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Abstract

For homography estimation, we propose Geometrized
Transformer (GeoFormer), a new detector-free feature
matching method. Current detector-free methods, e.g.
LoFTR, lack an effective mean to accurately localize
small and thus computationally feasible regions for cross-
attention diffusion. We resolve the challenge with an ex-
tremely simple idea: using the classical RANSAC geome-
try for attentive region search. Given coarse matches by
LoFTR, a homography is obtained with ease. Such a ho-
mography allows us to compute cross-attention in a fo-
cused manner, where key/value sets required by Transform-
ers can be reduced to small fix-sized regions rather than
an entire image. Local features can thus be enhanced
by standard Transformers. We integrate GeoFormer into
the LoFTR framework. By minimizing a multi-scale cross-
entropy based matching loss on auto-generated training
data, the network is trained in a fully self-supervised man-
ner. Extensive experiments are conducted on multiple real-
world datasets covering natural images, heavily manipu-
lated pictures and retinal images. The proposed method
compares favorably against the state-of-the-art.

1. Introduction

Homography estimation, also known as perspective
transformation or planar projection, is a fundamental prob-
lem in computer vision and robotics. It involves estimat-
ing a 3 × 3 matrix that maps corresponding points in two
images taken from different viewpoints, assuming that the
scene is planar. Homography estimation has various appli-
cations including image/video stitching [32, 7], camera cali-
bration [33], object recognition [17], and 3D reconstruction
[19, 34], etc. The problem is challenging due to various fac-
tors such as occlusions, noise, and perspective distortions.

*Corresponding author.

Various techniques have been developed to estimate ho-
mography efficiently and accurately. These include match-
ing based methods [18, 4, 22] and unsupervised deep ho-
mography methods [10, 16, 31]. Matching based methods
detect distinctive features such as keypoints or corners from
given images and then match the features for homography
estimation. SuperGlue [24], for instance, employs Super-
Point [4] for feature detection and description, and then uses
Transformers [29] to enhance the features by self-attention
and cross-attention. The method however suffers from the
lack of discriminative features when dealing with texture-
less or blurry images [23]. Deep homography methods, on
the other hand, directly minimize the photometric or feature
differences between two images. As such, they can be sen-
sitive to errors or ambiguities in the data, making them diffi-
cult to handle image pairs with a large baseline [16, 31, 10].

A novel trend is to develop detector-free feature match-
ing methods, see NCNet [23], LoFTR [26], ASpanFormer
[3] and DKM [6]. These methods find matches by dense
pixel-to-pixel matching, with no need for keypoint detec-
tion. Conceptually, LoFTR can be viewed as a detector-free
variant of SuperGlue. Being detector-free means the num-
ber of features to be updated by Transformers is equal to
the number of pixels. In order to update high-resolution
feature maps at affordable computational cost, LoFTR has
to replace the normal Transformers with linear Transform-
ers [11]. However, the latter tends to diffuse among large
areas instead of focusing sharply on corresponding regions
[3, 27]. Consequently, noise can be introduced during fea-
ture updating, resulting in incorrect matches. In order to
localize attention regions that are computationally feasible
for the normal Transformers, ASpanFormer regresses flow
maps in each cross-attention phase. However, flow map re-
gression can be error-prone, see Fig. 1a.

In order to support local feature interaction and enhance-
ment with standard Transformers, we propose in this pa-
per Geometrized Transformer (GeoFormer). Our idea is ex-
tremely simple. Instead of flow map regression, we propose
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(a) ASpanFormer (b) GeoFormer (this paper)

Figure 1: Visualizing cross-attention diffusion regions of (a) ASpanFormer [3] and (b) the proposed GeoFormer. Per image
pair, a specific query point is shown in green dot on the left-hand image, while its cross-attention region (i.e. the key / value
set) is shown in green dots on the right-hand image. ASpanFormer uses flow map regression, which appears to be inaccurate.
By contrast, GeoFormer exploits the RANSAC geometry to identify small yet geometrically verified regions.

to use the classical RANSAC geometry for attentive region
search. As shown in Fig. 1b, the geometry allows us to
compute cross-attention in a focused manner such that the
key / value set required by the Transformers can be reduced
to small fix-sized regions on the feature maps. Viewing
these geometrically localized regions as keypoints detected
at a coarse level, the proposed method essentially refines lo-
cal features in a detector-based manner, whilst matching the
refined features in a detector-free manner.

In sum, our main contributions are as follows:
• We propose GeoFormer, a new detector-free feature
matching method for homography estimation. With the
proposed sparse self-attention and focused cross-attention
blocks, local feature updates are achieved with standard
Transformers, which have more accurate attention diffusion
regions than linear Transformers.
• GeoFormer is integrated with ease into LoFTR, see Fig.
2. By minimizing a multi-scale cross-entropy based match-
ing loss on auto-generated training data, the entire network
is end-to-end trained in a fully self-supervised manner.
• Experiments on natural images [2], heavily edited pictures
[5] and retinal images [9] show that GeoFormer compares
favorably against the state-of-the-art. Code is released.

2. Related Work

We categorize the current methods for homography esti-
mation into the following three groups: deep homography
[16, 31, 10], detector-based feature matching [4, 22, 15] and
detector-free feature matching [23, 26, 3].

Deep homograpy. Deep homography methods aim to
train a deep network that directly predicts the homography
from a given pair of source and target images. A com-
mon objective is to minimize the distance of inlier regions
from the warped source image to the target image. CA-
Unsupervised [16] obtains the homography matrix from
four regressed 2D offset vectors by solving a linear sys-
tem. A mask is learned to skip outlier regions that interfere
with homography training. Instead of regressing the cor-
ner offsets, BasesHomo [31] decomposes the homography
matrix into 8 orthogonal flow bases and predicts weights of
the bases. HomoGAN [10] addresses the problem of plane-
induced parallax, using a coplanarity-aware GAN to let the
model focus on the dominant plane. While these methods
work for image pairs with a small baseline, e.g. consecu-
tive video frames or photos captured by a dual-camera cell-
phone, they cannot handle large geometric changes.

9557



Detector-based feature matching. In contrast to deep
homography, a detector-based feature matching method
typically works in four steps. That is, keypoint detec-
tion, local feature extraction per keypoint, content-based
feature matching, and lastly homography fitting based on
the matches. The classical SIFT detector finds corners and
blobs in a scale-invariant manner [18]. SuperPoint is a deep
learning based method, presenting a self-supervised solu-
tion named homographic adaptation to address the lack of
keypoint labels [4]. Homographic adaptation is also shown
to be effective for training deep learning based detectors
for retinal images, either in a fully self-supervised manner,
see GLAMpoints [28], or in a semi-supervised manner, see
SuperRetina [15]. Keypoints detected by SuperPoint gen-
erally have high repeatability, but are not necessarily reli-
able. To remedy the issue, R2D2 produces two probabilis-
tic maps to measure the reliability and the repeatability of
each pixel being a keypoint [22]. SuperGlue adapts Trans-
formers [29] to match two sets of local features produced
by SuperPoint. A major drawback of detector-based feature
matching methods is that they rely heavily on the quality
of the detected keypoints, which are known to suffer from
large viewpoint changes and textureless regions [23, 26].

Detector-free feature matching. Detector-free feature
matching methods perform dense pixel-to-pixel matches,
with no need for keypoint detection [23, 26, 3, 6]. Such
a design makes it possible to find correspondences even
in textureless areas. NCNet [23] constructs 4D cost vol-
umes to enumerate all possible matches between two im-
ages. Given the quadratic complexity w.r.t. the number of
pixels, feature maps used for matching have to be substan-
tially downsized. DKM [6] improves dense matching with a
kernel regression global matcher, the optimization of which
requires depth information. LoFTR [26] improves over Su-
perGlue with Transformers to exploit self-/inter- correla-
tions among all dense-positioned local features. To make
its computation feasible, LoFTR uses linear Transformers
rather than standard Transformers. Recent studies report
that the linear Transformers tend to diffuse among large
areas instead of focusing sharply on the corresponding re-
gions [3, 27]. In order to use the standard Transformers
with a modest cost, ASpanFormer [3] relies on regressed
flow maps in each cross-attention phase to localize attentive
regions. However, due to the inaccuracy of flow map regres-
sion, ASpanFormer may become unstable, see Fig. 1. By
contrast, we propose to use the simple RANSAC geometry
for attentive region search, resulting in a novel detector-free
feature matching method that is highly effective for homog-
raphy estimation.

3. Proposed Method
As our method is developed on the basis of LoFTR, we

first describe that method briefly.

3.1. LoFTR in a Nutshell

Conceptually, LoFTR works as follows. Given a pair of
(gray-scale) input images I0 and I1 sized1 w×h, a 2D-CNN
(ResNetFPN [14]) is used to extract a coarse-level feature
map Cl at 1

8 of the original image dimension and a fine-
level feature map Fl at 1

2 of the original image dimension
per image, l = 0, 1. The two coarse features C0 and C1

are then fed into a coarse-matching module, updated
with linear Transformers based self attention (SA) and cross
attention (CA), to produce a pixel-to-pixel confidence ma-
trix Pc. Each element of Pc, accessed by Pc(i, j), indicates
the probability of pixel i in C0 and pixel j in C1 being a
truly matched pair, with 1 ≤ i, j ≤ w×h

64 . By thresholding
Pc followed by mutual nearest neighbor search, an array of
coarse-level matches Mc = {(i, j)} is determined.

Given Mc and the two fine-level features F0 and F1, a
fine-matching module produces sub-pixel matches as
follows. For each match (i, j) ∈Mc, a local window of size
s× s centered at î = i× 4 is cropped from F0, and another
local window of the same size centered at ĵ = j × 4 is
cropped from F1. The cropped features, again enhanced by
SA and CA, are used to compute the matching probability.
By finding the best match of pixel î within the window in
F1, an array of sub-pixel matches Mf is obtained. More
formally, we express the above process as follows: (C0, F0), (C1, F1) ← CNN([I0, I1]),

Pc,Mc ← coarse-matching(C0, C1),
Mf ← fine-matching(F0, F1,Mc).

(1)

3.2. Geometrized Transformer

GeoFormer is designed to improve the coarse features,
C0 and C1, with K / V information from geometrically
matched areas rather than from the entire images, and thus
generate coarse matches Mg more accurate than Mc. To
that end, we first conduct the classical RANSAC algorithm
on Mc, obtaining a homography matrix Hc and M̃c that fits
Hc. For the i-th pixel in C0, its correspondence in C1 is
indexed by H(i). Similarly, for the j-th pixel in C1, its cor-
respondence in C0 is indexed by H−1

c (j). In order to update
C0 and C1 subject to M̃c, we introduce sparse self-attention
and focused cross-attention.

Sparse self-attention (sparse-SA). Given each fea-
ture in C0 as a query vector Q of length d, we exclusively
use pixels from M̃c as the K / V set. Note that the size
of M̃c is substantially smaller than the number of pixels in
C0. Such a sparse K / V set allows us to update Q with a
standard transformer. We use C̃0 to denote C0 updated by
sparse-SA. In a similar manner, we define C̃1.

1Letting the input images have the same size is merely for the ease of
description.
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Figure 2: Geometrized Transformer (GeoFormer) for detector-free local feature matching and subsequently homog-
raphy estimation. The coarse matching block, taken from LoFTR, produces pixel-to-pixel matches Mc at the 1

8
scale. GeoFormer conducts RANSAC on Mc to estimate a homography Hc, and accordingly identify potentially common
areas between the two input images I0 and I1. Using standard Transformers of softmax(QKT

√
dv

V ), GeoFormer computes
self-attention in a sparse manner that the key K / value V set exclusively comes from the common areas. Meanwhile, cross-
attention is computed in a focused manner that for a specific query point i in one image, its K / V set is a s× s local patch,
shown in green squares, centered at Hc(i) in the other image. GeoFormer outputs refined matches Mg , which are then fed to
the fine matching2 block, taken from LoFTR with small revision, for producing fine matches Mf at the 1

2 scale.

Focused cross-attention (focused-CA). Similar to
LoFTR, we also use a cross-attention (CA) transformer to
let C̃0 and C̃1 interact and enhance mutually. However, in
contrast to LoFTR that uses the global CA, we propose a fo-
cused CA based on our conjecture that interaction with geo-
metrically matched areas is adequate. In particular, for each
pixel i in C̃0, we use H(i) to localize its correspondence in
C̃1. Subsequently a local patch of s× s centered on H(i) is
cropped from C̃1 as the K / V set. We use Ĉ0 to denote C̃0

updated by focused-CA. In a similar manner, we define

Ĉ1. Since s is small (5 in this work), focused-CA prac-
tically has a linear complexity w.r.t. to the number of query
features. The geometrized selection of the K / V set is cru-
cial for computing SA / CA using standard transformers.

While both LoFTR and GeoFormer run CA in a corre-
spondence window, their choice of the query set differs. The
query set in LoFTR is limited to regions localized by coarse
matching. By contrast, with the RANSAC-obtained homog-
raphy, GeoFormer allows each pixel to be used a query and
accordingly have its feature updated via CA.
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Given the self and mutually enhanced features Ĉ0 and
Ĉ1, we follow LoFTR to produce coarse matches Mg .
Specifically, we compute pixel-to-pixel similarities fol-
lowed by a dual-softmax operation. This results in a con-
fidence matrix Pg , where Pg(i, j) indicates the probabil-
ity of pixel i in Ĉ0 and pixel j in Ĉ1 being a true match.
With threshold-based masking and mutual nearest neighbor
search on Pg , Mg is obtained. Given C0, C1 and Mc as in-
put, the workflow of GeoFormer is summarized as follows:


Hc, M̃c ← RANSAC(Mc),

C̃0, C̃1 ← sparse-SA(C0, C1, M̃c),

Ĉ0, Ĉ1 ← focused-CA(C̃0, C̃1, Hc),

Pg,Mg ← dual-softmax-matching(Ĉ0, Ĉ1).

(2)

3.3. Adding GeoFormer to LoFTR

By substituting Mg for Mc in fine-matching in Eq.
1, GeoFormer can be integrated with ease into the LoFTR
framework. Recall that the fine matching by LoFTR is
asymmetric: A coarsely matched point î in F0 is used to
find matches in F1, with the coordinate of î not adjustable.
As a remedy, we introduce a symmetric matching strategy
as follows. For each matched point î in F0 and ĵ in F1,
we crop two sets of local windows of size s × s, which are
then enhanced by LoFTR’s SA and CA. Similar to generat-
ing confidence matrix Pg , we compute pixel-to-pixel sim-
ilarities of two local windows followed by a dual-softmax
operation. Threshold-based masking and then mutual near-
est neighbor search are performed to find adjustable (̂i, ĵ),
which will be added to Mf . The new strategy is referred
to as fine-matching2. Putting everything together, we
have GeoFormer-embedded LoFTR as

(C0, F0), (C1, F1) ← CNN([I0, I1]),
Pc,Mc ← coarse-matching(C0, C1),
Pg,Mg ← GeoFormer(C0, C1,Mc),
Pf ,Mf ← fine-matching2(F0, F1,Mg).

(3)

3.4. Self-supervised Training

GeoFormer is trained in a self-supervised manner with
no need of manual annotation. For the given image I0, we
make I1 its geometric transformation by applying a con-
trolled homography on I0. With the homography, for each i
in Mf , its true correspondence j in I1 can be directly calcu-
lated. Accordingly, ground-truthed matches Gf w.r.t. Mf is
generated on the fly. In a similar manner, we obtain ground-
truthed matches Gc for both Mc and Mg . Data augmenta-
tion is performed by randomly sampling the homography.
Varied random photometric distortions, e.g. brightness and
contrast adjustment, motion blurring, and Gaussian noising,
are also applied on the paired images.

As shown in Fig. 2, three pixel-to-pixel similarity matri-
ces, i.e. Pc, Pg and Pf , are produced by the coarse matching
module, GeoFormer and the fine matching module, respec-
tively. Naturally, the matrices shall be close to their ground
truth. By computing a cross-entropy loss per matrix and
having the individual losses equally combined, we define a
multi-scale loss as follows:

− 1
|Gc|

∑
(i,j)∈Gc

log(Pc(i, j))

− 1
|Gc|

∑
(i,j)∈Gc

log(Pg(i, j))

− 1
|Gf |

∑
(i,j)∈Gf

log(Pf (i, j)).

(4)

Our training is performed by minimizing the multi-scale
loss. Compared with previously used auxiliary losses such
as flow map regression [3] that are indirectly related to the
task, our loss terms are consistent by definition, optimizing
the feature matching at the coarse ( 18 ) and fine ( 12 ) scales.

4. Experiments
We evaluate GeoFormer on three distinct types of im-

ages, i.e. natural images with large variations in viewpoints
and illumination [2], severely manipulated pictures [5], and
retinal images with varied eye conditions [9]. An overview
of our experimental data is given in Tab. 1.

Table 1: Experimental data. Models trained on Oxford-
Paris are tested on HPatches and ISC-HE for homography
estimation on generic images. Models trained on Lab-Aux
will be evaluated on FIRE for retinal image registration.

Dataset Image content Images Registered pairs

Training:
Oxford-Paris Outdoor / city scenes [20, 21] 11,455 auto-generatedLab-Aux [15] Color fundus photos 919

Test:

HPatches [2]
Planar photos with changes in
photometry or geometry 696 580

ISC-HE Severely manipulated pictures 372 186
FIRE [9] Color fundus photos 129 134

4.1. Common Setup

We implement GeoFormer using PyTorch. Subject to our
GPU resource (8 NVIDIA GeForce RTX 3090 cards), the
larger dimension of training images is set to 640 for nat-
ural images and 768 for retinal images. The optimizer is
Adam [12], with β = (0.9, 0.999) and an initial learning
rate of 0.001. Each mini-batch contains a single pair of
images. The maximum number of training epochs is 10.
At the inference stage, given the fine matches Mf , we use
cv2.findHomography with RANSAC as the robust es-
timator for homography fitting. All evaluation is performed
using an open-source toolbox2.

2https://github.com/GrumpyZhou/image-matching-toolbox
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4.2. Evaluation on Natural Images

4.2.1 Setup

Training data. We combine Oxford5K [20] and Paris6K
[21], denoted by Oxford-Paris, as our training images. Reg-
istered image pairs are auto-generated, see Section 3.4.

Test data. We adopt the widely used HPatches [2]. The
dataset has 57 sequences that undergo significant changes
in illumination and 59 sequences that manifest considerable
variations in viewpoints, rendering it a highly challenging
benchmark for homography estimation.

Evaluation criteria. Following [4, 26], we compute the
corner error between the images warped with the estimated
homography matrix and the ground truth homography ma-
trix as a correctness identifier. We report the area under the
cumulative curve (AUC) of the corner error up to threshold
values of 3, 5, and 10 pixels, respectively. All test images
are resized with shorter dimensions equal to 480 [26].

Baselines. We compare the following three sorts of
methods, i.e. deep homography estimation, detector-based
matching, and detector-free matching. For a reproducible
comparison, we prefer open-sourced methods, compiling a
list of 11 baseline methods as follows:
i) Deep homography estimation: CA-Unsupervised3[16],
BasesHomo4[31], and HomoGAN5[10].
ii) Detector-based matching: SIFT[18]+RootSIFT[1], Su-
perPoint6[4], SuperGlue7[24], and R2D28[22].
iii) Detector-free matching: NCNet9[23], LoFTR10[26],
ASpanFormer11[3], and DKM12[6].

Both ASpanFormer and our GeoFormer are developed
based on LoFTR. So for a head-to-head comparison, the
same training data is used to train these three models. DKM
is also retrained. As DKM samples good samples at ran-
dom, causing slightly varied performance per inference, we
report its averaged result. As for other learning-based meth-
ods, we directly take their author-released models.

4.2.2 Results

Tab. 2 presents the AUC scores of various methods. Recall
that the deep homography methods are specifically designed
for image pairs with a small baseline [16]. Hence, they do
not perform well on the challenging HPatches benchmark.
We thus exclude them from the remaining experiments.

3https://github.com/JirongZhang/DeepHomography
4https://github.com/megvii-research/BasesHomo
5https://github.com/megvii-research/HomoGAN
6https://github.com/rpautrat/SuperPoint
7https://github.com/magicleap/SuperGluePretrainedNetwork
8https://github.com/naver/r2d2
9https://github.com/ignacio-rocco/ncnet

10https://github.com/zju3dv/LoFTR
11https://github.com/apple/ml-aspanformer
12https://github.com/Parskatt/DKM

Table 2: Performance on HPatches.

Method Homography est. AUC
@3px @5px @10px mAUC

Deep homography:
CA-Unsupervised [16] 20.5 31.7 40.1 30.8
HomoGAN [10] 34.2 38.3 42.1 38.2
BasesHomo [31] 38.3 42.4 45.5 42.1
Detector-based matching:
SuperPoint [4] 43.4 57.6 72.7 57.9
SIFT [18] 46.3 57.4 70.3 58.0
R2D2 [22] 50.6 63.9 76.8 63.8
SuperGlue [24] 53.9 68.3 81.7 68.0
Detector-free matching:
DKM [6] 30.6 37.3 44.5 37.5
NCNet [23] 48.3 50.1 59.8 52.7
LoFTR [26] 58.5 69.8 81.1 69.8
ASpanFormer [3] 59.9 71.1 81.6 70.9

GeoFormer 68.0 76.8 85.4 76.7
1: w/o RANSAC 61.3 71.2 81.8 71.4
2: w/o Focused CA. 63.5 73.0 82.4 73.0
3: Linear Transformers 63.2 73.5 83.5 73.4
4: fine-matching 65.4 72.5 82.9 73.6
5: w/o Sparse SA. 66.0 75.4 84.8 75.4

Among the baselines, the better performance of ASpan-
Former and LoFTR (both use Transformers) and the lower
performance of NCNet (which uses no Transformers) than
the detector-based methods justify the importance of Trans-
formers for dense feature matching. The much lower perfor-
mance of DKM is due to the absence of depth information
in Oxford-Paris. Compared to ASpanFormer which uses the
dense flow map to localize attention regions, GeoFormer
has the largest improvement in terms of AUC@3px (68.0
versus 59.9). This result shows the accuracy of GeoFormer.

4.3. Evaluation on Manipulated Images

4.3.1 Setup

Models from Sec. 4.2 are adopted, without re-training.
Test data. We took images from the Facebook AI Image

Similarity Challenge (ISC) [5], where an original image has
been edited in varied manners, e.g. rotated and combined
with another image, to create a severely manipulated im-
age. Since the ISC image pairs are not registered, manual
and collective labeling was performed, producing a number
of 186 registered pairs in total. Each pair has 8 correspon-
dences at minimum. We term the testset ISC-HE. Different
from HPatches, ISC-HE has forgery characteristics such as
watermarks, cutouts, and image stitching. Homography es-
timation on ISC-HE is thus even more challenging.

4.3.2 Results

As Tab. 3 shows, GeoFormer surpasses all baselines, al-
though the performance difference is relatively small when
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compared with the HPatches experiment. We attribute this
to the extremely challenging nature of ISC-HE, see Fig. 1.

The detector-based methods, especially SuperGlue
(mAUC 42.9) and SIFT (mAUC 42.4), now surpasses the
best detector-free baseline, i.e. LoFTR (mAUC 41.5). We
interpret the result as follows. ISC-HE images were heavily
modified, with watermarks inserted and/or background re-
placed. Compared to the detector-free methods that perform
dense feature matching, the detector-based methods are less
sensitive to these modifications. Indeed, the better perfor-
mance of GeoFormer than both detector-free and detector-
based methods confirms our conjecture made in Sec. 1 that
the proposed method combines the best of both worlds.

Table 3: Performance on ISC-HE.

Method Homography est. AUC
@3px @5px @10px mAUC

Detector-based matching:
SuperPoint [4] 18.3 39.0 62.2 39.8
R2D2 [22] 18.2 39.6 62.9 40.2
SIFT [18] 19.9 42.4 65.0 42.4
SuperGlue [24] 19.6 42.2 66.9 42.9
Detector-free matching:
DKM [6] 7.1 15.3 25.6 16.0
NCNet [23] 9.6 25.3 51.2 28.7
ASpanFormer [3] 18.0 39.2 62.0 39.7
LoFTR [26] 18.7 41.0 64.8 41.5

GeoFormer 19.9 43.8 68.4 44.0
1: w/o RANSAC 17.5 40.6 66.2 41.4
2: fine-matching 18.5 41.4 65.6 41.8
3: Linear Transformers 18.4 42.5 68.2 43.0
4: w/o Focused CA. 19.0 42.7 67.7 43.1
5: w/o Sparse SA. 19.6 43.7 68.2 43.8

4.4. Evaluation on Retinal Images

4.4.1 Setup

Training data. We adopt the Lab-Aux dataset [15], which
has 919 color fundus photos in normal conditions.

Test data. We adopt the FIRE benchmark [9]: 129 im-
ages of size 2, 912 × 2, 912 acquired with a Nidek AFC-
210 fundus camera (FOV of 45◦) and 134 registered image
pairs. The pairs have been divided into three groups accord-
ing to their registration difficulty: Category S (71 pairs with
high overlap and no anatomical change), A (14 pairs with
high overlap and large anatomical changes), andP (49 pairs
with small overlap and no anatomical changes).

Evaluation criteria. Following [28, 15], the input im-
age size for inference is 768 × 768. We report Area Under
Curve (AUC) proposed in [9], estimating the expectation of
the acceptance rates w.r.t. the decision threshold and thus
reflects the overall performance. In particular, AUC per
group, i.e. easy(S), moderate(A), and hard(P), is computed.
In addition, we report three sorts of success rate, i.e. failed,

inaccurate, and accurate, see [28] for more details. All the
metrics are computed on the original size of 2912× 2912.

Baselines. We re-use the previously evaluated base-
lines whenever applicable: SIFT, SuperPoint, SuperGlue,
R2D2, NCNet, DKM, LoFTR, and ASpanFormer. In addi-
tion, we include the following three detector-based match-
ing methods specifically designed for retinal image registra-
tion: REMPE [8], GLAMPoints [28] and SuperRetina [15].

4.4.2 Results

As Tab. 4 shows, GeoFormer obtains the best mAUC of
75.6 and an accurate rate of 98.51, marginally better than
the best baseline, i.e. SuperRetina, which has mAUC of 75.5
and the same accurate rate of 98.51. Also notice that while
REMPE has a lower mAUC of 72.0, the method tops the
performance on the easy group (mAUC 95.8). It is worth
pointing out that both SuperRetina and REMPE are de-
signed specifically for retinal image registration. Moreover,
SuperRetina is semi-supervised trained with a set of man-
ually labeled keypoints, whilst REMPE takes around three
minutes per registration. In such a context, the result that
GeoFormer is on par with the state-of-the-art is appealing.

Table 4: Performance on FIRE.

Method Homography est. AUC Success rate
Easy Mod Hard mAUC Failed Inaccurate Accurate

Detector-based matching:
SIFT [18] 90.3 47.4 34.1 57.3 0 20.15 79.85
GLAMPoints [28] 82.5 51.7 49.0 61.1 0 7.46 92.54
SuperPoint [4] 88.2 64.9 49.0 67.4 0 5.22 94.78
SuperGlue [24] 88.5 68.9 48.8 68.7 0.75 3.73 95.52
R2D2 [22] 92.8 66.6 54.0 71.1 0 4.48 95.52
REMPE [8] 95.8 66.0 54.2 72.0 0 2.99 97.01
SuperRetina [15] 94.0 78.3 54.2 75.5 0 1.49 98.51
Detector-free matching:
DKM [6] 93.1 60.3 20.6 58.0 0 24.06 75.94
NCNet [23] 81.7 60.9 41.0 61.2 0 14.18 85.82
LoFTR [26] 92.0 71.1 35.9 66.3 0 3.01 96.99
ASpanFormer [3] 92.1 70.3 49.5 70.6 0 8.27 91.73
GeoFormer 94.4 76.6 55.9 75.6 0 1.49 98.51
1: w/o RANSAC 90.9 61.7 49.3 67.3 0 4.48 95.52
2: w/o Focused CA. 93.4 77.1 46.1 72.2 0 8.27 91.73
3: Lineal Transformer 91.3 72.0 55.5 72.9 0 3.01 96.99
4: fine-matching 94.0 74.9 54.3 74.4 0 3.76 96.24
5: w/o Sparse SA. 93.9 74.6 55.3 74.6 0 1.49 98.51

4.5. Understanding GeoFormer

We conduct ablation studies as follows. Some qualitative
results are shown in Fig. 3.

RANSAC. Recall that without RANSAC, only the query
points in Mc are updated via the focused CA module. As
Tab. 2, 3 and 4 show, GeoFormer w/o RANSAC leads a
clear performance drop in mAUC (HPatches 76.7 → 71.4,
ISC-HE 44.0→ 41.4, FIRE 75.6→ 67.3).

Sparse SA / Focused CA. Removing either sparse SA or
focused CA leads to consistent performance decrease, with
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(a) LoFTR (b) ASpanFormer (c) GeoFormer

Image Pairs Registered Image Pairs Registered Image Pairs Registered

Figure 3: Homography estimation by LoFTR, ASpanFormer and GeoFormer. Inliers / outliers determined by RANSAC
are shown in green / red color. From top to bottom are samples from HPatches, ISC-HE and FIRE, respectively.

the latter corresponding to a larger performance drop. Fo-
cused CA is more important for enhancing local features.

Linear Transformers? We substitute linear Transform-
ers for standard Transformers in sparse-SA and focused-
CA. Such a replacement hurts the performance (HPatches
76.7→ 73.4, ISC-HE 44.0→ 43.0, FIRE 75.6→ 72.9).

Fine-matching versus Fine-matching2. Using
LoFTR’s fine-matching as an alternative to our
fine-matching2 degenerates the performance consis-
tently (HPatches 76.7→ 73.6, ISC-HE 44.0→ 41.8, FIRE
75.6 → 74.4). Note that the fine-matching run here
uses GeoFormer, so it is better than the original LoFTR.

LoFTR w/ and w/o GeoFormer. On average, LoFTR
w/o GeoFormer has 2,633 matches with an inlier rate of
87%. By contrast, LoFTR with GeoFormer has 2,155
matches with an inlier rate of 90%. The result indicates
that the latter finds fewer yet more precise matches.

Possible failure cases. GeoFormer runs RANSAC on
the coarse matches by LoFTR to obtain an initial homog-
raphy guess. If the coarse matches fail in the first place,
GeoFormer shall fail. Such cases occur rarely.

Trained on MegaDepth [13]. GeoFormer again outper-
forms the baselines for homography estimation, see Tab. 5.

Applicability to other tasks? As Tab. 5 shows, Geo-
Former is marginally worse than LoFTR for visual localiza-
tion. Results on InLoc [30] are given in the supplement.

Table 5: Multi-task evaluation. Visual localization is
tested on Aachen Day-Night v1.0 (local feature evaluation)
[25]. Training data: MegaDepth.

Homography estimation Visual localization

HPatches ISC-HE FIRE 0.25m,2◦ 0.5m,5◦ 5m,10◦

LoFTR 75.0 39.3 73.6 79.6 91.8 100.0
DKM 79.8 41.0 74.8 78.6 85.7 100.0
GeoFormer 79.9 44.7 75.7 77.6 86.7 100.0

Efficiency. As shown in Tab. 6, compared to LoFTR,
the inference runtime and memory overhead of GeoFormer
increase by 24 ms and 184 MB, respectively.

Table 6: Runtime and memory per batch. Each batch has
a pair of 640×480 images. GPU: NVIDIA RTX 3090.

Runtime (milliseconds) GPU memory (MB)
training inference training inference

LoFTR 330 77 8,719 3,089
GeoFormer 540 101 11,056 3,273
DKM 400 208 11,217 7,627

5. Conclusions

GeoFormer is a new detector-free feature matching
method for self-supervised homograhy estimation. Exten-
sive experiments on three dataset, i.e. HPatches, ISC-HE
and FIRE, support the following conclusions. Compared
with the state-of-the-art trained on our data, i.e. ASpan-
Former on HPatches, SuperGlue on ISC-HE and Super-
Retina on FIRE, GeoFormer is clearly better than ASpan-
Former and SuperGlue, and marginally better than Super-
Retina. While both sparse self-attention and focused cross-
attention are necessary, the latter is more important for lo-
cal feature enhancement. By exploiting the RANSAC ge-
ometry, GeoFormer essentially enhances local features in
a detector-based manner, and meanwhile performs feature
matching in a detector-free manner. As such, the proposed
method combines the best of the two worlds.
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