
Few-Shot Dataset Distillation via Translative Pre-Training

Songhua Liu Xinchao Wang*

National University of Singapore
songhua.liu@u.nus.edu, xinchao@nus.edu.sg

Abstract

Dataset distillation aims at a small synthetic dataset to
mimic the training performance on neural networks of a
given large dataset. Existing approaches heavily rely on an
iterative optimization to update synthetic data and multiple
forward-backward passes over thousands of neural network
spaces, which introduce significant overhead for computa-
tion and are inconvenient in scenarios requiring high effi-
ciency. In this paper, we focus on few-shot dataset distilla-
tion, where a distilled dataset is synthesized with only a few
or even a single network. To this end, we introduce the no-
tion of distillation space, such that synthetic data optimized
only in this specific space can achieve the effect of those
optimized through numerous neural networks, with dramat-
ically accelerated training and reduced computational cost.
To learn such a distillation space, we first formulate the
problem as a quad-level optimization framework and pro-
pose a bi-level algorithm. Nevertheless, the algorithm in its
original form has a large memory footprint in practice due
to the back-propagation through an unrolled computational
graph. We then convert the problem of learning the distilla-
tion space to a first-order one based on image translation.
Specifically, the synthetic images are optimized in an arbi-
trary but fixed neural space and then translated to those in
the targeted distillation space. We pre-train the translator
on some large datasets like ImageNet so that it requires only
a limited number of adaptation steps on the target dataset.
Extensive experiments demonstrate that the translator af-
ter pre-training and a limited number of adaptation steps
achieves comparable distillation performance with state of
the arts, with ∼ 15× acceleration. It also exerts satisfac-
tory generalization performance across different datasets,
storage budgets, and numbers of classes.

1. Introduction

Given an original dataset T , Dataset distillation
(DD) [41, 51, 35, 18, 47, 20, 22] aims at a much smaller

*Corresponding Author.

Match

Update

𝒯

𝒮

R
andom

 
N

etw
ork

R
andom

 
N

etw
ork

R
andom

 
N

etw
ork...

Update

𝒯

𝒮

D
istillation
Space Match

(a)

(c)

(b)

(d)

Match
Match

Figure 1. (a) Existing DD methods heavily rely on forward-
backward processes through enormous neural networks. (b) More
neural networks used in dataset distillation would result in more
floating point operations (FLOPs) and higher latency. (c) We in-
troduce the notation of distillation space for few-shot dataset dis-
tillation in this paper and aim to learn a neural network such that
distilled data only optimized in this specific space can approxi-
mate the performance by multiple networks. (d) Given only a few
or even a single network, our method achieves comparable per-
formance with state-of-the-art baselines requiring enormous net-
works. Results in this figure are concerning models trained with
1 image per class distilled from CIFAR100 dataset. OS denotes
one-shot DD using only one network, FS denotes few-shot DD
with a limited number of adaptation steps, and DS denotes using
down-sampled parameterization, i.e., storing down-sampled dis-
tilled images with the same storage budget.

synthetic dataset S, such that the training effect of S on
neural networks can match that of T . Such techniques have
received considerable attention to alleviate the heavy bur-
den on storage, transmission, and training of deep learning
models brought by large-scale datasets. Recent advances on
DD have revealed that models trained with only a few syn-
thetic samples, even 1 image per class in some cases, can
retain most of the performance of those trained with real
data [49, 50, 2, 28, 29, 40, 13, 52, 23, 21]. Thus, it becomes
a research area receiving increasing attention from the aca-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18654



demic and industrial community recently as a potential so-
lution to alleviate the concerns on the storage, transmission,
pre-processing, and training effort for large datasets.

Nevertheless, as shown in Fig. 1(a), all existing meth-
ods on DD work iteratively: the synthetic dataset is opti-
mized in an outer loop, and real and synthetic data are sent
to a newly-initialized neural network in each iteration. Al-
though they have achieved remarkable performance, such
forward-backward passes in multiple neural networks can
introduce extensive computational overhead to generate a
distilled dataset, as illustrated in Fig. 1(b). As a result,
the burdensome distillation procedure in existing methods
brings significant latency. For instance, one of the state-of-
the-art works by Deng et al. [5] requires∼ 18 days to distill
only 1 image per class for CIFAR100 dataset [15] as shown
in Fig. 1(d) and [47]. Even FRePo [52], with the most sat-
isfactory efficiency, takes over 3 hours in the same setting
requiring 500, 000 neural network steps. The long training
process in current DD makes it inconvenient for scenarios
requiring high efficiency, e.g., processing streaming data.

Focusing on these drawbacks, in this paper, we propose
few-shot dataset distillation and are interested in the perfor-
mance of DD if only a few or even a single neural network
is available for training. We first try a naive solution by
merely adopting one neural network for the existing method
FRePo [52] and visualize the accuracy and efficiency. As
shown in Fig. 1(d), although the simple strategy improves
the efficiency, the performance gap with the original version
based on thousands of networks is significant, which sug-
gests a trade-off between performance and the number of
networks. A similar effect is also revealed by Cazenavette
et al. [2], where the number of teacher training trajectories
would affect the performance substantially. Thus, how to
boost the performance by only a limited number of net-
works becomes an interesting question in few-shot DD.

Currently, the networks used in Fig. 1(d) are randomly
and independently initialized, which makes us curious:
whether there exists a dedicated neural network, such that
the synthetic dataset distilled in it can achieve similar per-
formance to those distilled in multiple ones. In this pa-
per, we describe this concept through a quad-level defini-
tion termed as distillation space, as shown in Fig. 1(c), and
propose a bi-level algorithm to find it, to optimize the error
on real data, for networks trained with the synthetic dataset,
distilled in this space.

However, the bi-level optimization requires back-
propagating through an unrolled computational graph over
multiple steps of gradient descent, which imposes an inten-
sive GPU footprint. Due to the bottleneck on GPU memory,
the number of steps for inner optimization is limited, which
further limits the performance in practice. To reduce the
complexity, we free the dependency of higher-order gradi-
ents via casting the problem as image translation, to make

sure that the iterative optimization process is not nested in
the computational graph: the synthetic dataset is distilled in
a random but fixed neural network space and then translated
to the desired space via a translator network.

Specifically, the translator is pre-trained on some large
datasets like ImageNet [4]. In each iteration, a random sub-
set is sampled. Distilled results after being translated from
the original space are evaluated in some random networks,
and the distillation loss is back-propagated to the transla-
tor to update its parameters. We find that the distillation
space translator after pre-training can generalize well across
different datasets, storage budgets, and numbers of classes.
With only a few adaptation steps on the target dataset, the
performance of distilled data after translation achieves can
be on par with those distilled by multiple neural networks
at ∼ 15× faster, as shown in Fig. 1(d).

In summary, our contributions are listed as follows:

• Tailoring for scenarios requiring high efficiency, we
are the first to study the problem of few-shot dataset
distillation, where only a limited number of neural net-
works are available for DD, and introduce the quad-
level definition of distillation space for it.

• An efficient translative modeling approach with a pre-
training algorithm is proposed to learn an effective dis-
tillation space;

• Extensive experiments demonstrate that our method is
capable of generating dataset distillation results with
∼ 15× acceleration.

2. Related Works
Dataset distillation (DD) refers to distilling a small syn-

thetic dataset S from a given large dataset T , where S is
optimized to have similar downstream training performance
to T . Unlike most existing techniques that focus on reduc-
ing the size of a model [6, 25, 45, 44, 7, 46, 12, 11, 10, 33],
DD concentrates on learning compressed data to enhance
learning efficiency. Wang et al. [41] firstly introduce the
task and propose a meta-learning method to minimize the
loss of meta-test on T for models meta-trained on S. This
scheme aligns with the evaluation protocol of DD: to pur-
sue higher accuracy on the real test data for networks op-
timized by the synthetic ones. However, restricted by the
GPU memory, the steps of meta-training in this framework
are limited, which bottlenecks the performance [5]. The bi-
level loop with a large number of inner steps also affects the
efficiency negatively.

To address this issue, a series of works consider mapping
real and synthetic samples to a feature space with some ker-
nels, e.g., NTK [28, 29], NNGP [23], and non-linear net-
work [52, 24], and then perform kernel ridge regression

18655



...

NFR

Translator

Update

NFR
Update

NFR
Update

NFR
Update

NFR

Update

NFR
Update

NFR

Update

Random Network Trainable Network

🔒

NFR Neural Feature Regression

(a) (b) (c)

Net 1

Net 2

Net N

Iter 1

Iter 2

Iter N

𝒯

𝒮

𝒯

𝒮

𝒯

𝒮

𝒯

𝒮

𝒯

𝒯

𝒮′

𝒮

𝒯

Figure 2. (a) Existing DD methods rely on an iterative training process, where a new network has to be initialized for forward and backward
passes of the real dataset T and the synthetic dataset S. (b) We desire to learn a specific distillation space, where S optimized only in such
a space can minimize the error of neural feature regression in an arbitrary random network. The loop for optimizing S is nested in the
computational graph for optimizing the distillation space. (c) We detach the loop for optimizing S for computational efficiency and convert
the problem to a translative model, where S is distilled in an arbitrary but fixed neural space first and then translated to the desired space.

(KRR). Benefiting from the analytical solution of KRR,
these methods can access the optimal parameters trained by
synthetic datasets via direct computation without the neces-
sity of higher-order gradients, which achieves favorable ef-
ficiency and accuracy at the same time. In this paper, the
KRR-based formulation is also adopted as the main objec-
tive to reduce the complexity of meta-learning, thanks to its
satisfactory efficiency.

In the literature of DD, matching-based methods are an-
other major branch. For example, Zhao et al. [51] and a
lot of following works [49, 13, 17, 9, 48] adopt gradient
matching. Cazenavette et al. [2] propose MTT, which opti-
mizes the distance between network parameters trained by
S and T respectively from some cached initialization. Their
insights lie in that gradients in networks or trained model
parameters can represent the training effects of different
datasets. Some works also consider matching the statistics
of S and T in some neural networks [50, 40], which get rid
of computing gradients of training networks via S and T
and thus improves the efficiency.

No matter what objectives existing methods adopt, they
all rely on an extensive outer optimization loop to update
synthetic data, where S and T have to undergo forward-
backward passes through thousands of networks. To make
things worse, a series of works considering synthetic dataset
parameterization, which tries to increase the number of im-
ages with the same storage budget, require even more such
iterations [5, 19]. Motivated by these facts, we focus on the
problem of few-shot dataset distillation in this paper where
a synthetic dataset is distilled given only a few or even a
single neural network. Given that naively adopting only
a few random networks results in inferior performance as

shown in Fig. 1(d), we introduce the concept of distillation
space, such that the performance of synthetic data distilled
in this space can match those in enormous networks. Dedi-
cated to finding such a space to benefit dataset distillation
to reduce the number of networks required for accelera-
tion while retaining the performance as much as possible,
a novel translative model with a pre-training approach is
proposed to this end. To our best knowledge, this is the first
work focusing on few-shot learning and pre-training in DD.

3. Methods
In this section, we delve into details about our methods

for few-shot dataset distillation, where real and synthetic
datasets can be processed by only a few neural networks.
We first provide a brief introduction of current mainstream
solutions for DD, based on which we propose the quad-level
definition of distillation space in formal and a basic bi-level
algorithm to learn the space. For computational efficiency,
we then convert the original formulation of learning the dis-
tillation space to a translative problem and propose an alter-
native algorithm, backed up by theoretical analysis. Finally,
we explain the paradigm of pre-training for few-shot learn-
ing to increase the transferability of the learned distillation
space across various datasets, the number of classes, and the
storage budgets of synthetic datasets.

3.1. Preliminary

Dataset distillation (DD) targets a small synthetic dataset
S such that the performance on downstream training with
S can match that with the original dataset T . The semi-
nal work by Wang et al. [41] proposes a meta-learning ap-

18656



Algorithm 1 Bi-Level Optimization for Distillation Space.
Input: T : Target Dataset; Θ: Distribution for Initializing

Neural Networks; T : Number of Inner Update Steps;
α: Learning Rate for Inner Optimization; η: Learning
Rate for Outer Optimization.

Output: θ: Distillation Space after Optimization.
1: Initialize θ ∼ Θ;
2: for i = 1, 2, 3, . . . do
3: Initialize S with random samples from T ;
4: Xθ

T ← fθ(XT );
5: for 1 ≤ t ≤ T do
6: w∗

S,θ ← fθ(XS)
⊤(fθ(XS)fθ(XS)

⊤)−1YS ;
7: XS ← XS − α∇XS∥Xθ

T w
∗
S,θ − YT ∥2;

8: YS ← YS − α∇YS∥Xθ
T w

∗
S,θ − YT ∥2;

9: end for
10: Randomly sample θ′ ∼ Θ;
11: Xθ′

T ← fθ′(XT );
12: w∗

S,θ′ ← fθ′(XS)
⊤(fθ′(XS)fθ′(XS)

⊤)−1YS ;
13: θ ← θ − η∇θ∥Xθ′

T w∗
S,θ′ − YT ∥2;

14: end for

proach, which optimizes the loss on T for models trained
with S and backpropagates the gradients through multiple
training steps to update S:

S∗ = argmin
S

Eθ(0)∼Θ[l(T ; θ(T ))],

θ(t) = θ(t−1) − α∇l(S; θ(t−1)),
(1)

where Θ denotes a distribution for initialization, T is the
number of training steps with S and 1 ≤ t ≤ T , α is the
learning rate, and l is the loss function, e.g., cross-entropy
loss for classification problems.

The bi-level optimization algorithm indicated in Eq. 1 re-
lies on backpropagating through an unrolled computational
graph of inner optimization steps, which makes it inefficient
in both time and memory. Nguyen et al. [28, 29] thus con-
sider the problem of kernel ridge regression (KRR), where
the analytical optimal solution gets rid of the necessity to
optimize the model with S for multiple nested steps. For
more satisfactory accuracy and efficiency, the spirit is fur-
ther extended by following works [52, 23], which map a
batch of n samples X to a feature space with a random neu-
ral network and then perform KRR. Denote the function of
neural network parameterized by θ as fθ and the label ma-
trix corresponding to X ∈ Rn×d as Y ∈ Rn×c, where d
and c are the dimensions of sample and label respectively,
i.e., h×w× 3 and the number of classes in the RGB image
classification problem, the objective can be formulated as:

X∗
S , Y

∗
S = argmin

XS ,YS

Eθ∼Θ[∥fθ(XT )w
∗
S,θ − YT ∥2],

w∗
S,θ = fθ(XS)

⊤(fθ(XS)fθ(XS)
⊤)−1YS .

(2)

This technique is known as neural feature regression
(NFR) [52]. In each training iteration, a new random neural
network is initialized for solving the problem in Eq. 2, as
shown in Fig. 2(a).

3.2. Learning a Distillation Space

As illustrated in Fig. 1(a), the iterative optimization
framework shown in Fig. 2(a) involves forward and back-
ward processes through thousands of networks and intro-
duces significant computational overhead. In this work,
we thus focus on the problem of DD using only a few or
even one network. Given the results in Fig. 1(b) that sim-
ply adopting a random network yields limited performance,
we are interested in learning a specific network such that S
distilled in it can achieve performance on par with that dis-
tilled in multiple networks, i.e., minimize the error on T for
an arbitrary model trained with S . Formally, we term such
a network as distillation space in the following definition.

Definition 1 (Distillation Space). A distillation space for a
distribution of network Θ and a target dataset T is a neural
network function f parameterized by θ∗ which satisfies:

θ∗ = argmin
θ(0)

Eθ(0)′∼Θ[l(T ; θ
(T )′)],

θ(t)
′
= θ(t−1)′ − α′∇l(S∗; θ(t−1)′),

S∗ = argmin
S

l(T ; θ(T )),

θ(t) = θ(t−1) − α∇l(T ; θ(t−1)).

(3)

In practice, to find an effective distillation space, we first
simplify the quad-level definition via NFR in Eq. 2, which
derives a bi-level optimization problem:

θ∗ = argmin
θ

Eθ′∼Θ[∥fθ′(XT )w
∗
S∗,θ′ − YT ∥2],

w∗
S∗,θ′ = fθ′(X∗

S)
⊤(fθ′(X∗

S)fθ′(X∗
S)

⊤)−1Y ∗
S ,

X∗
S , Y

∗
S = argmin

XS ,YS

∥fθ(XT )w
∗
S,θ − YT ∥2,

w∗
S,θ = fθ(XS)

⊤(fθ(XS)fθ(XS)
⊤)−1YS .

(4)

Eq. 4 indicates a bi-level meta-learning algorithm as shown
in Fig. 2(b) and Alg. 1. In each inner iteration, S is meta-
trained via NFR in the current neural space fθ. S after a
whole inner loop is meta-tested in a random neural network
fθ′ and the loss of NFR is back-propagated to update θ.

3.3. Learning a Translation to a Distillation Space

Although Alg. 1 can be an effective algorithm to learn
a valid distillation space, the back-propagation process
through a nested computational graph is inefficient in GPU
memory. The memory complexity is proportionate to the
number of inner optimization steps T to obtain the opti-
mal synthetic dataset in the current space, which is crucial

18657



for the final performance [5] but withheld by the limited
GPU memory. For instance, in a 40G A100 GPU, T in
Alg. 1 can be set as 16 at most, which is too small to get
convergence for inner optimization. To alleviate this draw-
back, we consider an alternative approach to learn a distil-
lation space. Specifically, we detach the inner optimization
from the computational graph by converting the problem to
a translative model, based on the following proposition.

Proposition 1. For a target dataset XT ∈ RnT ×d and
YT ∈ RnT ×c with nT ≥ d, assume that X∗

S,0 and
Y ∗
S,0 satisfy ∥fθ(XT )w

∗
S,θ − YT ∥2 = 0, where w∗

S,θ =

fθ(X
∗
S,0)

⊤(fθ(X
∗
S,0)fθ(X

∗
S,0)

⊤)−1Y ∗
S,0 and fθ is a known

linear transformation parameterized by a full-rank matrix
θ ∈ Rd×d′

, d ≤ d′. Similarly, let fθ∗ be a desired
linear distillation space and θ∗ ∈ Rd×d′′

, d ≤ d′′ ≤
nT . The distilled dataset X∗

S,∗ and Y ∗
S,∗ in this space

satisfy ∥fθ∗(XT )w
∗
S,θ∗ − YT ∥2 = 0, where w∗

S,θ∗ =

fθ∗(X∗
S,∗)

⊤(fθ∗(X∗
S,∗)fθ∗(X∗

S,∗)
⊤)−1Y ∗

S,∗. There exists
a translation function G for X∗

S,0 and Y ∗
S,0 such that

X∗
S,∗, Y

∗
S,∗ = G(X∗

S,0, Y
∗
S,0), whose parameters are not de-

pendent on the target dataset XT and YT .

Proof. Due to the linearity of fθ and fθ∗ , we can rewrite the
given conditions as:

XT θw
∗
S,θ − YT = 0, (5)

XT θ
∗w∗

S,θ∗ − YT = 0, (6)

Since nT ≥ d for XT , pre-multiplying terms in Eq. 5 by
the Moore–Penrose inverse X†

T , we have

X†
T YT = θw∗

S,θ. (7)

Similarly, through Eq. 6, we have

w∗
S,θ∗ = (XT θ

∗)†YT = θ∗†X†
T YT = θ∗†θw∗

S,θ, (8)

where the first, second, and third equalities are due to nT ≥
d′′, d′′ ≥ d, and Eq. 7 respectively. We can observe in Eq. 8
that w∗

S,θ∗ in the desired distillation space is not dependent
on T . Thus, the optimal X∗

S,∗ and Y ∗
S,∗ resulting the optimal

KRR parameter can be obtained given only X∗
S,0 and Y ∗

S,0

by some translation function G, which implicitly includes
the knowledge of the distillation space.

Prop. 1 indicates that it is possible to approach the distil-
lation space by translating samples from some space rather
than learning θ∗ directly, motivated by which we propose
to learn a translation from one another space to the distil-
lation space. The main workflow is similar to Alg. 1: syn-
thetic data are first distilled in a random but fixed network in
an inner loop and then translated to final results, as shown
in Fig. 2(c). The translator is optimized so that results af-
ter translation are equipped with the property of those pro-
duced in a distillation space: to minimize the NFR error in

Algorithm 2 Pre-training a Distillation Space Translator.
Input: Z: A Large Dataset; Θ: Distribution for Initializing

Neural Networks; θ: An Arbitrary Random Neural Net-
work; T : Number of Update Steps for Synthetic Data;
α: Learning Rate for Synthetic Data; η: Learning Rate
for Translator.

Output: ω: A Pre-trained Translator.
1: Initialize ω randomly;
2: for i = 1, 2, 3, . . . do
3: Randomly choose a subset of data T from Z;
4: Initialize S ′ with random samples from T ;
5: Xθ

T ← fθ(XT );
6: for 1 ≤ t ≤ T do
7: w∗

S′,θ ← fθ(XS′)⊤(fθ(XS′)fθ(XS′)⊤)−1YS′ ;
8: XS′ ← XS′ − α∇XS′∥Xθ

T w
∗
S′,θ − YT ∥2;

9: YS′ ← YS′ − α∇YS′∥Xθ
T w

∗
S′,θ − YT ∥2;

10: end for
11: XS , YS = Gω(XS′ , YS′);
12: Randomly sample θ′ ∼ Θ;
13: Xθ′

T ← fθ′(XT );
14: w∗

S,θ′ ← fθ′(XS)
⊤(fθ′(XS)fθ′(XS)

⊤)−1YS ;
15: ω ← ω − η∇ω∥Xθ′

T w∗
S,θ′ − YT ∥2;

16: end for

any random network. Since gradients are only required to
back propagated to the translator rather than the whole in-
ner loop, the memory complexity is irrelevant to the number
of inner optimization steps. Thus, the translative model is a
memory-efficient algorithm where only first-order gradients
are necessary.

3.4. Pre-training a Distillation Space Translator

We expect that the distillation space optimized in a
dataset is transferable across different datasets, storage bud-
gets for synthetic data, and the number of classes. To tackle
these challenges on transferability, in this paper, we con-
sider pre-train a translator on some large dataset like Ima-
geNet [4], so that it provides a satisfactory initialization and
only requires a small number of adaptation steps for a target
dataset, like the typical few-shot learning [42, 39, 38, 30].
The algorithm is shown in Alg. 2. In each training iteration
i, we sample a subset from the large dataset and perform a
gradient-decent step with the strategy mentioned in Sec. 3.3.
Upon a translator is pre-trained, it can serve as a strong ini-
tialization for the adaptation process to a new dataset, which
behaves identically to Line 11 to 15 of Alg. 2.

4. Experiments
In this section, we conduct experiments to validate the

effectiveness of the proposed method for few-shot DD. We
first introduce our experiment settings and implement de-

18658



Hyper-Parameter Denotation Value

T Number of Update Steps for Synthetic Data 3,000
α Learning Rate for Synthetic Data 1e-3
η Learning Rate for Translator in Pre-Training 1e-5
N Number of Cached Subsets in Pre-Training 5,000

Cmax Maximal Number of Classes in a Subset in Pre-Training 100
Cmin Minimal Number of Classes in a Subset in Pre-Training 10
M Maximal Number of Images in a Subset in Pre-Training 4,000

Imax Maximal Number of Images in a Synthetic Dataset in Pre-Training 1,000
B Batch Size in Pre-Training 4
S Number of Pre-Training Steps 200,000
S′ Number of Adaptation Steps for Translator 1,000
η′ Learning Rate for Translator in Adaptation 1e-4

Table 1. List of hyper-parameters and their values.

tails of the method. Then, we compare our method with
state-of-the-art solutions of DD in terms of both accuracy
and efficiency. To illustrate how the proposed method
works, we also provide an in-depth analysis of the method
with a variety of baselines. Finally, we conduct experiments
on continual learning, an important use case for DD, to fur-
ther demonstrate the practical value of our method.

4.1. Settings and Implementing Details

In few-shot dataset distillation, a real dataset T can
be processed by only a few neural networks to gener-
ate a synthetic dataset S. In our method, S is firstly
optimized in an arbitrary but fixed neural network by T
steps, with the learning rate α. The results are then pro-
cessed by a translator to generate the final synthetic dataset.
The translator adopts an auto-encoder architecture with 3
Conv-BatchNorm-ReLU blocks, and the detailed con-
figuration can be found in the supplement. Notably, due to
the fully-convolutional structure, the pre-trained translator
can also be adapted to datasets with different resolutions
beyond the one used during pre-training. Please refer to the
supplement for details. The translator is pre-trained on the
ImageNet dataset by S steps with the learning rate η and
then adapted on the target dataset by a small number of it-
erations S′, with a learning rate η′. Some hyper-parameters
are summarized in Tab. 1. Other hyper-parameters follow
the default setting in the PyTorch [31] implementation of
FRePo [52].
Pre-Training: The key design of the translative pre-
training pipeline lies in the separation of two stages: dataset
distillation in an arbitrary but fixed neural network and the
translation to the desired space. In practice, instead of di-
rectly following the pipeline in Alg. 2 that nests the two
steps in one loop, the two stages are conducted indepen-
dently in the interest of better training efficiency. Results
distilled in the pre-defined network are cached for multiple
random subsets so that they can be loaded directly and used

repeatedly in the pre-training stage, which improves the
training efficiency. The detailed algorithms for the caching
stage and the pre-training stage can be found in the supple-
ment.

The caching stage aims to generate distilled results for
multiple subsets. For sampling a subset, we first ran-
domly choose the number of classes ranging from Cmin to
Cmax and then randomly select the corresponding number
of classes from the 1,000 ImageNet classes. For each select
class, a certain number of random real images are sampled
uniformly for each selected class such that the total number
of images is M at most. The data augmentation technique
DSA [49] is applied in the caching stage to mimic the cases
of larger datasets. The maximal number of synthetic images
is Imax and they are initialized with the selected real data.
After distillation, indices of selected real samples and the
distilled dataset are cached in the disk for future use in the
pre-training stage. This process can be deployed to multi-
ple GPUs in parallel, since the distillation for each subset is
independent.

In the pre-training stage, cached results in the previous
stage are loaded. The NFR loss is calculated in a ran-
domly initialized networks over a distribution in each itera-
tion. Like the caching stage, pre-cached subsets in a batch
can also be distributed to multiple GPUs in parallel. In this
work, the pre-training is conducted on a single 40G A100
GPU, which takes roughly 2 days for the 200,000 steps.
Adaptation: Given a pre-trained translator, it requires a
small number of adaptation steps in general for the target
dataset. The detailed adaptation algorithm can be found in
the supplement. Intuitively, the procedure is consistent with
the two-stage process in pre-training: to generate distilled
results in a pre-defined network and then use the transla-
tor for the final results. The only difference with the pre-
training stage is that real data come from the target dataset.
By default, the set of IPC for adaptation only contains the
target IPC. More IPCs can also be included in this set to

18659



Dataset IPC Metric DD RTP DC DSA IDC MTT DM FRePo Ours Ours-DS

CIFAR
10

1 Acc. (%) 40.5±0.8 49.1±0.6 28.3±0.5 28.8±0.7 36.7±0.4 46.3±0.8 26.0±0.8 46.8±0.7 44.0±0.2 51.4±0.4

Time (h) 363.9 363.9 0.1 0.1 10.6 0.8 0.3 2.4 0.02×120.0 0.1×24.0

10 Acc. (%) 50.0±0.5 62.4±0.4 44.9±0.5 52.1±0.5 58.3±0.4 65.3±0.7 48.9±0.6 65.5±0.6 59.2±0.3 66.0±0.3

Time (h) 447.2 447.2 1.0 1.3 11.1 2.4 0.3 3.1 0.04×77.5 0.2×15.5

50 Acc. (%) - 70.5±0.4 53.9±0.5 60.6±0.5 69.5±0.3 71.6±0.2 63.0±0.4 71.7±0.2 66.7±0.2 71.8±0.1

Time (h) - 1377.8 4.4 5.3 12.8 3.8 0.4 8.1 0.12×67.5 1.3×6.2

CIFAR
100

1 Acc. (%) - 21.3±0.6 12.8±0.3 13.9±0.3 17.9±0.2 24.3±0.3 11.4±0.3 28.7±0.1 22.8±0.4 29.1±0.4

Time (h) - 447.2 0.4 0.5 50.0 3.5 3.1 3.1 0.08×38.8 0.1×31.0

10 Acc. (%) - 34.7±0.5 25.2±0.3 32.3±0.3 36.1±0.4 40.1±0.4 29.7±0.3 42.5±0.2 35.1±0.2 38.4±0.1

Time (h) - 2520.8 10.6 11.4 68.9 4.2 3.1 10.4 0.32×32.5 1.0×10.4

Table 2. Comparisons with state-of-the-art methods of DD on test accuracy and training efficiency. DS denotes using down-sampled
parameterization, i.e., storing down-sampled distilled images with the same storage budget. The black subscript indicates the standard
deviation over multiple evaluations. The red subscript denotes the times of acceleration compared with the baseline method FRePo [52].
The best and second best results in each setting are marked by bold and underline respectively.

increase the generalization ability of the translator across
other unseen IPCs during adaptation, as shown in Sec. 4.3
and the supplement.

In this paper, we consider the widely-adopted bench-
marks of CIFAR10 and CIFAR100 [15] with a resolution
of 32× 32 for the main evaluation. Results on datasets with
higher resolutions and larger sizes can be found in the sup-
plement. Following previous works [52, 5], we evaluate the
proposed method on storage budgets of 1, 10, and 50 im-
ages per class (IPC) for CIFAR10 and 1 and 10 IPC for
CIFAR100. Synthetic datasets are trained with 3-layer con-
volutional networks and evaluated on the same architecture.
The cross-architecture performance will also be studied in
Sec. 4.3. We report the average result and the standard de-
viation over 3 replicate evaluations for each setting.

4.2. Comparisons with State of the Arts

Here, we compare the proposed method for few-shot
dataset distillation with state-of-the-art methods, includ-
ing meta-learning-based methods in the seminal DD [41]
and remember-the-past (RTP) [5], gradient-matching based
methods in DC, DSA, and IDC, trajectory-matching based
MTT, distribution-matching based DM, and KRR-based
FRePo [52]. The accuracy and training efficiency results
are shown in Tab. 2. The accuracy results are from orig-
inal papers while the training time is estimated based on
the time-per-iteration results evaluated on the same hard-
ware and the total number of iterations in the official codes.
The shape/format of synthetic images in all methods except
“Ours-DS” is consistent with that of real images in origi-
nal datasets. For the running time of our method, we report
the total time required for distilling using one network and
the adaptation. Time for pre-training is not included since
it is only conducted once, and once pre-trained, the trans-

lator can be adapted for an infinite number of downstream
datasets.

Through the results, we find that in the default parame-
terization, the proposed method within 1k adaptation steps
falls about 3 ∼ 7 points behind the FRePo baseline but with
30 ∼ 120× acceleration due to the few-shot setting. Even
compared with the currently most efficient algorithm, the
speed of our method is still considerable. And the perfor-
mance is at least comparable with other methods in terms
of accuracy, with even dramatic acceleration, e.g., the meta-
learning-based DD and RTP. The superior efficiency makes
our method applicable in scenarios where data cannot be
held for a long time, like streaming data.

Additionally, in “Ours-DS”, down-sampled synthetic
images are alternatively stored with the same number of
stored parameters, which is a simple yet effective method
to improve the performance especially when the storage
budget is small. This parameterization typically requires
more iterations for the adaptation stages. For small syn-
thetic datasets like 1 and 10 IPC, the number of steps is
6k, and for 50 IPC, the number is 15k. Nevertheless, our
method can still result in 6 ∼ 31× acceleration compared
with the FRePo baseline with even better performance.

4.3. Ablation Studies

Baselines: To demonstrate the effectiveness of the transla-
tive pre-training and target adaptation strategies proposed
in this paper, we consider a series of baselines for ablation
studies, including:

• Baseline: a new neural network is sampled for each
training iteration to process the real dataset and update
synthetic data, which can be viewed as a benchmark
given a sufficient number of networks;

18660



Dataset IPC Baseline 1 Net Bi-Level w/o Pre-Train w AE w/o Ada w Ada

CIFAR10
1 41.2±0.7 35.3±0.6 40.8±0.5 36.1±0.5 40.6±0.6 39.5±0.8 44.0±0.2

10 57.9±0.7 50.5±0.8 52.1±0.5 53.8±0.1 57.6±0.3 54.7±0.8 59.2±0.3

50 65.2±0.3 65.1±0.1 60.7±0.1 59.7±0.4 63.5±0.1 65.8±0.2 66.7±0.2

CIFAR100 1 21.6±0.6 18.7±0.1 19.1±0.1 20.5±0.2 21.8±0.3 20.9±0.7 22.8±0.4

10 33.8±0.3 31.7±0.1 31.0±0.2 30.7±0.2 27.0±0.2 33.0±0.2 35.1±0.2

Table 3. Ablation studies of our method in different settings. The black subscript indicates the standard deviation over multiple evaluations.

An Arbitrary Net
Acc. 50.5%

Translated Results w/o Ada
Acc. 54.7%

Translated Results w Ada
Acc. 59.2%

FRePo
Acc. 65.5%

Figure 3. Qualitative analysis of results produced by our method for IPC 10 on CIFAR10. Zoom in for details.

• 1 Net: synthetic data are distilled in a single network,
which can be treated as a lower bound;

• Bi-Level: the bi-level algorithm described in Alg. 1;

• w/o Pre-Train: the target adaptation stage starts from a
randomly initialized translator;

• w AE: the target adaptation stage starts from an auto-
encoder trained with a reconstruction objective;

• w/o Ada: directly using the pre-trained translator with-
out the adaptation stage;

• w Ada: the default method.

All the candidates are trained with 4k iterations. For those
requiring adaptation, i.e., w/o Pre-Train, w AE, and w Ada,
we first distill a synthetic dataset using 1 network with 3k
iterations and adapt the translator for another 1k steps. Note
that distilling with a single network only requires one for-
ward propagation pass of the real dataset. Thus, the running
time of our method is less than that of the baseline given the
same number of iterations. Results are shown in Tab. 3.

For one thing, it turns out that the default method in this
paper consistently surpasses the benchmark baseline requir-
ing enormous networks in most cases. The reason is that
with the number of networks for NFR increasing, it would
be more difficult for the training convergence of distilled
datasets, especially in the few-shot case. Please refer to the
supplement for details.

For another, the consistent improvement comparing re-
sults of 1 Net and w/o Ada indicates that the pre-trained
translator is capable of generating distilled results in a more
favorable space. We visualize their results in the first two
plots of Fig. 3, where the global tone is refined towards
higher brightness contrast. Moreover, as shown in the 3rd
plot, the adaptation stage injects more local details, which
tries to improve the performance in a similar way performed
by the state-of-the-art FRePo [52].

Further, as shown in both Tab. 3 and Fig. 4(a-b), the pre-
trained model offers a more satisfactory initialization for
the following adaptation stage, with lower initial loss, faster
convergence, and higher accuracy.

At last, the bi-level algorithm often leads to inferior per-
formance, which may be partially attributed to the insuffi-
cient number of inner steps restricted by GPU memory.
Generalization: We observe that one benefit of adapting
the translator in a target dataset is that it is generalizable
across different storage budgets for synthetic datasets. For
instance, as shown in Fig. 4(c), the translator adapted on
IPC 1 and 50 can also behave well on IPC 10.

Following previous works [51, 49, 50], we also eval-
uate the cross-architecture performance in Tab. 4 over
AlexNet [16], VGG11 [37], and ResNet18 [8]. The con-
clusion is consistent with the above analysis.

4.4. Application: Continual Learning

Continual learning (CL) aims to learn a sequence of tasks
where the training data of past tasks are unavailable when

18661



✓
✓

✓

✓

✓

✓
✓
✓

Seen IPC during Adaptation

1
10
50

(a) (b) (c)

Figure 4. (a-b) NFR loss and test accuracy during adaption for CIFAR10 IPC 10 starting with the pre-trained translator by our algorithm,
an auto-encoder, and a randomly initialized model. (c) Generalization performance of the translator on unseen IPC during adaptation.

Setting ConvNet AlexNet VGG ResNet

Baseline 58.8±0.2 57.1±0.5 41.1±0.3 38.1±0.9

1 Net 50.5±0.8 50.9±0.6 34.2±0.3 35.3±0.3

Bi-Level 52.1±0.5 50.0±0.4 37.4±0.5 34.7±0.5

w/o Pre-Train 53.8±0.1 56.2±0.3 39.3±0.7 38.2±0.7

w/o Ada 54.7±0.8 52.8±0.3 35.7±0.7 34.8±1.2

w Ada 59.2±0.3 56.8±0.2 43.0±0.7 40.8±0.5

Table 4. Cross-architecture performance of our method in different
settings. Results on CIFAR10 with 10 IPC are shown here.

learning the current one. To overcome the problem of catas-
trophic forgetting [14], many works use a small buffer to
store some valuable data of past tasks for future use [32, 1].
Dataset distillation can thus benefit this area by synthesiz-
ing informative samples [27, 34, 36, 43, 3, 26] to prevent
forgetting as much as possible.

In this paper, we evaluate the proposed method on
CIFAR100-CL following the same 5-step protocol of [52,
50] with 20 classes for each task and 20 IPC. The results
in Fig. 5 suggest a consistent conclusion with the ablation
studies shown in Sec. 4.3 and indicate that the few-shot
dataset distillation proposed in this paper can further facil-
itate the practical use when tasks come fast like a stream,
which provides limited time for processing and learning.

5. Conclusion

In this paper, we focus on the setting of few-shot dataset
distillation to improve its efficiency, where data can only
be processed by a limited number of neural networks. We
introduce the concept of distillation space to optimize the
performance of synthetic data distilled by only one network.
Regarding that the complexity of the quad-level definition
and the bi-level algorithm for distillation space, we convert
the problem to a translative model. The synthetic dataset is
first distilled in a random but fixed neural network and then
translated to the desired space. For transferability, we train
the translator with a pre-training algorithm, so that a pre-

1 2 3 4 5
CL Task Index

30

35

40

45

50

55

60

Te
st

 A
cc

ur
ac

y 
(%

) Baseline
w/o Ada
w/o Pre-Train
w AE
w Ada

Figure 5. Performance of continual learning on CIFAR100 with 5
steps and 20 IPC for different settings.

trained translator can be adapted for a new dataset within
a limited number of steps. Experiments demonstrate that
our method achieves ∼ 15× acceleration and comparable
performance with the state-of-the-art baselines relying on
thousands of networks. Even in some cases, the translator
without adaptation yields competitive performance.

One limitation of our method is that in the adaptation
stage, errors of translated synthetic datasets have to be fur-
ther back-propagated through the translator, which intro-
duces additional GPU memory consumption compared with
the baseline method, e.g., 3946 v.s. 3456 MB on CIFAR10
with 10 IPC. Nevertheless, as shown in Fig. 4(c), the trans-
lator adapted for small sizes can conduct inference for larger
sizes, thereby breaking the limitation on GPU memory. Fu-
ture works may focus on further improving the transferabil-
ity of the distillation space translator by dedicated architec-
tural designs or objective functions.

Acknowledgement
This work is supported by the Advanced Research and

Technology Innovation Centre (ARTIC), the National Uni-
versity of Singapore under Grant (project number: A-
0005947-21-00, project reference: ECT-RP2), and the Sin-
gapore Ministry of Education Academic Research Fund
Tier 1 (WBS: A0009440-01-00).

18662



References
[1] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Si-

mone Calderara. Rethinking experience replay: a bag of
tricks for continual learning. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pages 2180–2187.
IEEE, 2021. 9

[2] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distilla-
tion by matching training trajectories. arXiv preprint
arXiv:2203.11932, 2022. 1, 2, 3

[3] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence, 44(7):3366–3385, 2021.
9

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 5

[5] Zhiwei Deng and Olga Russakovsky. Remember the past:
Distilling datasets into addressable memories for neural net-
works. arXiv preprint arXiv:2206.02916, 2022. 2, 3, 5, 7

[6] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16091–16101, 2023.
2

[7] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Struc-
tural pruning for diffusion models. arXiv preprint
arXiv:2305.10924, 2023. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 8

[9] Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z. Pan. Delv-
ing into effective gradient matching for dataset condensation.
arXiv preprint arXiv:2208.00311, 2022. 3

[10] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan,
Mingli Song, Xinchao Wang, and Dacheng Tao. Learning
graph neural networks for image style transfer. In ECCV,
2022. 2

[11] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song,
and Dacheng Tao. Amalgamating knowledge from heteroge-
neous graph neural networks. In CVPR, 2021. 2

[12] Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xin-
chao Wang, and Dacheng Tao. Deep graph reprogramming.
In CVPR, 2023. 2

[13] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo
Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and
Hyun Oh Song. Dataset condensation via efficient synthetic-
data parameterization. arXiv preprint arXiv:2205.14959,
2022. 1, 3

[14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 9

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 7

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 8

[17] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo
Yun, and Sungroh Yoon. Dataset condensation with con-
trastive signals. arXiv preprint arXiv:2202.02916, 2022. 3

[18] Shiye Lei and Dacheng Tao. A comprehensive survey to
dataset distillation. arXiv preprint arXiv:2301.05603, 2023.
1

[19] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xin-
chao Wang. Dataset distillation via factorization. In Pro-
ceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2022. 3

[20] Songhua Liu, Jingwen Ye, Runpeng Yu, and Xinchao Wang.
Slimmable dataset condensation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.
1

[21] Songhua Liu, Jingwen Ye, Runpeng Yu, and Xinchao Wang.
Slimmable dataset condensation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023. 1

[22] Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang,
and Yang You. DREAM: Efficient dataset distillation by rep-
resentative matching. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2023. 1

[23] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela
Rus. Efficient dataset distillation using random feature ap-
proximation. In Proceedings of the Advances in Neural In-
formation Processing Systems (NeurIPS), 2022. 1, 2, 4

[24] Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus.
Dataset distillation with convexified implicit gradients. arXiv
preprint arXiv:2302.06755, 2023. 2

[25] Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-
Pruner: On the Structural Pruning of Large Language Mod-
els. arXiv preprint arXiv:2305.11627, 2023. 2

[26] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyun-
woo Kim, and Scott Sanner. Online continual learning in
image classification: An empirical survey. Neurocomputing,
469:28–51, 2022. 9

[27] Wojciech Masarczyk and Ivona Tautkute. Reducing catas-
trophic forgetting with learning on synthetic data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Workshop, 2020. 9

[28] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2020. 1, 2, 4

[29] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon
Lee. Dataset distillation with infinitely wide convolutional
networks. Advances in Neural Information Processing Sys-
tems, 34, 2021. 1, 2, 4

[30] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 5

18663



[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[32] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017. 9

[33] Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu.
Tinymim: An empirical study of distilling mim pre-trained
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3687–
3697, 2023. 2

[34] Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo
Lomonaco, and Davide Bacciu. Distilled replay: Overcom-
ing forgetting through synthetic samples. arXiv preprint
arXiv:2103.15851, 2021. 9

[35] Noveen Sachdeva and Julian McAuley. Data distillation: A
survey. arXiv preprint arXiv:2301.04272, 2023. 1

[36] Mattia Sangermano, Antonio Carta, Andrea Cossu, and Da-
vide Bacciu. Sample condensation in online continual learn-
ing. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN), pages 1–8, 2022. 9

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 8

[38] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017. 5

[39] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1199–1208, 2018. 5

[40] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by aligning
features. arXiv preprint arXiv:2203.01531, 2022. 1, 3

[41] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018. 1, 2, 3, 7

[42] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34, 2020.
5

[43] Felix Wiewel and Bin Yang. Condensed composite memory
continual learning. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2021.
9

[44] Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing
knowledge in neural networks. In European Conference on
Computer Vision, 2022. 2

[45] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and
Xinchao Wang. Deep model reassembly. In Advances in
neural information processing systems, 2022. 2

[46] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and
Xinchao Wang. Distilling knowledge from graph convolu-
tional networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020. 2

[47] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset
distillation: A comprehensive review. arXiv preprint
arXiv:2301.07014, 2023. 1, 2

[48] Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukher-
jee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, and Xu
Dongkuan. Accelerating dataset distillation via model aug-
mentation. arXiv preprint arXiv:2212.06152, 2022. 3

[49] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In International Conference
on Machine Learning, pages 12674–12685. PMLR, 2021. 1,
3, 6, 8

[50] Bo Zhao and Hakan Bilen. Dataset condensation with distri-
bution matching. arXiv preprint arXiv:2110.04181, 2021. 1,
3, 8, 9

[51] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. arXiv preprint
arXiv:2006.05929, 2020. 1, 3, 8

[52] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset
distillation using neural feature regression. arXiv preprint
arXiv:2206.00719, 2022. 1, 2, 4, 6, 7, 8, 9

18664


