Landscape Learning for Neural Network Inversion

Ruoshi Liu1 Chengzhi Mao1 Purva Tendulkar1 Hao Wang2 Carl Vondrick1

1Columbia University 2Rutgers University

Abstract

Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.

1. Introduction

Many inference problems in machine learning are formulated as inverting a forward model $F(x)$ by optimizing an objective over the input space x. This approach, which we term optimization-based inference (OBI), has traditionally been used to solve a range of inverse problems in vision, graphics, robotics, recommendation systems, and security [28, 38, 22, 10, 62, 17]. Recently, neural networks have emerged as the parameterization of choice for forward models [43, 53, 1, 49, 76, 68, 13, 78], which can be pretrained on large collections of data, and inverted at testing time in order to solve inference queries.

Optimization-based inference (OBI) has many advantages over feed-forward or encoder-based inference (EBI). Without encoder, OBI provides flexibility to adapt to new tasks, allowing one to define new constraints into the objective during inference. When observations are partially missing, OBI can adapt without additional training. Moreover, OBI naturally supports generating multiple and diverse hypotheses when there is uncertainty. Finally, OBI has intrinsic advantages for robustness, both adapting to new data distributions as well as defending against adversarial examples.

However, the key bottleneck for OBI in practice is the computational efficiency and the speed of inference. Feed-forward models are fast because they only require a single forward pass of a neural network, but OBI requires many (often hundreds) steps of optimization in order to obtain strong results for one example. Forward models in OBI are often trained with generative or discriminative tasks, but they are not trained for the purpose of performing gradient descent in the input space. Fig. 9 visualizes the loss landscape for uncurated examples. The loss landscape is not guaranteed to be an efficient path from the initialization to the solution, causing the instability and inefficiency.

In this paper, we propose a framework to accelerate and stabilize the inversion of forward neural networks. Instead of optimizing over the original input space, we learn a new input space such that gradient descent converges quickly. Our approach uses an alternating algorithm to learn the mapping between these spaces. The first step collects optimization trajectories in the new space until convergence. The second step updates the mapping parameters to reduce the distance between the convergence point and each point along the trajectory. By repeating these steps, our approach will learn a mapping between the spaces that allows gradient descent over the input to converge in significantly fewer steps.

Empirical experiments and visualizations on both generative and discriminative models show that our method can largely improve the convergence speed for optimization. We validate our approach on a diverse set of vision tasks, including GAN inversion [1], adversarial defense [45], and 3D human pose reconstruction [53]. Our experiments show that our method converges an order of magnitude faster without loss in absolute performance after convergence. As our ap-
proach does not require retraining of the forward model, it is compatible to all existing OBI methods with a differentiable forward model and objective function.

The primary contribution of this paper is an efficient optimization-based inference framework. In Sec. 2, we survey the related literature to provide an overview of forward model inversion problem. In Sec. 3, we formally define OBI (3.1); our method to learn an efficient loss landscape for OBI (3.2); a training algorithm for better generalization and robustness (3.3). In Sec. 4, we experimentally study and analyze the effectiveness of the mapping network for OBI.

2. Related Work

The different approaches for inference with a neural network can be partitioned into either encoder-based inference, which is feedforward, or optimization-based inference, which is iterative. We briefly review these two approaches in the context of our work. In addition, we also review representative work in meta-learning and discuss the similarities and differences with our work.

2.1. Encoder-based Inference

Encoder-based inference trains a neural network F to directly map from the output space to the input space. Autoencoder based approach [55] learns an encoder that maps the input data to the latent space. [59, 65, 70, 54] learn an encoder from the image to the latent space in GAN. Encoder based inference requires training the encoder on the anticipated distribution in advance, which is often less effective and can fail on unexpected samples [21, 33]. In addition, encoder-based method can only produce one reconstruction for under-constrained inverse problems [75], even if multiple outcomes can all be true given the partial input.

2.2. Optimization-based Inference

OBI methods perform inference by solving an optimization problem with gradient-based methods such as Stochastic Gradient Descent (SGD) [60] and Projected Gradient Descent (PGD) [41]. In these cases, the objective function specifies the inference task. Besides these methods which use a point estimate for the latent variable, one can estimate the posterior distribution of the latent variable through Bayesian optimization, such as SGLD [71].

Gradient based optimization methods have been used to infer the latent code of query samples in deep generative models like GANs [26] via GAN inversion [36, 31, 61, 81, 1, 2, 8, 29, 32]. Style transfer relies on gradient based optimization to change the style of the input images [32]. It can also create adversarial attacks that fool the classifier [18, 11, 48, 63]. Recently, back-propagation-based optimization has shown to be effective in defending adversarial examples [45, 47] and compressed sensing [9], [74] uses MAML [23] to accelerate the optimization process in compressed sensing.

Recently, constrained optimization was popularized for text-to-image synthesis by [19, 41]. They search in the latent space to produce an image that has the highest similarity with the given text as measured by a multi-modal similarity model like CLIP [56]. Test-time constrained optimization is also related to the idea of ‘prompt-tuning’ for large language models and vision-language models. [39] learns “soft prompts” to condition frozen language models to perform specific downstream tasks. Soft prompts are learned through backpropagation to incorporate signal from just a few labeled examples (few-shot learning). Visual prompting at both training time [7, 46] and testing time [67] also relies on effective latent variable optimization.

A major challenge for optimization-based inference is how to perform efficient optimization in a highly non-convex space. To address this, input convex model [4] was proposed so that gradient descent can be performed in a convex space. [66] introduced a method to retrain the generative model such as it learns a latent manifold that is easy to optimize. When the model cannot be changed and retrained, bidirectional inference [68] and hybrid inference [81, 80] uses an encoder to provide a good initialization for the optimization-based inference in a non-convex space. Our method does not retrain the generative model, but instead maps a new latent space into the original input space, allowing more efficient optimization.

2.3. Meta-Learning

Given a distribution of tasks, meta-learning aims to adapt quickly when presented with a previously unseen task. MAML [23] and related methods [25, 24] propose a method to learn a parameter initialization of a neural net-
work by differentiating through the fine-tuning process. To reduce the computational cost of MAML due to the 2nd degree gradient, [51] proposes a first-order meta-learning algorithm. Unlike MAML which include modifying the forward model (e.g. in [74]), our approach is able to keep the forward model fixed in order to maintain its learned rich priors. Instead of meta-learning of model initialization, a line of work [5, 57, 14, 72] proposed to learn an optimizer, often in the form of an RNN, in order to accelerate gradient descent. Unlike learned optimizers that try to create better optimization algorithms, our approach instead learns to remap the loss landscape which is compatible with any choice of optimizer, including standard SGD or learned ones.

3. Learning Landscapes for Efficient Inference

We present our framework to learn an efficient loss landscape for optimization-based inference (OBI) methods. In Sec. 3.1, we will define OBI. In Sec. 3.2, we will introduce our framework as well as the training objective. In Sec. 3.3, we will describe how to train our model with an alternating optimization algorithm and an experience-replay buffer.

3.1. Optimization-based Inference

Let $F(x) = \hat{y}$ be a differentiable forward model that generates an output \hat{y} given an input variable $x \in X$. For example, \hat{y} might be an image, and x might be the latent variables for a generative model. Given an observation y, the goal of OBI is to find the input $\hat{x} \in X$ such that an objective function $L(\hat{y}, y)$ is minimized. Formally, we write this procedure as:

$$\hat{x} = \arg\min_{x \in X} L(F(x), y)$$

(1)

When the objective function L and the model F are both differentiable, we can perform the optimization over input space X with gradient descent.

3.2. Remapping the Input Space

Instead of operating in the original input space X, we will create a new space Z where gradient descent is efficient and converges in a small number of iterations. We will use a neural network $\Theta : Z \rightarrow X$ that maps from the new space Z to the original space X. The parameters of the mapping Θ is the vector $\hat{\theta}$. The learning problem we need solve is to estimate $\hat{\theta}$ so that there is a short gradient descent path in Z from the initialization to the solution. Fig. 2 shows an overview of this setup.

We formulate an objective by rolling out the gradient updates on z, where we write $z_{t} \leftarrow z_{t-1} + \lambda \frac{\partial L}{\partial z_{t-1}}$ as the t^{th} update with a step size of λ. For gradient descent in space Z to be efficient, the goal of our introduced Θ is to move every step z_{t} as close as possible to the global minima:

$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{z,y} \left[\sum_{t=0}^{T} L(F(\Theta(z_{t})), y) \right]$$

(2)

where $z_{t} = \begin{cases} 0, & t = 0 \\ z_{t-1} + \lambda \frac{\partial L}{\partial z_{t-1}}, & t > 0 \end{cases}$

We visualize this process with a toy example in Fig. 3. Gradient updates on Θ w.r.t multiple steps z_{t} along a trajectory will cause the loss value on each step to be lowered. By learning the parameters of Θ across many examples, Θ can learn the patterns of optimization trajectories in X. For example, Θ can learn to estimate the step size in X and dynamically adjust it to each example. Moreover, Θ can learn to reduce non-convexity of the landscape.

Once we obtain $\hat{\Theta}$ with parameters $\hat{\theta}$, we do inference on a new example y through the standard optimization-based inference procedure, except in Z space now. Given the observation y, we find the corresponding \hat{x} through the optimization:

$$\hat{x} = \hat{\Theta}(\hat{z}) \text{ where } \hat{z} = \arg\min_{z \in Z} L(F(\hat{\Theta}(z)), y)$$

(3)

When the inverse problem is under-constrained, one can infer multiple hypotheses for \hat{x} by repeating the above optimization with a different random initialization for z_{0}.

3.3. Training

We use alternating optimization (AO) in order to train Θ jointly with estimating z for each example in the training set. Specifically, we first fix parameters of Θ and collect N optimization trajectories of z, each with length T. Adopting the same terminology from the robotics community for learning on continuous states [50], we term this an experience replay buffer. Subsequently, we randomly sample data from this buffer and train Θ to optimize the loss function. We alternate between these two steps for a fixed number of iterations with gradient descent for both. Depending on the application, the training time for Θ varied from one hour to
one day using a four GPU server. Please see the appendix for more implementation details.

We also experimented with an online version of the training algorithm, where we update parameters of Θ immediately after one update to z. However, in our experiments, we found this resulted in a slower convergence rate. We show these comparisons in the ablation experiments.

Algorithm 1 Learning Mapping Network Θ

1: **Input:** Ground truth y, step size λ_z, number of buffers B, number of data samples in a buffer N, number of optimization steps per sample T, loss function L, and forward model F.
2: **Output:** Learned mapping network Θ
3: Randomly initialize a mapping network Θ with parameters θ
4: for $b = 1, ..., B$ do
5: Initialize Experience Replay Buffer $\{(z_{t,i})^T_{t=1} | i=1\}$
6: for $i = 1, ..., N$ do
7: $z_0 \leftarrow 0$
8: for $t = 1, ..., T$ do
9: $z_t \leftarrow z_{t-1} + \lambda_z \frac{\partial}{\partial z_{t-1}} L(F(\Theta(z)), y)$
10: $\theta_{t,i} \leftarrow z_t$
11: end for
12: end for
13: for $j = 1, ..., T \cdot N$ do
14: Randomly sample z from previously collected buffer
15: $\theta_j \leftarrow \theta_{j-1} + \lambda_\theta \frac{\partial}{\partial \theta_{j-1}} L(F(\Theta(z)), y)$
16: end for
17: end for
18: Return θ

4. Experiments

The goal of our experiments is to analyze how well our proposed method can be applied to various existing OBI methods to improve the optimization efficiency. We demonstrate application of our method to three diverse OBI methods in computer vision, including both generative models and discriminative models. For each OBI method, the inference-time optimization objective of the baseline and ours can be written as:

Baseline: $\hat{x} = \min_{x \in X} L(F(x), y)$ \hspace{1cm} (4)

Ours: $\hat{z} = \min_{z \in Z} L(F(\Theta(z)), y)$ \hspace{1cm} (5)

Next, we provide the specific implementation of the loss term L for each application, along with quantitative and qualitative results. We also perform experiments to understand the loss landscape in Sec. 4.5 and perform ablations on different parts of our approach in Sec. 4.4.

4.1. GAN Inversion

We first validate our method on StyleGAN inversion [1]. We take a pretrained generator of StyleGAN [35] denoted as F. Let y be an observed image whose input variable we are recovering, we optimize the objective of Eq. 5 where the loss can be written as,

$$L(\hat{y}, y) = L_{lpips}(\hat{y}, y) + ||\hat{y} - y||^2_2 \hspace{1cm} (6)$$

where L_{lpips} is a perceptual similarity loss introduced in [79], $\hat{y} = F(\hat{x})$ for baseline and $\hat{y} = F(\Theta(\hat{z}))$ for ours. We train Θ on the train split of CelebA-HQ [34] dataset and evaluate on CelebA-HQ validation split for in-distribution experiments and LSUN-Cat [77] for distribution shifting (OOD) experiments. We compare the results from our method against the state-of-the-art encoder-based GAN inversion model [59].

Quantitative Results. From Fig. 4a, we see that in all experiments, optimization in our space Z consistently outperforms the baseline from the first optimization step to after convergence. This gap in performance is even larger when evaluated on OOD data. This suggests that the improvement in performance is not caused by memorizing the training data. Note that our image reconstruction performance after only 2 steps of optimization is able to outperform or be on-par with the baseline at 20 steps of optimization, resulting in a 10-fold improvement in efficiency. Even after convergence (after 2000 optimization steps), our reconstruction performance improves over the baseline by 15% for in-distribution evaluation and 10% for OOD evaluation. When compared with encoder-based GAN inversion [59], our method achieves better reconstruction after 11 steps of optimization for in-distribution data and 3 steps for OOD data.

Qualitative Results. From Fig. 8, we can see that our method already shows improvements on in-distribution data - it can almost perfectly reconstruct details like fine hair strands, the cap on the person’s head, the object in the person’s mouth as well as the text on it. Interestingly, our method is able to discover and reconstruct latents for cats while the encoder-based model fails miserably as shown in Fig 8. The performance on OOD data truly highlights the benefits of our method. We also visualize how the face generations evolve over the process of optimization in Fig. 5. We can see that in just 4 steps, our method is already able to reconstruct coarse features such as face orientation, skin tone and hair color, while the baseline has hardly deviated from the initialization in regard to any of these features. Further, in Fig. 7 we visualize reconstructions from partial observations where only the center of the face (row 1) or everything other than the mouth (row 2) is visible. We can see a variety of feasible possibilities for the hidden regions (e.g., different hairstyles, lip colors, expressions, etc) showcasing the diversity of the new latent space.
Figure 4: Optimization Performance. We visualize the trends of optimization performance compared with the baseline. In GAN Inversion (Left), we evaluate all models on test splits of CelebA-HQ [34] and LSUN-cat [77] (OOD) with loss defined in Eq. 6. Since encoder-based inference doesn’t involve optimization, we use a flat line to represent it. We perform 2000 steps of gradient descent for all models except encoder-based models. In 3D Human Pose Reconstruction (Right), we evaluate all models on test splits of GRAB [64] and PROX [27] (OOD) with loss defined in Eq. 7. We perform 200 steps of gradient descent for all models. For each step, we plot the average loss value of test splits.

Figure 5: Optimization Process for GAN Inversion. Comparing optimization process of our method and the baseline in order to reconstruct the ground truth image. Left shows the results from the baseline where optimization is done in the original input space X. Middle shows the results from our method where optimization is done in our space Z. Right column contains the ground truth image to each example. Each row corresponds to the same example.

4.2. 3D Human Pose Reconstruction

In addition to image generation, our framework also works for 3D reconstruction. For this, we use VPoser [53] – a variational autoencoder [37] that has learnt a pose prior over body pose. VPoser was trained on SMPL-X body pose parameters $y \in \mathbb{R}^{63}$ obtained by applying MoSh [42] on three publicly available human motion capture datasets: CMU Mocap [16], training set of Human3.6M [30], and the PosePrior dataset [3].

We take a pretrained VPoser decoder denoted as F. Our trained mapping network Θ projects a vector from the new input space $z \in Z$ to a vector in the original VPoser decoder’s input space $x \in X$. Similar to GAN Inversion, we optimize the objective of Eq. 5, where the loss function between predicted and ground truth pose parameters is,

$$L(\hat{y}, y) = ||\hat{y} - y||^2_2$$

where $\hat{y} = F(\hat{x})$ for the baseline and $\hat{y} = F(\Theta(\hat{z}))$ for ours. For training Θ, we use the GRAB dataset [64] which contains poses of humans interacting with everyday objects. We construct splits for novel video sequences – thus the test split will contain a seen human subject but a potentially unseen pose / demonstration by that subject. We evaluate on this test split for in-distribution experiments and on the PROX dataset [27] for OOD experiments, which contains poses of humans interacting in 3D scenes (e.g., living room, office, etc).

Quantitative Results. For SMPL-X human pose recon-
construction experiment, the results follow a similar trend as GAN inversion, with massive improvement in both convergence speed and final loss values after convergence (see Fig. 4b). Our method outperforms the baseline by 19% for in-distribution evaluation and 11% for OOD evaluation.

Qualitative Results. In Fig. 6 we visualize how the human pose reconstructions evolve over the process of optimization. Here, we observe that the reconstructions from steps 0 to 6 of the baseline are similar for both examples. On the other hand, our method caters to fast convergence for the varying examples, highlighting the general, yet efficient properties of our search space. Further, in Fig. 7 we visualize reconstructions from partial observations where the only joints visible are that of the upper body (row 3) or lower body (row 4). We obtain a wide range of feasible possibilities for the hidden joints demonstrating the diversity of the latent space.

4.3. Defending Adversarial Attacks

Our method is also applicable to discriminative models. A state-of-the-art defense [45] for adversarial attack optimizes the self-supervision task at inference time, such that the model can dynamically restore the corrupted structure from the input image for robust inference. Following the existing algorithm implementation, we optimize the input image via our method by minimizing the following discriminative loss function:

\[
L(F(r + a), y) = L(F(\Theta(z) + a), y)
\]

\[
= \mathbb{E}_{i,j} \left[-y_{ij}^{(s)} \log \frac{\exp(\cos(f_i, f_j))}{\sum_k \exp(\cos(f_i, f_k))} \right] + \lambda \left\| \Theta(z) \right\|^2,
\]

where \(a\) is the adversarial attacks that we aim to defend against, \(r = \Theta(z)\) is our additive defense vector to optimize, \(f_i\) are the contrastive features produced by the neural network \(F\) from the \(i^{th}\) image instance, and \(y_{ij}^{(s)}\) is the indicator for the positive pairs and negative pairs.

After obtaining the mapping network \(\Theta\) and the input variable \(z\), the prediction is \(\hat{y} = F'(a + \Theta(z))\), where \(F'\) is the classification model. Note that the adversarial loss is optimized as a proxy for increasing the robust classification accuracy. In addition, we add a \(L_2\) norm decay term for the generated noise \(z\) to avoid generating reversal vector that is too large.

<table>
<thead>
<tr>
<th>Defense Steps</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal (Baseline)</td>
<td>29.53</td>
<td>31.36</td>
<td>34.07</td>
<td>36.81</td>
</tr>
<tr>
<td>OBI (Ours)</td>
<td>44.48</td>
<td>46.84</td>
<td>50.42</td>
<td>50.42</td>
</tr>
</tbody>
</table>

Table 2: Adaptive attack experiments with BPDA (SemiSL). When the attacker adapts to the defense, we can still improve robustness.
Partial GT

Reconstruction from Random Initializations

Figure 7: Diversity of Masked Reconstructions. We visualize reconstructions for partially observable inputs from random initializations. The masked regions are not considered for loss computation, i.e., the gradient is set to be zero. By optimizing only on the partial observation, we obtain diverse, feasible solutions for the hidden regions. 5 or 4 out of 20 most representative samples are presented.

<table>
<thead>
<tr>
<th>Number of Steps</th>
<th>Full Model</th>
<th>Without AO and Buffer</th>
<th>Random Θ</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-distribution 20</td>
<td>3.082</td>
<td>3.583</td>
<td>4.417</td>
<td>4.456</td>
</tr>
<tr>
<td>OOD 20</td>
<td>4.932</td>
<td>5.127</td>
<td>5.135</td>
<td>5.292</td>
</tr>
<tr>
<td>In-distribution 200</td>
<td>1.964</td>
<td>3.034</td>
<td>2.723</td>
<td>2.569</td>
</tr>
<tr>
<td>OOD 200</td>
<td>3.498</td>
<td>4.756</td>
<td>4.823</td>
<td>4.617</td>
</tr>
</tbody>
</table>

Table 3: Ablation Study on mapping network. Number of Steps indicates the number of optimization steps performed during inference.

causing the minimal delay at inference time. In Table 1, our method outperforms the gradient descent method in [45] by up to 18% robust accuracy using a single step, providing a real-time robust inference method. In Table 2, even under the adaptive attack BPDA [6], our method also improves accuracy by up to 14%. Note that our method converges after 1 step of optimization, demonstrating the effectiveness of our approach.

4.4. Ablation Study

In this section, we present an ablation study by removing the proposed alternating optimization (AO) scheme and the experience replay buffer. We also compare against a Θ that is randomly initialized. From Table 3 in appendix, we discovered that for in-distribution, AO and training of Theta improves the optimization performance by 14% and 30% respectively. Such gap becomes 35% and 28% for evaluation on 200 steps. For OOD data, the advantage is further enlarged as shown in Table 3.

One surprising result we discovered experimentally is that OBI under a randomly initialized mapping network Θ consistently outperforms the baseline. We believe this is due to the fact that adding a Gaussian distribution to an underlying latent distribution of StyleGAN is beneficial in smoothing out loss landscape, making it easier to perform OBI. Similar random projection can also be found in [74].

4.5. Loss Landscape

To understand the underlying cause of the significant improvement in optimization brought by our mapping network θ, we visualize in Fig. 9 the loss landscape for performing optimization in the original input space X, and our projected space Z. To generate this visualization, we first perform 20 steps of optimization on the validation dataset to collect a set of recovered latents. We then perform principle component analysis (PCA) on these recovered latents to obtain two principle directions. Finally, for individual examples, we evaluate the loss for vertices on a meshgrid spanned by the two principle directions where the center is the last step of optimization.

From the visualization, we can see that the loss landscapes of the baseline are highly non-convex and contain
points whose loss are significantly higher than its neighboring regions, while our loss landscapes are significantly smoother, with the “spikes” removed. Besides, our loss landscapes also tend to be steeper than the baseline ones. These two phenomena directly cause our method to perform gradient descent faster and stabler.

5. Analysis

5.1. L-BFGS

After learning the mapping network θ, in addition to the main results presented in Fig. 4a, we also run the same experiments but with L-BFGS as optimizer [40], which tends to perform better empirically with a smoother loss landscape. As shown in table 5, after 10 steps of optimization, L-BFGS achieves much better results than Adam in our learned landscape, which is already significantly better than the baseline. Notably, applying L-BFGS in the original landscape does not achieve significant speedup, and for Celeb-HQ, around 18% of the examples failed to converge due to instability. These results further verify that our method successfully learns a smoother landscape for efficient optimization.
<table>
<thead>
<tr>
<th>level of Corruption</th>
<th>(N(0, 0.0^2))</th>
<th>(N(0, 0.1^2))</th>
<th>(N(0, 0.2^2))</th>
<th>(N(0, 0.3^2))</th>
<th>(N(0, 0.4^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>29.53%</td>
<td>18.95%</td>
<td>12.57%</td>
<td>6.30%</td>
<td>6.72%</td>
</tr>
</tbody>
</table>

Table 4: Evaluation of a mapping network trained with CelebA-HQ trainset and tested on a spectrum of datasets from the original CelebA-HQ data, which indicates that the mapping network does learn a mapping function that is surjective. Therefore, we empirically study the generalization performance by testing a mapping network trained on CelebA-HQ against a spectrum of datasets from very similar ones (in-distribution) to completely different ones (OOD).

5.2. More Evaluation on OOD Generalization

Since our proposed mapping network \(\Theta\) is parameterized by a neural network, there’s no guarantee that the learned mapping function is surjective. Therefore, we empirically study the generalization performance by testing a mapping network trained on CelebA-HQ against a spectrum of datasets from very similar ones (in-distribution) to completely different ones (OOD).

Synthetic Spectrum We first created a synthetic version of this spectrum of datasets by varying the level of Gaussian noise injected into the images of CelebA-HQ. With a higher level of Gaussian noise injected into the original images, more of the original image content is corrupted, creating a distribution of images further away from the original images.

Natural Image Spectrum We also created a natural image version of this spectrum of datasets containing: CelebA-HQ (original in-distribution testset), AFHQ-Cat (center-aligned cat faces), LSUN-Cat (unaligned cat images), Container-Ship ("Container Ship" class from ImageNet), and Gaussian noise with individual pixel sampled from \(N(0.5, 0.5^2)\). From left to right, images vary from very similar to human faces to very different.

<table>
<thead>
<tr>
<th>dataset</th>
<th>CelebA-HQ</th>
<th>AFHQ-Cat</th>
<th>LSUN-Cat</th>
<th>Container-Ship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>29.53%</td>
<td>35.99%</td>
<td>24.36%</td>
<td>16.87%</td>
</tr>
<tr>
<td>(N(0.5, 0.5^2))</td>
<td>6.60%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Evaluation of a mapping network trained with CelebA-HQ trainset and tested on a spectrum of datasets from the original CelebA-HQ (in-distribution) to Gaussian noise (OOD). AFHQ-Cat [15] is a dataset with aligned cat faces. LSUN-Cat [77] is a dataset with unaligned cat images. Container-Ship is 200 images sampled from "Container Ship" class of ImageNet [20]. The improvement is calculated by the percentage improvement of loss defined by Eq. 6 from baseline (without \(\theta\)) to ours (with \(\theta\)) after 200 steps of optimization.

<table>
<thead>
<tr>
<th>ours</th>
<th>L-BFGS</th>
<th>Baseline</th>
<th>ours</th>
<th>L-BFGS</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>4.06E+03</td>
<td>5.087</td>
<td>4.875</td>
<td>5.227</td>
<td>5.475</td>
</tr>
<tr>
<td>Cat (OOD)</td>
<td>2.239</td>
<td>3.504</td>
<td>N/A</td>
<td>4.875</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: L-BFGS vs. Adam in Learned Landscape (Ours)

5.3. Dependence on Training Dataset

From previous section, we know that the learned mapping network contains priors learned from the training data. To exclude such influence, we train our mapping network using randomly generated images made of Gaussian noise and evaluate on testset of CelebA-HQ. From table 7, we see that even trained with the task of reconstructing images of Gaussian noise, our mapping network still bring some improvement over the baseline model, though less significant.

<table>
<thead>
<tr>
<th>dataset</th>
<th>Baseline</th>
<th>Ours</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CelebA-HQ</td>
<td>2.569</td>
<td>2.396</td>
<td>6.72%</td>
</tr>
<tr>
<td>LSUN-Cat</td>
<td>4.617</td>
<td>3.717</td>
<td>19.49%</td>
</tr>
</tbody>
</table>

Table 7: Evaluation of a mapping network trained with images of Gaussian noise sampled from \(N(0.5, 0.5^2)\) clipped to [0, 1]. Numbers show the average loss defined in Eq. 6 evaluated on testset of CelebA-HQ and LSUN-Cat.

6. Conclusion

This paper presents a method to accelerate optimization-based inference to invert a forward model. We propose an approach that learns a new space that is easier than the original input space to optimize with gradient descent at testing time. Our experiments and analysis on three different applications in computer vision have shown that by learning this mapping function, optimization becomes more efficient and generalizes better to out-of-distribution data. Through quantitative and qualitative analysis, we found that such improvement in optimization performance comes from a more efficient loss landscape. Since optimization-based inference has many advantages over encoder-based inference, we believe methods to accelerate them will have many impacts in a variety of applications.

Acknowledgement This research is based on work partially supported by the NSF NRI Award 1925157, NSF STC LEAP, DARPA MCS program, and DARPA CCU program.
References

[16] CMU. Cmu mocap dataset. 5

