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Abstract

Long-Term Person Re-Identification (LT-ReID) has be-
come increasingly crucial in computer vision and biomet-
rics. In this work, we aim to extend LT-ReID beyond pedes-
trian recognition to include a wider range of real-world hu-
man activities while still accounting for cloth-changing sce-
narios over large time gaps. This setting poses additional
challenges due to the geometric misalignment and appear-
ance ambiguity caused by the diversity of human pose and
clothing. To address these challenges, we propose a new
approach 3DInvarReID for (i) disentangling identity from
non-identity components (pose, clothing shape, and texture)
of 3D clothed humans, and (ii) reconstructing accurate 3D
clothed body shapes and learning discriminative features
of naked body shapes for person ReID in a joint manner.
To better evaluate our study of LT-ReID, we collect a real-
world dataset called CCDA, which contains a wide vari-
ety of human activities and clothing changes. Experimen-
tally, we show the superior performance of our approach
for person ReID. Code is available at http://cvlab.
cse.msu.edu/project-reid3dinvar.html.

1. Introduction

Person Re-Identification (ReID) aims to recognize and
match a specific pedestrian in various locations and at dif-
ferent times [1, 26, 29, 57, 62]. This is a crucial task for
various applications, including crime prevention, forensic
identification and security monitoring [13, 63].

Most existing works [11, 12, 24, 25] in this field concen-
trate on the short-term scenarios, assuming that pedestrians’
clothing remains unchanged. However, in this paper, we fo-
cus on a more challenging yet practical scenario of Long-
Term Person Re-Identification (LT-ReID), where the objec-
tive is to recognize individuals over long time periods while
taking into account variations in clothing and diverse hu-
man activities. For the first time, we extend person re-
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Figure 1. Illustration of the differences between various person re-
identification (ReID) settings. Both (a) conventional/short-term
and (b) cloth-changing person ReID benchmarks often restrict
subjects to walking or standing, limiting their applications in real-
world scenarios. This paper expands on the long-term person re-
identification (LT-ReID) setting by tackling a wider range of hu-
man activities, increasing its practicality.

identification beyond pedestrian recognition to encompass
a wider range of human activities, such as identifying stu-
dents playing tennis or soldiers crawling in the field (see
Fig. 1). This setting poses new challenges due to the geo-
metric misalignment and appearance ambiguity caused by
the diversity of human poses and their clothing.

Recently, various approaches [14,18,20,23,27,46,56,59]
have been proposed to investigate LT-ReID under clothing
changes. They extract clothing-irrelevant features for ro-
bust person ReID by custom-designed architectures [19,20],
training process [27], loss functions [14], and data aug-
mentation [64]. However, these methods only attempt to
mine texture-insensitive body-structural cues in 2D space
while ignoring the prior knowledge that the human body is
a 3D non-rigid object. A new line of research introduces
3D priors for LT-ReID by either lifting 2D images to a 3D
space [67] or including 3D body reconstruction as an auxil-
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iary task [5]. However, without modeling the 3D clothing,
the clothing-sensitive features can not be properly disen-
tangled in either method. Moreover, none of the methods
above handle body images with diverse activities.

Given the numerous variations in body images, includ-
ing body pose, clothing, and view angles, we posit that the
most reliable identity cue for LT-ReID is the 3D naked (un-
clothed) body shape, if it can be accurately and discrimi-
nately estimated from a 2D body image. Obviously this is
extremely challenging due to confounding factors and the
lack of supervision, such as paired images and 3D naked
body scans. However, taking inspiration from advance-
ments in 3D feature learning for face recognition [32, 41],
we propose a new algorithm, 3DInvarReID, to disentan-
gle identity (naked body) from non-identity components
(pose, clothing shape and texture) of 3D clothed humans.
This innovative approach not only reconstructs accurate
3D clothed body shapes that faithfully represent the input
2D images, but it also simultaneously learns discriminative
naked shape features that effectively enhance LT-ReID.

An effective representation of the 3D shape and texture
of the human body is a key component of such a learning-
based process. To this end, we propose a joint two-layer
neural implicit function to represent 3D humans, where
identity, clothing shape, and texture components are disen-
tangled into latent representations. Based on the composite
model, we jointly learn a model fitting module to disen-
tangle identity from non-identity components (body pose,
clothing shape and texture) from 2D images. Modeling
texture, along with a differentiable renderer enables us to
compare the rendered image with the input image in a self-
supervised manner. This allows the learning process to be
supervised by both image reconstruction loss and identifi-
cation loss, using a set of 2D images with identity labels
only. Comprehensive experiments demonstrate the superi-
ority of our method in diverse ReID benchmarks. Addition-
ally, to advance the research in the field of LT-ReID, we
collect a Cloth-Changing and Diverse Activities (CCDA)
dataset (see Fig. 1). The CCDA dataset is specifically de-
signed to evaluate the ReID of the person undergoing both
human activities and changes in clothing.

In summary, the contributions of this work include:

⋄ We propose a novel LT-ReID method, 3DInvarReID,
to learn clothing/pose invariant 3D shape representation.

⋄ We devise a novel joint two-layer implicit model that
fully models a textured 3D clothed human. Our approach
includes a robust and discriminative fitting process that dis-
entangles identity and non-identity features in reconstruct-
ing two-layer 3D body shapes from real-world images.

⋄ We achieve superior performance in both LT-ReID ac-
curacy and 3D body shape reconstruction.

Method
End-to-End

trainable
Model
texture Discriminative

Model
type

3D modeling methods
SCANimate [44] - ✗ ✗ universal
SMPLicit [10] - ✗ ✗ universal
Neural-GIF [49] - ✗ ✗ individual
SNARF [7] - ✗ ✗ individual
gDNA [6] - ✗ ✗ universal

3D fitting methods
PiFu [42] ✗ ✓ ✗ -
PiFuHD [43] ✗ ✗ ✗ -
Arch [21] ✗ ✓ ✗ -
Arch++ [15] ✗ ✓ ✗ -
ICON [55] ✗ ✓ ✗ -
ClothWild [37] ✗ ✗ ✗ -
PHORHUM [2] ✓ ✓ ✗ -
3DInvarReID ✓ ✓ ✓ universal

Table 1. Overview of the 3D clothed human modeling (top) and
fitting (bottom) methods. Our method is the only one that models
clothing texture and learns discriminative information compared to
3D modeling methods. Compared to 3D fitting methods, our end-
to-end trainable pipeline enables disentangling identity-sensitive
shape features from whole-body images.

2. Prior Work

Person Re-identification. Person ReID aims to match
a person across images captured by a distributed camera
system. The majority of prior methods [11, 12, 24, 25, 28,
52,58,60] assume a short-term application scenario without
clothing changes by the person. This limitation has gener-
ated a growing interest in long-term cloth-changing person
ReID [14, 23, 27, 56]. Datasets such as Real28 [50], VC-
Clothes [50], PRCC [56], LTCC [46], COCAS [59] and
Celebrities-reID [18, 20] are collected to facilitate this re-
search. These datasets, however, either ignore or only mini-
mally consider human activities, assuming that subjects are
pedestrians with a restricted set of activities, limiting their
applicability in real-world scenarios. As a result, there is a
noticeable discrepancy between published approaches and
the real-world LT-ReID problem. In contrast to the focus
on the clothing-change person ReID, our research takes a
step further by addressing a more challenging and practical
issue of person ReID that involves diverse human activities,
which are not limited to walking.

3D Clothed Human Modeling and Fitting. In
early attempts [22, 34, 40], a clothed person was mod-
eled as displacements over naked body meshes, obtained
by SMPL [33]. However, the fixed mesh topology and
bounded resolution approach limit geometric expressiv-
ity. Recently, neural implicit representations have been ex-
plored to model 3D body shapes due to their topological
flexibility and resolution independence [6, 7, 10, 38, 44, 45,
49, 53]. However, as shown in Tab. 1, modeling texture in
3D remains a challenge. While these approaches provide
rich geometric detail, insufficient attention has been paid
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Figure 2. Overview of the proposed joint learning framework for long-term person re-identification and 3D clothed body shape reconstruc-
tion. During the inference of ReID, the identity shape feature zid is utilized for matching.

to the discriminativeness of the resulting body shapes. In
contrast, we build a discriminative and textured 3D clothed
human, serving the purpose of LT-ReID.

These 3D clothed models can be naturally applied to
monocular 3D reconstruction (2D-to-3D fitting). Generally,
the input image is encoded as a latent vector, from which the
generative model reconstructs the 3D shape [10, 30, 31, 37].
Alternatively, two-step pipelines [15, 21, 42, 43, 55] firstly
recover 2.5D sketches (e.g., surface normal), and then in-
fer a full 3D shape. A common limitation of these works is
that they require 3D body scans for training, as they are
trained on synthetic datasets derived from 3D scans and
their rendered images. Furthermore, existing methods do
not explicitly consider the discriminative ability of recon-
structed 3D clothed body shapes. LVD [9] and SHAPY [8]
introduce new discriminative fitting pipelines to reconstruct
naked body shapes from images. However, without model-
ing 3D clothing, 2D image cues can not be fully exploited.

We propose a novel joint two-layer shape and texture
representation of a 3D clothed human model, consisting
of both shape and texture. Together with a model fitting
module, our representation allows semi-supervised training
from images without 3D labels. More importantly, guided
by the completed 3D model and the discriminative 2D-
to-3D fitting module, our approach disentangles identity-
features from identity-irrelevant features in 3D space for
LT-ReID. Tab. 1 compares our method with prior works.

3. Proposed Method
3.1. Problem Formulation

A 3D clothed human model is described by three disen-
tangled latent variables: identity shape, clothing shape and
clothing texture. As shown in Fig. 2, these latent repre-

sentations can be sequentially decoded into canonical 3D
shape and texture, respectively by three decoders. To en-
able self-supervised training on real images, we estimate
these latent codes along with the body pose and camera
projection parameters. In this work, we use an off-the-shelf
method [36] as our PoseNet to predict pose and camera pro-
jection, while our image encoder focuses on identity dis-
entanglement learning, i.e., the fitting module. These net-
works disentangle identity and non-identity components of
3D shapes and reconstruct the input body images via a dif-
ferentiable render.

Formally, given a training set of T images {Ii}Ti=1 and
the corresponding identity labels {li}Ti=1, the image en-
coder E(I) : I −→ zid, zcloth, ztex predicts the identity
shape code of naked body zid ∈ RLid , clothed shape code
zcloth ∈ RLcloth and texture code ztex ∈ RLtex . Functions
F , C and T decode the latent codes to identity shape, cloth-
ing shape and texture components, respectively. Addition-
ally, PoseNet P predicts the camera projection parameters
Ω and SMPL body pose θ: (Ω, θ) = P(I).

Mathematically, the learning objective is defined as:

argmin
E,F,C,T

T∑
i=1

(∣∣∣Îi − Ii

∣∣∣
1
+ Lcla(zid, li)

)
, (1)

where Lcla is the classification loss. Î is the rendered im-
age. This objective enables us to jointly learn accurate 3D
clothed shape and discriminative shape for the naked body.

3.2. Joint Two-Layer Implicit Model

We jointly model 3D naked body shape, clothed shape
and texture in a canonical space by implicit representations.
Discriminative Body Shape Component. We represent
the 3D naked body shape as the τ = 0.5 level set of the
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Figure 3. Joint two-layer implicit model. The naked body shape
model F and clothed body shape model C take identity shape code
zid, clothing shape code zcloth and a spatial point x, and produces
two occupancy values o1 and o2. The texture model T takes ztex
and zcloth to estimate RGB color at x. A 3D generator G uses zid
to produce a 3D feature volume, enabling hierarchical point-wise
feature representation.

occupancy function [35]:

Sid(zid) = {x|F(zid,x) = τ}, (2)

where F predicts the occupancy value, o1 for any point x in
the canonical space. Specifically,

F : RLid × R3 −→ (o1, f), (3)

where f ∈ RLf is a point-wise feature and will be utilized
to predict clothing details.

Following [6], we make use of function F , implemented
via a Multi-Layer Perceptron (MLP), coupled with a 3D
CNN-based generator G to model 3D naked bodies. As
shown in Fig. 3(a), the generator produces a 3D feature vol-
ume using zid as input. We then use trilinear interpolation
to query continuous 3D points and feed the feature at x to
the MLP.
Clothed Shape Component. Similarly, we also represent
the clothed body shape as the τ = 0.5 level set function:

Scloth(zcloth) = {x|C(zcloth, f ,x) = τ}, (4)

where C is implemented as a MLP:

C : RLcloth × RLf × R3 −→ o2. (5)

C outputs the occupancy value o2 to represent the clothed
shape information.
Texture Component. We define a texture field as a map-
ping function T from a point x in the canonical space, tex-
ture latent ztex and zcloth to a RGB value c ∈ R3:

T : RLtex × RLcloth × R3 −→ c. (6)

The design of our joint two-layer implicit model is in-
spired by the approach in [6]. However, as shown in Fig. 3,
our model has two novel traits: 1) Instead of simply decom-
posing the 3D clothed human into coarse and fine models,
we apply a two-layer implicit model to represent the naked
body and clothing shapes. 2) We additionally model texture
to form a complete 3D human model.

Figure 4. Neural blend skinning network. This module deforms
the pose space to canonical space. Given a deformed point x′,
we compute its corresponding position x̂ in canonical space by
iteratively finding the root of Eqn. 9.

3.3. Neural Linear Blend Skinning Network

Our joint two-layer implicit model is built within the
canonical space. However, the 3D clothed human data,
usually captured in various poses, introduces misalignments
between this canonical space and the deformed counterpart.
To predict the occupancy values o1, o2 and the texture c
for a given observed point x′ within the deformed space, it
is essential to first determine its canonical correspondence
point x̂. Once x is identified, we can then compute o1, o2

and c using Eqns. 3, 5 and 6. The objective of this step is
to find the canonical correspondence x̂ of any query point
x′. To achieve this goal, similar to [6, 7], we learn a lin-
ear blend skinning (LBS) [33] using neural networks in an
unsupervised manner.
Regressing Blend Weight. We follow [6, 7] which de-
fine the skinning field in canonical space conditioned on our
identity latent code zid:

W : RLid × R3 −→ RK

(zid,x) −→ w, (7)

where w is the point-wise blend weight of the canonical
point x. Then deformed point x′ is determined by the fol-
lowing convex combination:

x′ = d(zid,x, θ) =

K∑
k=1

wkBkx, (8)

where wk is k-element in the vector w, while Bk denotes
the k-element from the set of bone transformation matrices
B = {Bk ∈ R4×4}Kk=1. Both x and x′ in Eqn. 8 are repre-
sented in homogeneous coordinates.
Implicit Differentiable Skinning. An overview is illus-
trated in Fig. 4. While the goal is to determine x′ −→ x̂, we
only have direct access to the mapping defined by Eqn. 8,
which is not invertible. Following [6,7], the correspondence
is calculated numerically by finding the root of the equation
with Broyden’s method [3]:

x̂ = {x̂|d(zid, x̂, θ)− x′ = 0}. (9)
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3.4. Implicit Rendering

During rendering, when 2D pixels are unprojected to 3D
points, they are intrinsically mapped in the deformed 3D
space. Given a pixel p of a masked input image, we con-
struct a ray x′ = {c0 + tv|t ⩾ 0}, where c0 represents
the camera’s position and v indicates the viewing direc-
tion based on the camera projection parameters Ω. t is the
scalar distance along the ray. We then map the ray points
to the canonical space, following Eqn. 9. The intersection
point x̂p of the ray can be calculated by identifying the first
change of clothed shape occupancy o2. Finally, the rendered
color of the pixel p is calculated via Eqn. 6.

3.5. Semi-supervised Model Learning

While our model can perform self-supervised learning
from real images without 3D labels, we first pre-train our
joint implicit 3D model with 3D data in order to mitigate
the inherent ambiguity.

3.5.1 Supervised Pre-training 3D clothed Model

Training Data. We combine CAPE [34] (3, 000 scans) and
THuman2.0 [65] (526 scans) to train our joint two-layer im-
plicit model. THuman2.0 consists of 526 texture clothed
3D scans of 105 subjects. Following [6], for each scan,
we obtain its SMPL naked shape code. CAPE provides
148, 584 pairs of scans under clothing and SMPL naked
body with rich pose variations of 15 subjects. We randomly
sample 3, 000 scans for training. Formally, each training
sample can be represented as SMPL pose θ, identity label
l3D, n spatial points x′

i, and their SDFs oi1, o
i
2, and color ci:

{θ, l3D, {x′
i, o

i
1, o

i
2, ci}ni=1}. With the autodecoding tech-

nique [39], we assign trainable identity shape code, clothing
shape code, and texture code to each training sample.

Loss Function. We define the loss below for each sample:

argmin
F,C,T ,zid,zcloth,ztex

Lid + Lcloth + Ltex + L3D
cla(zid, l3D)

Lid =
∑n

i=0BCE(F(zid, x̂i), o
i
1) (10)

Lcloth =
∑n

i=0BCE(C(zcloth, fi, x̂i), o
i
2) (11)

Ltex =
∑n

i=0||T (ztex, zcloth, x̂i)− ci||2, (12)

where L3D
cla(zid, l3D) is the cross-entropy classification loss.

We additionally add auxiliary loss LW to train network W:

argminWLW (13)

LW =
∑K

k=0||W(zid,Jk)−wJk
||2, (14)

where wJk
is the pre-computed ground truth skinning

weights of SMPL joints location Jk.

Challenging set Normal set

Figure 5. Example images from CCDA, with one subject per row,
showcasing the diversity of body poses, clothing styles and colors.

3.5.2 Self-supervised Joint Modeling and Fitting

Given a set of in-the-wild 2D images with body masks and
identity labels {Ii,Mi, li}Ti=1, the self-supervised identity
disentanglement loss is:

argmin
E,T

∑T
i=1Lsil + Lrgb + Lcla, (15)

where Lrgb is the photometric loss, Lsil is silhouette loss
and Lcla is the classification loss. Specifically, we denote
Ip and Mp as the RGB and silhouette values of pixel p ∈ P .
Here, P denotes the entire set of pixels in the input image I.
A subset of P , represented as P in, corresponds to the pixels
where an intersection between the rays and the body in the
image has been detected. The photometric loss is defined as

Lrgb =
1

|P |
∑

p∈P in

|Ip − T (Etex(I), Ecloth(I), x̂p)|, (16)

where the encoder E estimates zid = Eid(I), zcloth =
Ecloth(I) and ztex = Etex(I) from image I. x̂ is the in-
tersection point (see Sec. 3.4).

We further define the silhouette loss as

Lsil =
1

|P |
∑

p∈P out

CE(Mp, M̂p), (17)

where M̂ is the masked rendering, P out = P − P in rep-
resents the indices in the mini-batch for which there is no
ray-geometry intersection or Mp = 0, and CE(·, ·) denotes
the cross-entropy loss. We impose triplet loss and cross-
entropy loss on the identity shape code zid = Eid(I) as our
classification loss Lcla(zid, l).

3.6. Person ReID Inference

For person ReID inference, the encoder E processes
body images and extracts the identity shape features zid.
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The Cosine similarity of zid is then used to determine if the
two images belong to the same person. It is worth noting
that, the inference of our ReID does not incorporate the 3D
reconstruction module, making it highly efficient.

4. CCDA Person ReID Dataset
We construct a new dataset with diverse human activities

and clothing changes for evaluating LT-ReID. Specifically,
we collect data for popular athletes in soccer, tennis, and
basketball, and popular artists, such as fashion models and
singers. We crawl whole body images of each subject on
Google Image1 with athlete/artist names. We collect two
sets of images per subject: ‘challenging’ and ‘normal’ body
poses. As an example, for a basketball player, the ‘challeng-
ing’ set includes images of players’ actions on the court,
while the ‘normal’ set contains standing or walking poses.
We then crop the body region from the original image via
the detected bounding box and resize it to 256 × 128. Fi-
nally, the annotator verifies the identity of each image. In
total, 1, 555 images of 100 subjects are retained. For each
subject, we randomly select one image from ‘normal’ im-
ages for the gallery set, while the remaining 1, 455 images
comprise the query set. Fig. 5 shows examples of images in
the CCDA dataset.

5. Experimental Results
Implementation Details. Our training process includes
two stages: 1) Networks F , C, T , W are pre-trained on 3D
data. 2) E and T are trained or fine-tuned with real images.
The encoder E is implemented as a ResNet-50. Networks
F , C, T and W are MLPs. In experiments, we set Lcloth =
Ltex = 512, Lid = 4, 096, Lf = Lh = 256, K = 24,
n = 200, 000. We implement in Pytorch and use Adam
optimizer in both stages.

5.1. Person ReID

Metric. For person ReID, we follow the standard retrieval
accuracy metrics, namely the Cumulative Matching Char-
acteristics (CMC) and mean average precision (mAP).
Baseline. We compare our method with eight SoTA
person ReID methods: Two-Stream [66], MLFN [4],
HACNN [26], Part-Aligned [47], PCB [48], TriNet [16],
MGN [51], DG-Net [64], and five SoTA cloth-changing
re-ID methods: ReIDCaps [20], 3DSL [5], RCSAnet [19],
FSAM [17] and CAL [14].

5.1.1 Results on Cloth-changing Person ReID datasets

Datasets. We test on four popular cloth-changing ReID
datasets: Celeb-reID/Celeb-reID-light [18, 20], PRCC [56],
LTCC [46] and the recent CCVID dataset [14, 61].

1All collected images are under Creative Commons licenses.

Method Backbone Celeb-reID Celeb-reID-light
mAP Rank1 mAP Rank1

Two-Stream [66] ResNet-50 7.8 36.3 - -
MLFN [4] * 6.0 41.4 6.3 10.6

HACNN [26] * 9.5 47.6 11.5 16.2
Part-Aligned [47] GoogLeNet×2 6.4 19.4 - -

PCB [48] ResNet-50 8.2 37.1 - -
MGN [51] ResNet-50 10.8 49.0 13.9 21.5

DG-Net [64] ResNet-50 10.6 50.1 12.6 23.5
cloth-changing person ReID methods

ReIDCaps- [20] DenseNet-121 9.8 51.2 11.2 20.3
ReIDCaps [20] DenseNet-121×6 15.8 63.0 19.0 33.5
RCSAnet [19] DenseNet-121×2 11.9 55.6 16.7 29.5

CAL [14] ResNet-50 13.7 59.2 18.5 33.6
3DInvarReID ResNet-50 11.8 55.2 15.0 30.1

3DInvarReID# ResNet-50 15.2 61.2 21.8 37.0

ReIDCaps+ - 18.4 65.5 25.7 42.2
3DInvarReID#

Table 2. Comparison with SoTA on Celeb-reID and Celeb-reID-
light datasets (%). ‘*’ indicates that the backbone is designed by
the authors. The red number means the total number of models.
3DInvarReID#’s weights are initialized using the CAL model.

Method Backbone LTCC PRCC
mAP Rank1 mAP Rank1

HACNN [26] * 9.3 21.6 − 21.8
PCB [48] ResNet-50 10.0 23.5 38.7 41.8
3DSL [5] ResNet-50×2 14.8 31.2 − 51.3

FSAM [17] ResNet-50 16.2 38.5 − 54.5
CAL [14] ResNet-50 18.0 40.1 55.8 55.2

3DInvarReID ResNet-50 16.7 37.8 52.5 51.6

CAL+ - 18.9 40.9 57.2 56.5
3DInvarReID

CAL ResNet-50 2.8 3.8 20.3 31.6
3DInvarReID ResNet-50 2.8 5.1 20.1 34.6

3DInvarReID# ResNet-50 2.8 5.6 21.4 40.7

Table 3. Comparison with SoTA cloth-changing person ReID
methods on the LTCC and PRCC datasets (%). Models
highlighted in pink are trained on the Celeb-reID dataset.
3DInvarReID#’s weights are initialized using the CAL model.

Results on Celeb-reID and Celeb-reID-light. As re-
ported in Tab. 2, our 3DInvarReID (Ours) outperforms all
the general person re-ID baselines on both datasets. Consid-
ering methods using a single network, we also outperform
the cloth-changing baseline, ReIDCaps- [20]. More im-
portantly, to investigate the complementarity between our
learned 3D shape features and existing 2D features, we fuse
our method with cloth-changing baselines by simple sum-
mation at the score level. By fusing with ReIDCaps [20],
our method improves the Rank1 accuracy on Celeb-reID
from 63.0% to 65.5% and from 33.5% to 42.2% on Celeb-
reID-light. These results clearly demonstrate that the 3D
shape features learned from our method are both discrim-
inative and complementary to the 2D features, indicating
the effectiveness of our proposed approach for person ReID,
particularly under cloth-changing scenarios.

Results on LTCC, PRCC and CCVID. The compari-
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Method Backbone General Cloth-changing
mAP Rank1 mAP Rank1

TriNet [16] ResNet-50 78.1 81.5 77.0 81.1
CAL [14] ResNet-50 81.3 82.6 79.6 81.7

3DInvarReID ResNet-50 66.1 70.8 65.4 70.2

CAL+ - 82.6 83.9 81.3 84.3
3DInvarReID

Table 4. Comparison with SoTA methods on CCVID (%).

Method Backbone mAP Rank1 Rank5
ReIDCaps [20] DenseNet-121×6 10.9 6.5 20.2

CAL [14] ResNet-50 19.3 10.0 26.7
3DInvarReID ResNet-50 21.7 11.1 30.5

Table 5. Comparison with SoTA methods on CCDA dataset (%).

son of the LTCC, PRCC and CCVID datasets is shown
in Tabs. 3 and 4. Similarly, by fusing the best baseline
CAL [14], our method achieves additional improvements.
For instance, when evaluated in the cloth-changing setting,
our method achieves a significant improvement of 2.6% in
Rank1 accuracy by fusing with CAL on the CCVID dataset.
These findings highlight the effectiveness of 3DInvarReID,
with the 3D shape features being shown to be both discrim-
inative and complementary to 2D features. Our approach
stands out for its superior performance compared to other
3D feature extraction methods for person ReID. This is par-
ticularly noteworthy in comparison to the 3DSL [5] (Tab. 3).
Additionally, we assess our model under a cross-domain
setting—that is, the model is trained with the Celeb-reID
dataset and tested using the LTCC and PRCC datasets. Ta-
ble 3 shows that our models outperform the baseline CAL,
indicating a superior discriminative feature representation.

5.1.2 Results on LT-ReID dataset (CCDA)

Given that both our CCDA and Celeb-reID datasets are ob-
tained from the Internet and share a similar image style,
we choose trained models on Celeb-reID and evaluate them
on CCDA. We choose the SoTA cloth-changing methods,
ReIDCaps- [20] and CAL [14] as baselines. The results
in Tab. 5 demonstrate that our 3DInvarReID outperforms
the baselines, providing strong evidence of its effectiveness
in handling person ReID with challenging body poses and
cloth-changing variations.

5.1.3 Results on Short-term Person ReID datasets

Despite our method is designed for LT-ReID, we addi-
tionally compare with SoTA methods on two conven-
tional short-term ReID datasets: Market-1501 [62] and
MSMT17 [54], in Tab. 6. By fusing with CAL [14], we ob-
serve an average improvement of 2.7% in Rank1 accuracy
on both datasets, demonstrating the complementary nature

Method Backbone Market-1501 MSMT17
mAP Rank1 mAP Rank1

PCB [48] ResNet-50 81.6 93.8 40.4 68.2
3DSL [5] ResNet-50×2 87.3 95.0 − −

FSAM [17] ResNet-50 85.6 94.6 − −
CAL [14] ResNet-50 87.5 94.7 57.3 79.7

3DInvarReID ResNet-50 85.5 94.2 55.1 76.3

CAL+ - 87.9 95.1 59.1 80.8
3DInvarReID

Table 6. Comparison on short-term ReID datasets (%).

LVD [9] SHAPY [8] Ours
CD-L2 0.654 0.632 0.610

Table 7. Comparison of 3D boy reconstruction on HBW.

Model Type mAP Rank1 Rank5
3DInvarReID 17.5 36.3 56.4
3DInvarReID-w/o 3D 14.6 28.4 48.3
3DInvarReID-w/o Pre-training 15.1 29.3 50.7
3DInvarReID-w/o 3D clothing 16.0 32.1 52.8

Table 8. Ablaton studies on CCDA dataset (%).

of our 3D shape feature, even on short-term datasets.

5.2. 3D Reconstruction

Most 3D body reconstruction methods focus more
on pose estimation than shape estimation. Recently,
SHAPY [8] releases a dataset (HBW) that contains ground-
truth 3D body scans and the corresponding in-the-wild im-
ages, which enables us to test the accuracy of our recon-
structed 3D naked body shapes. We thus evaluate our
methods on the validation set of HBW, which contains 237
in-the-wild images of 10 subjects. Our baseline includes
LVD [9] and SHAPY [8], which are recent pipelines for
discriminative identity shape fitting. Following [9], we
evaluate the reconstruction accuracy with Chamfer distance
(CD-L2), by uniformly sampling 10, 000 points on both
ground-truth and predicted meshes in the canonical space.
As shown in Tab. 7, our method outperforms the two base-
lines. We also visualize 3D reconstructions in Fig. 6. Our
reconstructions resemble the ground truth better than the
baselines. These results demonstrate the superiority of the
proposed method in reconstructing naked 3D body shapes.
Fig. 7 shows qualitative comparisons with ICON [55] and
ClothWild [37]. Our approach achieves comparable clothed
3D body reconstructions.

5.3. Ablation Study

In this section, all models are trained on Celeb-reID and
tested on the CCDA dataset.
Effect of the 3D module. We compare our full model
with an ablated version that only incorporates the Lcla loss
in its training, disregarding 3D modules. The results in
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Input LVD [9] SHAPY [8] Ours GT

Figure 6. Qualitative comparisons with LVD [9] and SHAPY [8]
on 3D naked body reconstruction. Our approach recovers more
accurate 3D body shapes from the images.

Tab. 8 show that our 3DInvarReID significantly improves
the recognition accuracy, leading to a Rank1 accuracy in-
crease from 28.4 to 36.3.

Effect of Our Two-layer Implicit Model. Our primary
goal is to disentangle the identity feature from non-identity
features in 3D shape space. To evaluate the effectiveness of
our 3D disentanglement module, we train a model (Ours-
w/o 3D clothing) by replacing our 3D body model with
SMPL shape bases and omitting the modeling of the 3D
clothing component and rendering layer. The results in
Tab. 8 demonstrate the advantages of modeling clothing
shape and texture for person ReID (Rank1: 32.1−→36.3).

Effect of Pre-training. Tab. 8 shows that removing the
pre-training stage results in a lower Rank1 accuracy, with a
score of 29.3 compared to our 36.3. This finding highlights
the effectiveness of pre-training in addressing the inherent
ambiguity of disentanglement.

6. Conclusions
This paper tackles the challenging setting of long-term

person ReID, which allows a wider range of real-world hu-
man activities and accounts for cloth-changing scenarios.
To address this problem, we present a joint two-layer im-
plicit representation to model textured 3D clothed humans

Input ICON [55] ClothWild [37] Ours

Figure 7. Qualitative comparisons with ICON [55] and Cloth-
Wild [37] on 3D clothed body reconstruction.

together with a discriminative fitting module, enabling us to
disentangle identity and non-identity features for real-world
images. We collect a new LT-ReID dataset, CCDA, with
diverse human activities and clothing changes, facilitating
future research on real-world scenarios. Experimental re-
sults demonstrate the effectiveness of our method in dis-
entangling identity and non-identity features in 3D clothed
body shapes, thereby contributing to LT-ReID.

Limitations & Potential Negative Impacts Impacts. Our
work tackles the challenge of disentangling clothing and
body shape in 3D shape representation. The clothing re-
construction task remains challenging as evidenced by the
visual quality of the published models and our models.
Our results show that the task of body-clothing disentangle-
ment brings benefit in the recognition task, a finding which
opens new possibilities to multi-task learning across 2D-3D
modalities. Like most person ReID methods, one potential
negative impact of our approach is that it could be used for
unethical surveillance and invasion of privacy.

Acknowledgments. This research is based upon work sup-
ported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2022-21102100004. The views and conclu-
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policies, either expressed or implied, of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized
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poses notwithstanding any copyright annotation therein.
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