaluate our method combined with the momen-
tum method [5], we further compare with the state-of-the-
art method, AT-UAP which adopts the Adam optimizer.

Hyper-parameters. For fair comparison with previous
works [22, 28, 24, 44, 45, 16], we set the maximum per-
turbation ϵ = 10/255. For SPGD, we follow the setting
in [33] with the maximum cross-entropy loss β = 9, and
the step size α = 1/255. Moreover, the number of epochs
for the SPGD and SGA is set to 20. To ensure the same
number of perturbation iterations, the batch size of SPGD
and the outer large batch size |xLB| in SGA are both set
to 250. For SGA, the inner small batch size of |xSB| for
AlexNet, GoogleNet, and the other three models is set to
1, 2, and 10 respectively, and the inner iteration number M
is set to twice the number of |xLB|/|xSB| for AlexNet and
GoogleNet, and four times in the remaining three models.
In the momentum methods, the decay factor is set to 0.9.

4.2. Generalization performance of UAP

We first perform universal adversarial attacks under the
white-box and black-box settings respectively and evaluate
the overall performance of our proposed SGA with base-
lines on the ImageNet validation set.

White-Box Setting. The results on five models of vari-
ous UAP generation methods in the white-box scenario are
depicted in Table 1. In addition to our method, the results
of UAP, SV-UAP, NAG, GAP, DF-UAP, Cos-UAP, and AT-
UAP are reported as in the original papers. We can ob-
serve that our method achieves the highest attack perfor-
mance across all the models. For stronger models with
deeper networks, the advantage of our proposed method is
even clearer, e.g. improvement of over 2% in the ResNet152
model. The results demonstrate that the UAPs generated by
our method can generalize better to unknown samples.

Black-Box Setting. We also evaluate the proposed
method with regular comparison methods, i.e., UAP, GAP,
and SPGD in the black-box scenario. Both SPGD and SGA
methods implement two different loss functions, i.e., logit
loss and cross-entropy loss, namely SPGD-logit, SPGD-
cls, SGA-logit, and SGA-cls respectively. We craft UAPs
on normally trained models and evaluate them on all the
five networks. As shown in Table 2, the SGA can signif-
icantly improve the fooling ratio across all the models on
both loss functions. For the UAPs crafted on the AlexNet
model, the average fooling ratio increases from 54.96% and
56.38 % to 60.21% and 61.71%, respectively. Furthermore,
the average fooling ratio achieved by our methods outper-
forms comparison UAP attack methods by 3.60%∼ 19.28%
on average, which verifies SGA method can effectively en-
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Model Method AlexNet GoogleNet VGG16 VGG19 ResNet152 Average

AlexNet

UAP 86.53* 27.82 37.67 35.47 20.99 41.70
GAP 89.06* 33.05 52.02 48.60 28.70 50.29

SPGD-logit 95.23* 37.68 57.62 53.86 30.39 54.96
SGA-logit (Ours) 96.60* 46.18 63.82 59.52 34.95 60.21

SPGD-cls 95.97* 42.78 58.59 54.03 30.52 56.38
SGA-cls (Ours) 97.23* 48.97 66.46 60.60 35.29 61.71

GoogleNet

UAP 44.63 74.51* 52.92 52.63 32.74 51.48
GAP 56.55 76.60* 69.65 67.59 46.29 63.34

SPGD-logit 53.73 88.88* 77.13 74.88 54.21 69.77
SGA-logit (Ours) 65.92 86.54* 80.85 78.18 56.53 73.60

SPGD-cls 50.10 90.70* 76.47 73.88 51.65 68.56
SGA-cls (Ours) 61.34 90.64* 81.11 79.06 55.69 73.57

VGG16

UAP 33.35 33.51 76.73* 64.14 29.39 47.42
GAP 22.33 42.50 82.21* 76.30 29.46 50.56

SPGD-logit 39.20 54.12 93.56* 86.78 48.78 64.49
SGA-logit (Ours) 42.74 57.58 95.01* 89.99 52.25 67.51

SPGD-cls 42.17 44.97 93.45* 84.89 44.77 62.05
SGA-cls (Ours) 47.26 53.70 98.04* 93.08 48.78 68.17

VGG19

UAP 34.45 35.21 65.46 77.79* 28.49 48.28
GAP 52.71 49.11 75.08 79.11* 35.21 58.24

SPGD-logit 44.47 54.94 86.63 93.87* 48.15 65.61
SGA-logit (Ours) 47.20 57.53 91.33 96.07* 50.13 68.45

SPGD-cls 43.15 47.51 84.62 92.94* 42.09 62.06
SGA-cls (Ours) 46.53 51.53 93.35 97.39* 45.47 66.86

ResNet152

UAP 40.59 44.89 64.00 60.50 79.39* 57.87
GAP 47.74 52.43 64.41 63.41 67.76* 59.15

SPGD-logit 43.02 54.13 76.47 74.40 90.83* 67.77
SGA-logit (Ours) 47.07 56.91 78.84 77.86 93.27* 70.79

SPGD-cls 46.48 53.86 76.12 73.15 90.75* 68.07
SGA-cls (Ours) 50.12 61.61 80.98 78.29 93.16* 72.83

Table 2. The fooling ratio (%) on five models in the black-box setting by regular UAP attack methods. The UAPs are crafted on AlexNet,
GoogleNet, VGG16, VGG19, and ResNet152 respectively. * indicates the white-box model.

Method # samples AlexNet GoogleNet VGG16 VGG19 ResNet152 Average
UAP 500 57.33 16.61 25.29 25.04 19.11 28.68
GAP 500 86.89 57.07 70.40 65.89 47.58 65.57

SPGD 500 92.35 41.68 81.70 75.74 23.44 62.98
SGA (Ours) 500 94.03 68.33 89.83 88.70 52.12 78.60

Table 3. The fooling ratio (%) on five models in the limit-sample setting by regular UAP attack methods. The UAPs are crafted on AlexNet,
GoogleNet, VGG16, VGG19, and ResNet152 respectively.

hance the cross-model generalization ability of UAP. The
visualization results are provided in the supplementary.

4.3. UAPs via different number of training samples

We further investigate the generation of effective UAPs
via different numbers of training samples. In the following
experiments, without otherwise stated, the clipped cross-
entropy loss is used in SPGD and SGA methods.

Limit-Sample Setting. Considering that the acquisition
of a large number of training samples is difficult in some
tasks, we randomly select 500 training samples from the
ImageNet training set to simulate the limit-sample scenario.
In Table 3, the fooling ratio across five models achieved
by our method remarkably outperforms other comparison

methods, showing that SGA can fully exploit the potential
of limited samples. It is worth mentioning that the pro-
posed method reaches about 90% fooling ratio on AlexNet,
VGG16, and VGG19 models, which is close to the attack
performance achieved on 10,000 training samples.

Diverse-Sample Setting. Furthermore, we explore the
effect of the number of training samples on the attack per-
formance. The results are shown in Fig 4. Compared with
the baseline attack, our method can promote the improve-
ment of the generalization ability of UAP under different
numbers of training samples. However, when the num-
ber of samples reaches a certain number, the attack per-
formance does not increase anymore correspondingly. The
phenomenon reflects the limitations of excessively increas-
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Model Method AlexNet GoogleNet VGG16 VGG19 ResNet152 Average

AlexNet

AT-UAP 97.01* 47.31 62.37 57.72 33.40 59.56
M-SPGD 96.95* 43.29 62.26 56.61 31.91 58.20

M-SGA (Ours) 97.43* 49.71 66.41 60.96 35.76 62.05
N-SPGD 96.96* 39.87 60.27 56.00 29.90 56.60

N-SGA (Ours) 97.35* 47.93 65.74 60.17 35.00 61.24

GoogleNet

AT-UAP 55.90 90.82* 78.71 76.01 54.49 71.19
M-SPGD 53.06 92.20* 78.43 76.05 54.62 70.87

M-SGA (Ours) 62.56 92.12* 83.62 82.11 59.09 75.90
N-SPGD 53.55 92.23* 77.93 76.03 53.60 70.67

N-SGA (Ours) 63.43 91.67* 84.23 82.17 58.41 75.98

VGG16

AT-UAP 45.58 53.63 97.51* 91.53 47.16 67.08
M-SPGD 44.30 49.19 97.43* 91.06 43.51 65.10

M-SGA (Ours) 49.02 55.78 98.36* 94.17 49.02 69.27
N-SPGD 44.49 49.16 97.39* 90.55 42.45 64.81

N-SGA (Ours) 48.74 55.61 98.36* 93.98 50.17 69.37

VGG19

AT-UAP 46.04 52.58 93.49 97.56* 43.53 66.64
M-SPGD 44.89 45.26 91.25 96.36* 42.47 64.04

M-SGA (Ours) 50.67 56.87 95.52 97.69* 51.08 70.37
N-SPGD 45.27 52.18 93.48 96.82* 46.46 66.84

N-SGA (Ours) 50.77 56.95 95.58 97.73* 51.78 70.56

ResNet152

AT-UAP 47.33 61.32 81.93 78.72 91.52* 72.16
M-SPGD 48.84 58.84 79.46 76.37 92.83* 71.27

M-SGA (Ours) 51.59 64.05 81.77 79.01 94.04* 74.09
N-SPGD 49.00 58.01 78.65 76.49 92.87* 71.00

N-SGA (Ours) 51.50 65.29 83.02 79.41 93.92* 74.63

Table 4. The fooling ratio (%) on five models in the single model setting by gradient-based UAP attack methods enhanced by Momentum
and Nesterov accelerated gradient methods respectively. * indicates the white-box model.

Figure 4. Average fooling ratio (%) on five models versus the num-
ber of training samples. The UAPs are crafted by SPGD and SGA
methods on the VGG16 model.

ing the number of training samples.

4.4. Combination with transferability methods

In adversarial attacks, Momentum [5] and Nesterov ac-
celerated gradient [17] are considered as the baselines to im-
prove model transferability and can be well integrated with
other methods. Therefore, we further incorporate SPGD
and SGA with these two baseline methods, denoted as M-
SPGD, N-SPGD, M-SGA, and N-SGA, under single-model

and ensemble-model settings [18] respectively.
Single-Model Setting. In the integrated momentum

methods, we report the results in the original paper of the
current state-of-the-art attack method, AT-UAP. Experimen-
tal results on the ImageNet validation set are listed in Table
4. We can see that our method outperforms the baseline
method by a large margin on all black-box models, while
also improving the attack performance of white-box attacks.
In general, the SGA-based method consistently outperforms
the baseline method by 2.82% ∼ 6.33% and exceeds the
current state-of-the-art method in attack performance.

Ensemble-Model Setting. Here we implement the
model ensemble method in [5] which averages the loss
functions of two normally trained models, i.e., AlexNet
and VGG16. Except for the five widely used models, we
also test the transferability on the ResNet50. The results
are summarized in Table 5. The SGA-based methods can
greatly improve the attack performance of the baselines
across all models, achieving the average fooling ratio from
74.1%, 74.38%, 74.06% to 76.31%, 77.10% and 77.11% re-
spectively. Such compelling results verify the effectiveness
of our method in combination with gradient optimization
and model ensemble methods for improving transferability.

4.5. Ablation study

In this subsection, we conduct a series of ablation exper-
iments to explore the impact of the gradient aggregation and
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Model Method AlexNet VGG16 GoogleNet VGG19 ResNet50 ResNet152 Average

Ensemble

SPGD 93.77* 94.28* 63.47 86.45 58.45 48.39 74.10
SGA (Ours) 94.54* 95.50* 66.16 88.54 62.06 51.04 76.31

M-SPGD 93.91* 95.21* 61.05 86.92 60.49 48.72 74.38
M-SGA (Ours) 94.65* 96.03* 66.83 90.00 62.72 52.39 77.10

N-SPGD 93.94* 95.31* 60.41 87.33 59.39 47.99 74.06
N-SGA (Ours) 94.20* 96.19* 64.49 89.21 65.23 53.36 77.11

Table 5. The fooling ratio (%) on five models in the ensemble model setting by gradient-based UAP attack methods enhanced by Momentum
and Nesterov accelerated gradient methods respectively. The UAPs are crafted on the ensemble models, i.e., AlexNet and VGG16.

Figure 5. Ablation study on gradient aggregation, inner small-batch size and inner iteration number. (a) represents the average fooling ratio
(%) of five models using different types of aggregation methods, i.e., perturbation aggregation and gradient aggregation. (b) represents the
average fooling ratio (%) of five models with different inner batch sizes. (c) represents the average fooling ratio (%) of five models with
different inner iteration numbers. The UAPs are crafted by the VGG16 model under SGA.

the hyper-parameters for inner small-batch size and inner it-
eration number. All the UAPs are generated on VGG16 and
evaluated on all the five widely used models. The results for
the remaining models are provided in the supplementary.

On the gradient aggregation. To demonstrate that the
gain of SGA is not by increasing the number of gradient
calculations, we report the results of SGA with two types of
aggregation methods, i.e., perturbation aggregation and gra-
dient aggregation. Perturbation aggregation is to update δ
by using gradients without accumulation as in SPGD, which
can be easily achieved by utilizing the inner iterative pertur-
bation δinnerM to update UAP by δ ← δinnerM . The results
are shown in Fig 5 (a). The gradient aggregation method
achieves remarkably better attack performance than the per-
turbation aggregation method, indicating the effectiveness
of gradient aggregation to mitigate the gradient vanishing.

On the inner small-batch size. We then investigate the
impact of inner batch size |xSB| on the attack performance
of SGA. We try different inner batch sizes of 0, 2, 5, 10,
and 20 respectively. When the inner batch size is set to 0,
SGA degrades to SPGD. As shown in Fig 5 (b), the attack
performance is excellent when |xSB| = 10. An appropriate
batch can help enhance the generalization of UAP.

On the inner iteration number. After determining the
inner batch size, we continue to explore the effect of the in-
ner iteration number M . We set the inner iteration number
as M = K ×

∣∣xLB
∣∣ / ∣∣xSB

∣∣, where K represents the aver-
age number of times each image is traversed in one inner

iteration. Fig 5 (c) shows that with the increase of the itera-
tion number, the attack performance reaches the peak when
K = 4. Similarly, an appropriate iteration number can help
enhance the generalization of UAP. Besides, the discussion
of the time consuming are provided in the supplementary.

5. Conclusion
In this paper, we propose a stochastic gradient aggre-

gation (SGA) method to cope with the two main issues,
i.e., gradient instability and quantization error in the exist-
ing UAP attack methods with mini-batch training. Specif-
ically, we first perform multiple rounds of inner pre-search
by implementing small-batch optimization. Then SGA ag-
gregates all the gradients of the inner iterations as a one-step
gradient estimate and updates the outer adversarial pertur-
bations by using the aggregated gradients. Extensive ex-
periments demonstrate that the proposed method can sig-
nificantly enhance the generalization ability of the baseline
methods in various settings and reach an average fooling
ratio of 95.95% exceeding the state-of-the-art methods.
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