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Abstract

We focus on learning descriptive geometry and motion
features from 4D point cloud sequences in this work. Exist-
ing works usually develop generic 4D learning tools with-
out leveraging the prior that a 4D sequence comes from a
single 3D scene with local dynamics. Based on this obser-
vation, we propose to learn region-wise coordinate frames
that transform together with the underlying geometry. With
such frames, we can factorize geometry and motion to fa-
cilitate a feature-space geometric reconstruction for more
effective 4D learning. To learn such region frames, we de-
velop a rotation equivariant network with a frame stabiliza-
tion strategy. To leverage such frames for better spatial-
temporal feature learning, we develop a frame-guided 4D
learning scheme. Experiments show that this approach sig-
nificantly outperforms previous state-of-the-art methods on
a wide range of 4D understanding benchmarks.

1. Introduction
We have recently witnessed a surge of interest in under-

standing point cloud sequences in 4D (3D space + 1D time).

As the direct sensory input in a large number of modern AI

applications including robotics and AR/VR, point cloud se-

quences can faithfully depict the geometry and motion of a

dynamic scene, and therefore become critical for an intelli-

gent agent to perceive and interact with the physical world.

However, learning on such 4D data is very challenging

and is still in an immature stage. 4D point cloud sequences

usually couple 3D geometry and its dynamic motion to-

gether, resulting in quite redundant data in a very high di-

mensional space. This causes severe learning issues against

an effective and compact spatial-temporal representation.

Some existing efforts tackle the challenge through novel

4D backbone designs [8, 30, 7]. However, most of these

works treat the point cloud sequence as unstructured 4D

data and exploit generic 4D learning methods without lever-

aging the prior that the whole 4D sequence just depicts a

single 3D scene with dynamic objects. As a result, such

4D learning is usually not super effective and the learned
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Figure 1. Frame-aware spatial-temporal convolution. We propose

to learn frames for point cloud sequence. Upon obtaining the

frames, we could easily align the geometry regardless of the un-

derlying motion toward a more canonical and complete geometry

understanding. The motion-agnostic geometric features also allow

easier temporal association toward a better motion understanding.

spatial-temporal feature barely outperforms the spatial fea-

ture alone. Another line of works [7] uses self-supervised

representation learning to encourage geometry and motion

learning in a loosely decoupled manner. However, the de-

coupling still happens on the whole-scene level with a spe-

cial focus on camera ego-motion, restricting their efficacy

in modeling local dynamics on the object-level. We envi-

sion that successful geometry and motion decoupling is the

key toward effective 4D representation learning. This es-

sentially requires depicting the low-dimensional manifold

of the dynamic scenes from the redundant high-dimensional

4D data. This highly correlates to dynamic scene recon-

struction which requires understanding both camera ego-

motion and object motion and is an ongoing research

topic itself. Instead of explicitly reconstructing the dy-

namic scene without a quality guarantee, we seek a more

lightweight and flexible solution.

Our solution is based upon the following observation.

For a specific region in the scene, we can understand its

dynamic motion through establishing geometry-based and

temporally-consistent local coordinate frames. Specifically,

if we can establish a local coordinate frame based upon the

3D geometry in each timestamp and also make sure such
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frame transforms in the same way as the underlying geome-

try, then we can estimate the local rigid motion via compar-

ing such frames among corresponding regions across times-

tamps. Such local frames allow us to factorize the local

geometry understanding from its motion in a similar spirit

to equivariant 3D analysis [22, 14]. In particular, once we

establish temporally-consistent local coordinate frames, we

essentially have a way to align the geometry regardless of

the underlying motion toward a more canonical and com-

plete geometry understanding. In addition, the motion-

agnostic geometric features also allow easier temporal as-

sociation toward a better motion understanding.

Based upon the above observations, we present a novel

4D learning framework named LeaF. LeaF contains a frame

learning module and a frame-guided 4D learning module.

The frame learning module aims at producing geometry-

based temporally consistent coordinate frames at different

scales so that corresponding regions across timestamps can

be well-aligned. This allows for factorizing geometry learn-

ing from motion learning. And then the frame-guided 4D

learning module leverages the learned frames to facilitate a

more effective spatial-temporal feature aggregation. Specif-

ically, in the frame learning module, we design a hierar-

chical FrameNet which is essentially a rotation-equivariant

neural network able to produce coordinate frames equivari-

ant to the rotation of input geometry. The frame learning

process is very challenging though since apart from rota-

tions different observations from a point cloud sequence can

vary significantly due to sampling differences, density vari-

ation, or sensor noises. To make sure the rotation equivari-

ance of hierarchical FrameNet is not broken in practice, we

introduce a frame stabilization scheme to further regularize

the frame learning process. In the frame-guided 4D learn-

ing module, we first modify popular 4D operators (e.g. 4D

point conv) into their frame-guided version and then lever-

age frame-guided 4D convolution to process 4D point cloud

sequences. Since the motion information is factorized away

while convolving with the learned region frames, we addi-

tionally process the 4D sequences with just a globally con-

stant camera frame so that the motion information is faith-

fully kept. We fuse the learned features both from using

region frames and from using camera frames, allowing a

very effective 4D feature learning.

To verify the effectiveness of LeaF, we conduct experi-

ments on a wide range of 4D understanding tasks. And we

demonstrate significant improvements over previous state-

of-the-art methods (+2.0% accuracy on HOI4D action seg-

mentation [21], +1.51% accuracy on MSR action recog-

nition [17], +2.4% mIoU on HOI4D indoor semantic seg-

mentation [21], and +1.81% mIoU on Synthia4D outdoor

semantic segmentation [25]).

Our contributions are threefold: 1) we propose to learn

effective spatial-temporal 4D features via learning and ex-

ploiting region-wise coordinate frames and our framework

LeaF achieves state-of-the-art performance on a wide range

of 4D understanding benchmarks; 2) we design a hierar-

chical FrameNet along with a frame stabilization scheme

to learn equivariant region frames for motion-invariant ge-

ometry feature learning; 3) we present a frame-guided 4D

learning method that is able to benefit from equivariant re-

gion frames without losing the motion information.

2. Related Work

4D point cloud sequence understanding. Compared with

understanding static 3D point clouds, understanding 4D

point cloud sequences requires more on aggregating and

leveraging spatial-temporal information to perceive the ge-

ometry and dynamics. Several 4D backbones have been

proposed to address such challenges, and they can be di-

vided into two categories based on their representations.

The first is to voxelize raw point clouds and extract features

on 4D voxels, including MinkwoskiNet [3] which employs

4D spatial-temporal convolutions on 4D voxels. The second

is to perform directly on raw points, including Meteor Net

[19] which extends PointNet++[23] with a temporal dimen-

sion and explicitly tracks points’ motion for grouping, and

PSTNet[11] which constructs a point tube along temporal

dimension for 4D point convolution. State of The Art meth-

ods such as Point 4d Transformer [9] and PPTr [30] belong

to the second category and introduce transformer architec-

ture, in order to avoid point-tracking and to better capture

spatio-temporal correlation. There are works [7] focusing

on improving the optimization of a transformer.

Equivariant feature learning. The seminal work of Group

Equivariant Convolution Networks [4] (G-CNN) starts a

trend of leveraging group equivariance for neural networks.

For 3D data, rotation group equivariance or SO(3) equivari-

ance is significant, and there are roughly two categories of

SO(3) equivariant networks. The first category is the “filter

orbit” method. Inspired by group-equivariant convolution

on 2D images proposed in G-CNN [4], Equivariant Point

Network [2] and successive works [16, 18, 32] discretizes

SO(3) and analogously design group-equivariant operations

on point clouds. However, as such networks extend the orig-

inal features to multiple oriented features, they encounter

memory issues and may not be suitable for 4D point cloud

sequences understanding. The second category is the “filter

design” method. These methods [28, 5, 14] design the filter

forms to achieve exact SO(3) equivariance. “Filter design”

methods get rid of memory issues, but their representation

capability is usually limited due to the restricted filter form.

Rotation-invariant local descriptors. Local descriptor is

a synonym for local feature, which is widely used in tasks

such as 3D point cloud matching. Some of the rotation-
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Figure 2. Illustration of the proposed Learning Frame for 4D Point Cloud Sequence Understanding (LeaF). We use an SO(3) equivariant

network proposed in [22] to learn hierarchical frames denoted as region frames. We denote the identity frames as camera frames. Under

region frames and camera frames, region frame feature and camera frame feature can be extracted by frame-aware 4D backbones, and

are then fused by region frame-guided transformer to do downstream tasks such as action recognition, action segmentation, and semantic

segmentation. Data augmentation and regularization losses are also added to make the equivariant Hierarchical frame network robust to

re-sampling, down-sampling, and jittering.

invariant local descriptors first obtain rotation-equivariant

local reference frames (LRFs) either via PCA methods

[29, 13, 29, 31, 12, 15], or by incorporating learning meth-

ods to decide the axis in the tangent plane aside from nor-

mal [33], or completely by 3D rotation equivariant networks

[22]. Under those LRFs, local support sets can be trans-

formed into canonical representation, and thus invariant lo-

cal features can be extracted either by hand-crafted method

[29, 13, 29, 31] or by learning methods [12, 15]. Some

other methods [27, 26, 1, 6] directly extract invariant local

features from invariant local geometry property, e.g., the dot

product of point pair normals.

3. Method

We first provide an overview of our method in Sec-

tion 3.1. Next, in Sections 3.2, 3.3 we describe our ap-

proach in detail in terms of how to learn hierarchical frames

and how to use the learned frames, respectively.

3.1. Overview

Our core idea is to establish geometry-based and

temporally-consistent local coordinate frames to factorize

the local geometry understanding from its underlying mo-

tion. Such frames would allow us to align the local geome-

try from different timestamps toward a more complete geo-

metric understanding. Such geometric features are motion-

agnostic, which also allows easier temporal association to-

ward a better motion understanding. Realizing the idea

above requires addressing two challenges: how to learn

such frames and how to use such frames for 4D learning.

Regarding the first challenge, we introduce a frame

learning module as shown in Figure 2. Since geometric

features are naturally hierarchical, the frames have to be

hierarchical as well. We, therefore, propose to learn such

frames through a hierarchical Frame Network. We leverage

rotation equivariant networks [12] to design the FrameNet

so that its output transforms in the same way as the underly-

ing geometry. This network produces a hierarchy of frames

covering regions from local to global. The global region

frame allows factorizing ego-motion and aligning different

observations to a unified view. The local region frame can

align local geometry to a canonical space.

To stabilize the frame learning processing so that the

FrameNet could learn temporally consistent region frames

at different scales, we design a frame stabilization strategy.

Given an input point cloud, we first apply data augmenta-

tion to obtain the augmented version of it. Then we feed

both the original point cloud and the augmented one through

the FrameNet and enforce their predictions to be consistent.

Through various data augmentation strategies, we can keep

the rotation equivariance of our predicted frames regardless
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of the time-dependent data corruptions.

Regarding the second challenge of how to use the

frames, we design a frame-guided 4D learning scheme

as shown in Figure 2. Particularly, we design a frame-

guided 4D convolution operator which can generate local

and global features based on different frames at different

scales. By cascading a series of frame-guided 4D con-

volution operators in a similar way to existing 4D back-

bones [9, 11], we can extract 4D features under the guid-

ance of hierarchical frames. To keep the motion information

from the 4D input, we leverage two frame-guided 4D con-

volution branches with shared weights. For one branch, the

frames are just our learned region frames from the frame

learning module. For the other branch, we use a constant

camera frame across all timestamps and at all scales. The

first branch focuses on motion-agnostic geometric feature

learning while the second branch complements the motion

cues. A region frame-guided transformer is designed to fuse

the two branches for effective spatial-temporal features.

The designs above enable us to achieve various 4D point

cloud understanding tasks effectively including 3D action

segmentation, 3D action recognition, and 4D semantic seg-

mentation for both indoor and outdoor scenarios.

3.2. Hierarchical Frame Learning Module

In this section, we first revisit the concept of SO(3)-

equivariance and SO(3)-invariance of 3D point cloud. Then

we introduce the local-global frame learning pipeline with

equivariant neural network in detail. Besides, in order to

learn geometrically-stable and temporally-consistent local

coordinate frames, we also introduce a frame stabilization

scheme to regularize the frame learning process.

Revisit equivariance and invariance. Given a group G
and a certain domain V, a group action of G on V is a map-

ping from G × V to V (written as g · v for all g ∈ G and

v ∈ V), where each g corresponds to a bijection on V. A

mapping Φ : X → Y is equivariant with respect to a group

G (and its group action on X,Y), if for every g ∈ G, x ∈ X,

Φ(g · x) = g · Φ(x). (1)

Further, if the group action of G on Y is trivial, (i.e.,

g · y = y for any g ∈ G, y ∈ Y,) we say Φ is invariant

with respect to G. For convenience, we also say Φ(x) is

equivariant or invariant if Φ is equivariant or invariant.

For point clouds, let X = R
n×3 be the input domain,

and Y be the output domain. Permutation, translation, and

SO(3) rotation equivariance are usually taken into consid-

eration for point cloud networks. Consider a point cloud

X = (x1, x2, · · · , xn)
T ∈ X. For the permutation group

Sn, for some σ ∈ Sn, σ · X = (xσ(1), xσ(2), · · · , xσ(n))
T .

For the translation group R
3, for some v ∈ R

3, v · X =
(x1+v, x2+v, · · · , xn+v)T . For the rotation group SO(3),

Figure 3. Illustration of hierarchical Frame Learning Module. In-

variant features and equivariant features are extracted progres-

sively by EquivLayer, and are then used to generate frames by

FrameGen at each scale.

g ·X = (g ·x1, g ·x2, · · · , g ·xn)T , where each g corresponds

to a rotation matrix R ∈ R
3×3 and g · x = Rx.

Hierarchical frame learning. It is a challenging problem

to learn geometry-based and temporally-consistent local co-

ordinate frames to align the local region and factorize the

underlying geometry feature from its motion. We need to

construct hierarchical local region frames to accurately de-

pict the orientations of local regions. And the established

local coordinate frames should be based upon the 3D ge-

ometry in each timestamp and transform in the same way as

the underlying geometry changes. To satisfy such require-

ments, we draw inspiration from the equivariant 3D point

cloud analysis [22] and propose to use an equivariant net-

work to learn the geometry-based rotation equivariant local

coordinate frames F at different scales as shown in Figure 3.

Let Xl denote the downsampled point cloud at layer

l with N l points. Let H l and Vl denote per-point in-

variant scalar features and equivariant vector features of

Xl, respectively. We use X0, H0,V0 to denote the input

point cloud, invariant scalar and equivariant vector features,

where H0,V0 are all zeros. And we pass the featured point

cloud to a hierarchical equivariant network that aims to ex-

tract hierarchical invariant and equivariant features. Our

EquivLayer is adapted from the GVP-GNN layer [14] and

we defer the details to the supplementary material.

(Xl+1, H l+1,Vl+1) ← EquivLayerl+1(Xl, H l,Vl). (2)

Since EquivLayerl+1 is equivariant at all the layers, and

the inputs H0,V0 are invariant and equivariant features, the

output H l,Vl of each layer are also invariant and equivari-
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(a) Impact of Sampling (b) Impact of Density (c) Impact of NoiseExpected Frame

Figure 4. The learned frames are sensitive to disruptions if not

regularized, above are the frames’ possible distortions resulting

from the impact of sampling, density, and noise.

ant features, respectively.

To obtain hierarchical frames from hierarchical invari-

ant and equivariant features, we use another set of equiv-

ariant networks adapted from the GVP layers [14]. We use

FrameGenl to denote the network for the l-th layer.

Vl
out ← FrameGenl(H l,Vl), (3)

where hierarchical frames will be constructed from Vl
out =

(vl
out,1, · · · , vl

out,N l)(vlout,i ∈ R
2×3). We orthonormalize the

two vectors vlout,i,1, vl
out,i,2 for each point to get ul

i,1, ul
i,2

using the Gram-Schmidt method. Then we get the frame

F l
i =

[
ul
i,1, ul

i,2, ul
i,1 × ul

i,2

] ∈ R
3×3(i = 1, · · · , N l).

Since Vl
out is rotation equivariant, the constructed frames

are also rotation equivariant.

We refer to the whole module to generate hierarchical

frames as FrameNet.

Frame stabilization schemes. Frame learning is not an

easy task since the corresponding regions in different times-

tamps can vary significantly due to reasons beyond motion

such as sampling variation. To make sure the rotation equiv-

ariance of FrameNet is not broken, we introduce a frame

stabilization scheme to further regularize the frame learn-

ing process.

We expect the region frame of anchor points to represent

the orientation of a local region regardless of how the an-

chor points are sampled. However, our FrameNet is point

cloud-based and its prediction could vary dramatically as

the anchor points in the region vary (Figure 4 (a)). Besides,

the local region frame is also affected by the density of point

clouds. When a local region is very sparse while the shape

intensely deforms, the estimated region frame will also be

extremely disrupted (Figure 4 (b)). The density of the same

local region in different timestamps changes due to the ego-

motion and the occlusion variation or when the noise of the

point cloud is very large (Figure 4 (c)). Such disruptions

can break the temporal consistency of the region frame, and

we expect FrameNet to be sampling, density, and noise in-

variant for stable and temporally-consistent region frames.

To achieve the goal above, we introduce several self-

supervised losses to encourage the learned frame to be in-

variant under different point cloud augmentation strategies:

Laug =
∑
i

cosineSim(F̂ aug
i , Fi)

N
, (4)

where cosineSim means cosine similarity, N is the number

of anchor points, F̂ aug is the frame of anchor points after

augmentation, and F is the frame of original anchor points.

Since the anchor points do not strictly match after the aug-

mentation, we take the nearest neighbors of the original an-

chors in the augmented anchors as the corresponding points.

More specifically, we apply three types of augmentations

including point cloud re-sampling, down-sampling, and jit-

tering. Therefore, the final self-supervised loss is:

Lstablizer = αLre-sampling + βLdown-sampling + γLjittering, (5)

where α,β,γ are balancing coefficients set as 1.

3.3. Frame-guided 4D Learning Module

After obtaining the hierarchical region frames which are

geometrically stable and temporally consistent, we can use

these frames to factorize the region-wise geometry feature

from its motion by aligning corresponding regions. Instead

of explicitly aligning regions at all different scales, we mod-

ify popular 4D operators including point 4D convolution

and point 4D transformer so that they could learn the ge-

ometry feature as if corresponding regions are aligned.

Frame-aware 4D operations. We first modify the point 4D

convolution [9] into a frame-aware operator. Unlike the tra-

ditional point 4D convolution convolving directly between

an anchor point and its spatiotemporal neighbor points, the

frame-aware version first divides the neighbor points based

on their timestamps, then picks up the nearest point from the

anchor point in each division, aligns different divisions to

the anchor point frame based upon the frames of the picked

points, and finally conduct convolution in the aligned space.

The frame-aware convolution layer can be mathematically

described as:

f l+1
i =

∑
j∈N(i)

M l
1(F

lᵀ
i,tj

(xj − xi), tj − ti)�M l
2(f

l
j), (6)

where N(i) is the spatiotemporal neighbor of the anchor

point i, while xi is its coordinate and f l
i is its feature on

the l-th level. F l
i,t is the l-th frame of the nearest neighbor

of xi in timestamp t.
∑

is aggregation implemented with

sum-pooling or max-pooling, M l
1,M

l
2 are MLP networks,

and � is summation. The output feature can be seen as the

representation under the region frames, and we denote such

feature as “region frame feature”. In particular, if we let the

frames be identity matrices, this operation will be exactly

the vanilla P4Dconv, and the output feature would be the

representation under the original camera frame and we refer

to it as “camera frame feature”.

We then modify the point 4D transformer [9] into a

frame-aware version. Since the transformer operator usu-

ally follows the 4D convolution, we consider its input as
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a set of point tokens each equipped with a region frame

as well as its feature within the frame. In this case, what

we need to do is to make the positional embedding frame-

aware so that the whole transformer is frame-aware. To be

specific, we use Fglobal,t to represent the global frame at

timestamp t and use Wp to represent a linear transforma-

tion. Then considering a point token with a spatiotemporal

coordinate of (x, t), its positional embedding can be written

as p = Wp ·
(
F ᵀ

global,tx
t

)
.

It is worth mentioning that the frame-aware method can

be plug-and-play for many other operators, for example, we

can also transform RS-CNN into a frame-aware RS-CNN to

extract invariant features using hierarchical frames. Specif-

ically, the frame-aware RS-CNN is [14]:

hl+1
i ← max

j∈N(i)

(
M

(
‖F lᵀ

i rij‖, F lᵀ
i rij

)
� hl

j

)
(7)

where max denotes the max pooling operation, M is

an MLP network, � denotes element-wise multiplication,

N(i) denotes the neighbors of point i, rij denotes the rel-

ative coordinates between point i and j, h denotes the fea-

tures and F denotes the learned region frames.

Frame-guided feature learning. With the frame-aware 4D

operation we can extract hierarchical region frame features,

which are inherent representations of the underlying geom-

etry but lacks the motion information. So such region frame

features are not enough to fully encode the 4D spatiotem-

poral information. On the other hand, the camera frame

feature computed under the camera coordinate frame faith-

fully retain the motion information and can be a good com-

plement to the region frame features. We then propose to

combine both features to obtain a more powerful and repre-

sentative 4D feature. In particular, we design a two-tower

framework to extract the region frame feature and camera

frame feature. To fuse features from the two towers, we

propose to use the region frame feature to guide the cam-

era frame feature learning through an attention map which

aligns the local region across different timestamps into a

canonical space and allows easier temporal associations for

better motion understanding, as shown in Figure 5.

To be specific, the queries and keys are generated from

the region frame feature but the values are generated from

the camera frame feature. We formulate the fusion process

as a self-attention operation below:

Qr = Wqfr,Kr = Wkfr, Vc = Wvfc,

attention(Qr,Kr) = softmax

(
Qr,Kr√

Ck

)
, (8)

O = Vc · attention(Qr,Kr),

where fr is the region frame feature, fc is the camera frame

feature. The output O is the camera frame feature fused

Region Frame Feature Camera Frame Feature

ValueAttention Score

Timestamp 1
Timestamp 2

Timestamp 3

Timestamp 1

Fused Feature

Figure 5. An illustration of the region frame-guided transformer.

The input is the feature of multiple timestamps, For each times-

tamp (take timestamp 1 for example), the attention scores are com-

puted by the correlations between timestamp 1 and all the other

timestamps, then the output of timestamp 1 is the weighted sum of

values encoded from the camera frame feature.

under the guidance of the region frame feature. Then, we

can add different task heads to complete various 4D point

cloud sequence understanding tasks.

4. Experiments
In this section, we cover four 4D point cloud sequence

understanding tasks: action segmentation on HOI4D [21],

action recognition on MSR-action3D [17], indoor semantic

segmentation on HOI4D [21], and outdoor semantic seg-

mentation on Synthia4D [25], in Section 4.1, 4.2, 4.3 and

4.4 respectively. In addition, we provide extensive ablation

studies to validate our design choices in Section 4.5.

4.1. Action Segmentation on HOI4D

Setup. To demonstrate the effectiveness of our method, we

first conducted experiments on the HOI4D action segmen-

tation task. For each point cloud sequence, we need to pre-

dict the action labels for each timestamp. We followed the

official data split with 2971 sequences as the training set

and 892 as the test set. Each sequence has 150 timestamps

with 2048 points per timestamp. We use PPTr, an improved

variant of the P4Transformer, as our backbone, which lever-

ages two hierarchical transformers to process point cloud

sequences and supports appending invariant features as ad-

ditional inputs. We compare our method with baseline

methods including P4Transformer and original PPTr. In

this experiment, we use a two-scale FrameNet to learn 128

local frames and one global frame. We use frame-aware

4DConv to extract the invariant feature. The following met-

rics are reported: framewise accuracy (Acc), segmental edit
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Table 1. Action segmentation on HOI4D dataset

Method
Clip

Length
Acc Edit F1@10 F1@25 F1@50

P4Transformer [8] 150 71.2 73.1 73.8 69.2 58.2
PPTr [30] 150 77.4 80.1 81.7 78.5 69.5

PPTr+Ours 150 79.4+2.0↑ 83.9+3.8↑ 85.0+3.3↑ 81.9+3.4↑ 73.3+3.8↑

distance, as well as segmental F1 scores at the overlapping

thresholds of 10%, 25%, and 50%. Overlapping thresholds

are determined by the IoU ratio.

Result. As reported in Table 1, our method consistently has

big improvements over previous state-of-the-art method in

all metrics. This demonstrates that the region frame fea-

ture can significantly improve the communication of point

clouds at different timestamps, to extract a more effective

spatiotemporal representation. By introducing the region

frame features for 4D point cloud sequence, we can fac-

torize the local geometry understanding from its motion so

that the network can have a better understanding of geome-

try and motion respectively.

4.2. Action Recognition on MSR-Action3D

Setup. Following P4Transformer and PPTr, we used the

MAR-Action3D dataset, which consists of 567 human point

cloud sequences, including 20 action categories. Each

timestamp is sampled with 2,048 points. The point cloud

sequences are segmented into multiple segments. During

training, video-level labels are used as segment-level labels.

As in action segmentation, we use PPTr as the base network.

A two-layer FrameNet is used to extract local and global

frames. And a frame-aware 4DConv is used to extract in-

variant features. To ensure a fair comparison, we also use

primitive fitting to divide each human point cloud into four

regions. To estimate the sequence-level probabilities, we

take the mean of all segment-level probability predictions.

Result. As reported in Table 2, our method also outper-

form previous methods in 3D action recognition tasks. We

find that when the clip length is 8, the improvement of our

method is 0.48, while the improvement of our method is

1.51 when clip length is 24. This indicates that our method

performs better in longer sequences. This also demonstrates

that the proposed region frame feature can factorize geom-

etry learning from motion learning and achieve better tem-

poral correlation.

4.3. Indoor Semantic Segmentation on HOI4D

Setup. To verify that our approach can be effective for

fine-grained tasks as well, we conducted further exper-

iments on HOI4D for 4D semantic segmentation. The

dataset consists of 3863 4D sequences, each including 300

timestamps of point clouds, for a total of 1.158M times-

tamps of point clouds. For one timestamp, there are 8192

Table 2. Action recognition on MSR-Action3D dataset [17]

Method Input Clip Length Video Acc@1

PointNet++ [24] point 1 61.61

point 8 81.14
MeteorNet [20] point 16 88.21

point 24 88.50

point 8 83.50
PSTNet [10] point 16 89.90

point 24 91.20

point 8 83.17
P4Transformer [9] point 16 89.56

point 24 90.94

point 8 84.02
PPT [30] point 16 90.31

point 24 92.33

point 8 84.50+0.48↑
PPTr+Ours point 16 91.50+1.19↑

point 24 93.84+1.51↑

Table 3. Semantic segmentation on HOI4D dataset [21]

Method Clip Length mIoU

P4Transformer [8] 3 40.1

PPTr [30] 3 41.0

P4T+Ours 3 43.5+2.4↑

points. We follow the official data segmentation of HOI4D

with 2971 training scenes and 892 test scenes. In this

task, to avoid the complicated primitive fitting process, we

choose P4Transformer as the base network. A three-scale

FrameNet is used to learn three scales of the frames, re-

spectively 512 and 128 local region frames as well as the

global frame. In the semantic segmentation tasks, we all

use a frame-aware RS-CNN to demonstrate that the frame-

aware method can be plug-and-play for other operators. Ac-

cordingly, we use a three-scale RS-CNN to extract “region

frame” features. We use mean IoU(mIoU) % over 39 cate-

gories as an evaluation metric.

Result. The results are shown in Table 3. We can ob-

serve that we improve the performance by a large margin

compared with previous methods. Even without a primi-

tive fitting process, our method still outperforms PPTr by

2.4%, which demonstrates that our local region feature is

also helpful in the fine-grained 4D understanding task.

4.4. Outdoor Semantic Segmentation on Synthia4D

Setup. Synthia 4D is a synthetic dataset generated from

Synthia dataset. It consists of six sequences of driving sce-

narios where both objects and cameras are moving. Follow-

ing previous works, we use the same training/validation/test

split, with 19,888/815/1,886 timestamps, respectively. We

use P4Transformer as the base network, and other settings

are the same as the experiments on semantic segmentation

on HOI4D. The mean Intersection over Union (mIoU) is

used as the evaluation metric.

Result. As shown in Table 4, there is still a per-
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Table 4. Evaluation for semantic segmentation on Synthia 4D

Method Clip Length Bldn Road Sdwlk Fence Vegittn Pole Car T.Sign Pedstrn Bicycl Lane T.Light mIoU

3D MinkNet14 1 89.39 97.68 69.43 86.52 98.11 97.26 93.50 79.45 92.27 0.00 44.61 66.69 76.24

4D MinkNet14 3 90.13 98.26 73.47 87.19 99.10 97.50 94.01 79.04 92.62 0.00 50.01 68.14 77.24

PointNet++ 1 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17 79.35

MeteorNet-m 2 98.22 97.79 90.98 93.18 98.31 97.45 94.30 76.35 81.05 0.00 74.09 75.92 81.47

MeteorNet-l 3 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60 81.80

P4Transformer 1 96.76 98.23 92.11 95.23 98.62 97.77 95.46 80.75 85.48 0.00 74.28 74.22 82.41

P4Transformer 3 96.73 98.35 94.03 95.23 98.28 98.01 95.60 81.54 85.18 0.00 75.95 79.07 83.16

PPTr 1 97.14 98.42 94.12 97.00 99.59 97.86 98.54 79.68 89.20 0.00 77.26 77.42 83.85

PPTr 3 97.51 98.21 95.11 96.81 99.65 97.86 98.01 80.98 90.60 0.00 78.21 76.89 84.15

PPTr 30 98.01 98.63 95.26 97.03 99.70 97.95 98.76 81.99 91.20 0.00 78.29 77.09 84.49

P4T+Ours 3 98.22 98.89 97.97 96.85 99.60 97.90 99.00 82.73 91.50 0.00 78.03 78.92 84.97+1.81↑

formance improvement, which also shows the effective-

ness of our approach for outdoor 4D semantic segmen-

tation tasks. It is worth mentioning that our network

is based on P4Transformer, so a fair comparison is be-

tween P4Transformer with 3 timestamps and our method

with 3 timestamps. The mIoU going from 83.16% to

84.97%(+1.81%) demonstrates the effectiveness of our

method. Moreover, our method associates 3 point clouds

by region frame feature, which is even better than PPTr’s

method of using 30 sequential point clouds.

4.5. Ablation and Discussion

Efficacy of frame stabilization schemes. The frame learn-

ing process is challenging due to sampling differences, den-

sity variation, or sensor noises. To make sure the rotation

equivariance of MS-FrameNet is not broken, we introduce

a frame stabilization scheme to regularize the frame learn-

ing process. We run ablation studies with and without frame

stabilization schemes to quantify their efficacy. We find that

learning region frames without frame stabilization schemes

results in a 0.8% accuracy and 1.8% segmental edit distance

drop on the HOI4D action segmentation task. This result

proves that our frame stabilization schemes play an impor-

tant role in learning high-quality region frames.

Learning frames v.s non-learning frames. In the frame

learning module, we design an MS-FrameNet which is es-

sentially a rotation-equivariant neural network able to pro-

duce region frames equivariant to the rotation of input ge-

ometry. To demonstrate the advantages of learning frames,

we compare our method with PCA which is a non-learning

method to obtain local reference frames(LRFs). When re-

placing our frame-learning module with PCA frames, the

best result we can get is 78.3% accuracy on HOI4D action

segmentation task, which is 1.1% lower than our method.

This experiment confirms the value of learning frames com-

pared with the non-learning method.

Compared with random frames and identity frames. To

further examine the value of the frame learning process,

we conduct another two experiments that frame-guided 4D

learning with random frames and identity frames.

With random frames, we can only achieve 78.0% accu-

racy on HOI4D action segmentation which is 1.4% lower

than our method. This demonstrates that random frames

are not friendly for cross-time association and temporally

consistent frames are important for frame-guided learning.

With identity frames, the best result we can get is 76.3%
which is even 1.1% lower than PPTr without frame learn-

ing, showing that the improvement is not brought about by

a simple ensemble strategy.

Action segmentation with large motion. To better ver-

ify that the motion-agnostic geometric features allow eas-

ier temporal association toward a better motion understand-

ing, we conduct experiments on HOI4D action segmen-

tation tasks with large motion. We only select the se-

quences where the maximum distance of the object move-

ment exceeds 0.5 m to construct a subset of HOI4D with

900 training scenes and 300 test scenes. Without learning

frames, PPTr can get 29.22 accuracy on action segmenta-

tion, while our method can achieve 36.39% accuracy. This

result proves that our method has a stronger ability to deal

with point cloud sequences with large motion.

The efficiency comparison. Our method does not intro-

duce a significant increase in computational overhead. The

4D backbone requires much heavier computation compared

with the lightweight FrameNet. So as shown in Table 5,

introducing FrameNet in Frame-aware P4DConv does not

significantly increase FLOPs or parameters compared with

P4DConv. Worth to mention, since our method relies on

both the invariant and non-invariant feature branches, the

overall computational overhead is roughly twice that of a

single branch P4DConv.

Table 5. LeaF does not introduce a significant increase in compu-

tational overhead. All tests were conducted on a single NVIDIA

GeForce RTX 3090 graphics card, with a batch size of 1.

Method FLOPs Parameters

P4DConv 7.550G 8.192K

Frame-aware P4DConv 8.428G 8.314k

Only FrameNet 878.2M 122.0B

5. Conclusions

This paper proposes to use SO(3) equivariant networks

to learn orientations for 4D point cloud videos and to ob-

tain inherent features of the point clouds. The core idea is

that the inherent features are motion-independent and this

feature can be better correlated between contexts. We also

propose three constraint terms to guide the learning of frame

in order to obtain stable and consistent point cloud orienta-

tions. Experiments prove that our proposed method is ef-

fective and significantly outperforms existing methods.
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