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Abstract

Implicit neural representations (INRs) aim to learn a
continuous function (i.e., a neural network) to represent an
image, where the input and output of the function are pixel
coordinates and RGB/Gray values, respectively. However,
images tend to consist of many objects whose colors are not
perfectly consistent, resulting in the challenge that image
is actually a discontinuous piecewise function and cannot
be well estimated by a continuous function. In this paper,
we empirically investigate that if a neural network is en-
forced to fit a discontinuous piecewise function to reach a
fixed small error, the time costs will increase exponentially
with respect to the boundaries in the spatial domain of the
target signal. We name this phenomenon the exponential-
increase hypothesis. Under the exponential-increase hy-
pothesis, learning INRs for images with many objects will
converge very slowly. To address this issue, we first prove
that partitioning a complex signal into several sub-regions
and utilizing piecewise INRs to fit that signal can signifi-
cantly speed up the convergence. Based on this fact, we
introduce a simple partition mechanism to boost the per-
formance of two INR methods for image reconstruction:
one for learning INRs, and the other for learning-to-learn
INRs. In both cases, we partition an image into different
sub-regions and dedicate smaller networks for each part.
In addition, we further propose two partition rules based
on regular grids and semantic segmentation maps, respec-
tively. Extensive experiments validate the effectiveness of
the proposed partitioning methods in terms of learning INR
for a single image (ordinary learning framework) and the
learning-to-learn framework. Code is released here.

*Corresponding author: Haishuai Wang (haishuai.wang@zju.edu.cn)

1. Introduction

Recently, an innovative model for data/signal repre-
sentation called implicit neural representations (INRs) has
aroused researchers’ great attention, due to their remarkable
visual performance in computer vision tasks, including im-
age generation [29, 9, 31, 4] and novel views synthesis [12].
To fit such an implicit neural representation for a 2D im-
age, we usually learn a continuous function formalized by
a neural network, which takes space coordinates x ∈ R2 as
input and outputs the color values at the queried coordinate
(y ∈ R3 if RGB and y ∈ R if gray).

However, in-the-wild images are actually discontinuous
piecewise functions. They consist of discrete objects with
not perfectly consistent colors (as shown in Figure 1(a)).
Large gradients exist on the boundaries between two dis-
continuous parts, preventing the neural network from con-
verging to a small error when fitting images. To study the
above issue, related research called “spectral bias” [19, 34]
has proved that neural networks prioritize learning the low-
frequency components. Yet, they only describe this phe-
nomenon from the view of the implicit frequency domain
and do not propose a quantitative relation between the con-
vergence rate and the attribute of the target signal.

In this paper, we first re-examine the above phenomenon
from the explicit spatial domain and empirically investigate
a quantitative relation: the time complexity of fitting a dis-
continuous piecewise function with a neural network would
increase exponentially with respect to the number of bound-
aries. For example, in Figure 1(b) and 1(c), we use SIREN
MLPs [29] to fit 1D synthetic signals and 2D synthetic sig-
nals where N boundaries exist in their spatial domain. We
then explore the relation between the required convergence
step n and the number of boundaries N , and find that the
relation curves align with the exponential function. We
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(a) (c)(b)

1D Signal   2D Images

Figure 1. (a) Discontinuous parts exist obviously in regions with red boxes, which motivates us to use piecewise functions to represent the
complex signals. (b) & (c) We dedicate a single neural network to fit the 1D and 2D synthetic signals with N boundaries. The results show
that the relation between the convergence step n and the number of boundaries N align with the exponential function n ∝ O(pN ), where
p = 1.0656 for 1D synthetic signals and p = 1.00815 for 2D synthetic signals. The detailed experiment is presented in Appendix A.

call this phenomenon the exponential-increase hypothesis.
Under this hypothesis, the optimization process of fitting a
high-resolution in-the-wild image with a single continuous
INR will converge at a slow rate.

Based on the exponential-increase hypothesis, we math-
ematically prove that partitioning images into several parts
and learning INRs within each part can reduce the exponen-
tial complexity to linear complexity and significantly de-
crease the convergence time. In light of this fact, we pro-
pose partition-based INR methods and utilize partition in
two INR frameworks: one for learning INRs, and the other
for learning-to-learn INRs. Specifically, in both frame-
works, we partition an image into different sub-regions
based on particular rules and dedicate smaller networks for
each sub-region. We also propose two partition rules: one
is based on regular grids, and the other is based on semantic
segmentation maps. Both of them can speed up the conver-
gence of learning INRs as well as learning-to-learn INRs.
In summary, the contributions of this work are as follows.

• From the view of spatial domains, we investigate the
exponential relation between the network convergence
rate and the number of boundaries in the target signals,
namely the exponential-increase hypothesis.

• Based on the exponential-increase hypothesis, we
mathematically prove that partition reduces the expo-
nential complexity of fitting all boundaries to the linear
complexity of fitting separate regions.

• We propose partition-based learning and learning-to-
learn INRs frameworks for image reconstruction task.
We also propose two partition rules that are based on
regular grids or semantic segmentation maps.

• Extensive experiments on image reconstruction show
that (i) partition boosts learning INRs framework to
faster convergence, (ii) partition boosts learning-to-
learn INRs framework to better reconstruction perfor-
mance with fixed optimization steps.

2. Related Work

Implicit Neural Representations. Implicit Neural Rep-
resentations (INRs) [39] are emerging topics of interest in
the artificial intelligence community. By mapping a coor-
dinate x to a quantity with a neural network (e.g., MLP),
these continuous representations have shown great potential
in 3D scene reconstruction [6, 8, 16, 11], digital humans
tasks [42, 25, 26], 2D images generation [18, 29, 31, 46],
3D shape and appearance generation [7, 27, 14, 12], video
representation [1], physics-informed problems [20, 17] and
so on. A lot of works have been conducted on differ-
ent aspects of INRs, such as the prior learning and con-
ditioning [30, 35, 37], the computation and memory ef-
ficiency [10], the expression capacity [21, 44], the edit
ability [30] and the generalization across different sam-
ples [28, 33].

Partition Techniques. When scaling up to signals with
large domains, INRs always fail due to the high non-
linearity of mapping function [23] and heavy time con-
sumption. Thus, partition are extensively employed, e.g.
Voronoi spatial decomposition by DeRF [21], distillation
for training thousands of MLPs by KiloNeRF [22], multi-
scale block-coordinate decomposition by ACRON [9], scal-
able large-scale NeRF [32, 36]. Although these works have
a good effect on representing large-scale images or scenes,
they seldom discuss why partition improves the training ef-
ficiency of learning single INR and do not discuss the effect
of partition on the learning-to-learn INRs framework.

Neural Network Spectral Bias. Spectral bias [19, 40],
or frequency principle [41, 24], is a phenomenon that neu-
ral networks prioritize learning the low-frequency parts of
signals. Lots of works have been presented to enable an
MLP to fit high-frequency functions, e.g. Fourier feature
mapping by Tancik et al. [34] and periodic activation func-
tions by Sitzmann et al. [29]. In this paper, we re-examine
the spectral bias and propose the exponential-increase hy-
pothesis from the spatial domain, which is an explicit and
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(a) MLP for INRs (b) Framework for partition-based INR training paradigm 

Figure 2. (a) MLP architecture for image INR. The inputs are the coordinates (x, y) ∈ R2 and the outputs are Gray/ RGB values. (b)
Framework for partition-based Learning INRs. We dedicate different MLPs to fit different parts of the image.

quantitative description of the relation between the network
convergence rate and the properties of the target signals.

Learning-to-learn INRs. Meta-learning is applied to
train a meta-learner that can quickly adapt to new tasks
with few training examples. MetaSDF [28] first introduced
MAML [5] to learn excellent INR priors over the respective
function space, leading to faster fine-tuning and better ge-
ometry reconstruction. Tancik et al. [33] re-produced such
findings with Reptile [13] on a wider variety of signal types.
Yuce et al. [44] presented a theoretical analysis of meta-
learning INRs from the view of dictionary learning. Based
on these works, we show that partition in INR meta-learning
framework can modulate the spectral bias within each par-
tition part and improve the effect of learning-to-learn INRs.

3. Partition for learning and learning-to-learn
Implicit Neural Representations

Motivations Considering a field q and coordinate x, INR
learns a function Φ with parameters Θ to fit it, which is de-
noted as q = Φ(x; Θ). SIREN [29] shows that MLPs with
ReLU activation fail to represent the derivatives of the target
signal. So they propose periodic activation functions to rep-
resent complex signals and their derivatives. However, even
though SIREN is able to represent complex signals, a lot of
optimization steps are required due to the fact that too many
boundaries with large gradients exist in the spatial domain
of the complex signal. We argue that the events of success-
fully representing each boundary with a large gradient by
the neural network parameters Θ are independent with each
other. Then we establish the following hypothesis:

Hypothesis 1. Denote the complexity that one boundary
with large derivatives is represented by Θ as p, then the
complexity that all boundaries are represented by Θ is
O(pN ), where N is the number of boundaries with large
derivatives within the spatial domain.

We name this hypothesis the exponential-increase hy-
pothesis. Experiments to demonstrate this hypothesis are
shown in Appendix A. To mitigate the issue caused by this

hypothesis, we deliver partition to reduce the exponential
complexity of fitting all boundaries to the linear complexity
of fitting several regions. Specifically, we divide the whole
domain into smaller domains and use independent MLPs to
fit a piecewise function to represent the whole function.

Formally, if the whole domain is divided into k sub-
domains, the number of boundaries falling in each sub-
domain are {N1, N2, ..., Nk}, where N =

∑k
i=1 Ni. We

argue that the optimizations for all MLPs are parallel. If
we dedicate neural networks with full capacity to fit each
sub-domain, we can assume the complexity of fitting one
boundary is still p, then the total complexity of parallelly
fitting all sub-domains with separate neural networks is

pN1 + pN2 + ...+ pNk =

k∑
i=1

pNi . (1)

Then we can establish the following proposition:

Proposition 1. In case of k ≥ 3, the complexity of dedicat-
ing neural networks with full capacity for each sub-domain
is less than the complexity of representing the whole domain
with a single neural network, i.e.

∑k
i=1 p

Ni < pN .
Proof. Defining N̂ = max(N1, N2, ..., Nk), we have:∑k

i=1 p
Ni

pN̂
=

k∑
i=1

pNi

pN̂
≤

k∑
i=1

1 = k. (2)

Empirically, we should optimize each neural network at
least several times, so we have at least pNi ≥ 2, then the
following inequation holds:

pN

pN̂
=

p(N1+N2+...+Nk)

pN̂
=

∏
Ni ̸=N̂

pNi ≥ 2k−1. (3)

In case of k ≥ 3, we have k < 2k−1 and
∑k

i=1 p
Ni <

pN . Proposition 1 is proved.

Theoretically, with larger k, Proposition 1 can be gener-
alized to the case of fitting each sub-domain with smaller
neural networks, whose complexity of fitting one boundary
is larger than p. We show the proof and the discussion of
this case in Appendix B. Papers about the spectral bias of
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Figure 3. (a) Framework for partition-based learning-to-learn INRs. A meta-learner is applied to sample tasks of learning INRs and learns
an initialized weight that can quickly fine-tune to a new image. (b) Partition-based inner loop task. The initialized weights will be copied
and then optimized for each head within its corresponding sub-domain. (Best view in color.)

INRs [19, 34, 44] show that INRs are hard to fit the signals
with high-frequency components. In fact, the boundaries in
the images are high-frequency components of signals and
we show that partition helps to reduce the high-frequency
components of the input signals in Appendix D.

By now, we have mathematically proved that partition
can speed up the convergence of INRs by reducing the ex-
ponential complexity to linear complexity. And we will
present how we practically utilize the partition methods in
INRs in the following sections.

Partition for Learning INRs In this part, we show how
we can apply partition to learning INRs for 2D images. The
framework of the partition-based learning INR method is
shown in Figure 2. We propose to model the INR of a given
image I as a weighted sum of k neural networks (denoted
as heads). Mathematically, this process can be expressed as

I(x) =

k∑
n=1

ωn
ϕ(x)Iθn(x), (4)

where n is the head index. ωn
ϕ(x) : R2 7→ {0, 1} is the

mask for head n, and ωϕ(x) : (ω
1
ϕ(x), ω

2
ϕ(x), ..., ω

k
ϕ(x)) ∈

{0, 1}k is the mask for all heads and satisfies ∥ωϕ(x)∥1 =
1. This setting ensures that each coordinate in the image is
only represented by one single head. When predicting an

image, each coordinate is only required to be inputted into
one single head. Therefore, both the time complexity and
memory consumption of predicting the whole image with
our partition-based models do not increase.

In practice, we explore two different partition rules for
2D images: one is based on regular grids and the other is
based on semantic segmentation maps for 2D images. De-
tailed implementation is discussed in Section 4.

Partition for Learning to Learn INRs In [28, 33], they
have shown that meta-learning algorithms can provide ex-
cellent initial weight parameters for learning INRs, which
leads to faster convergence and better generalization. In this
part, we show that our partition methods can be integrated
into the meta-learning algorithm for INRs, and lead to bet-
ter generalization and a more flexible inference process than
the original meta-learning algorithm for INRs.

Considering a dataset including observations of signals
T from a particular distribution T and a fixed number of op-
timization steps m, the meta-learning algorithms for INRs
seek to find an initial weight θ∗0 that will result in the lowest
possible final loss L (θm) if optimizing a network fθ for m
steps to represent a new signal from T :

θ∗0 = argmin
θ0

ET∼T [L (θm (θ0, T ))] . (5)
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Figure 4. (a) Visualization of partition based on regular grids (PoG). (b) Visualization of partition based on HFS semantic segmentation
maps (PoS). (Better view in color.)

Combining with partition techniques, we partition the
whole input domain into k sub-domains with partition rule
ω and seek to find an initial weight θ∗0 that serves as the
initial weight of each head for each sub-domain. This will
result in the lowest possible final total loss when optimizing
a set of network F = {fθ1 , fθ2 , ..., fθn , }, each of which
will represent a part of the new signal from T :

θ∗0 = argmin
θ0

ET∼T

[
k∑

n=1

L (θnm (θ0, T, ω))

]
. (6)

We follow MAML [5] to learn an initial weight that
can serve as a good starting point for gradient descent for
all heads. Specifically, given a task T and the number
of optimization steps m, our partition-based learning-to-
learn INRs framework treats these task-specific optimiza-
tion steps as inner loops, and wraps an outer loop to sample
different signals Tj from T . We generate their correspond-
ing partition rules ωj to learn the initial weight θ∗0 . Denote
the meta-learning rate as β and the parameters of head k at
i inner loop step and j outer loop step as (θki )j , then the
updated rule of the parameters is defined as follows:

(θ0)j+1 = (θ0)j − β∇θ

k∑
n=1

L (θnm ((θ0)j , Tj , ωj)) . (7)

The experiments are conducted in 2D image reconstruc-
tion, and direct point-wise observations of the signal T are
available. Therefore, we can supervise F with gradient de-
scent using simple L2 loss:

L(θ) =
∑
i

∥F (xi)− T (xi)∥22 . (8)

So far, we have presented our partition-based learning
INRs method as well as the partition-based learning-to-
learn INRs method. The architectures of these two methods
are presented in Figure 2 and 3 respectively.

4. Implementation

In this section, we introduce two partition rules that both
work well under our frameworks. One is based on regular
grids (PoG for short) and the other is based on semantic
segmentation maps (PoS for short).

Partition based on regular grids. A simple but efficient
partition rule is using regular grids to decompose the whole
input domain. This method is widely used in image process-
ing tasks based on ViT [3], while [21, 22] have discussed
the effect of regular grids decomposition in neural radiance
fields tasks. Specifically, for 2D images, we subdivide the
input domain into uniform grids of resolution r = (rx, ry),
and utilize an independent neural network to fit the content
within each grid. Therefore the mapping function m from
the pixel position x to its corresponding neural network in-
dex is defined as:

m(x) =
⌊x
r

⌋
. (9)

Partition based on Semantic Segmentation Maps. We
also seek a more flexible and reasonable partition rule, due
to the fact that the real images contain non-homogeneous
structures and the regular grid partition may violate the con-
tinuity of the images. Considering that an in-the-wild image
always consists of several parts, it is reasonable to define a
sub-domain as the region in which all pixels belong to the
same part. Therefore, we seek a partition rule based on im-
age semantic segmentation maps. It is clear that partitioning
images based on their semantic segmentation maps helps
to reduce the boundaries (or high-frequency components)
within each partition part.

Specifically, we start with a hierarchical feature selec-
tion (HFS) [2] algorithm, which is a rapid image segmen-
tation system and reports over-segmentation results. The
over-segmentation results usually assign the regions that are
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Ground Truth SIREN

PoG PoS

step step

Figure 5. The first row presents PSNR vs. step curves for fitting the
ground truth image with SIREN-based models and ReLU-MLP-
based models (4 heads). The second and third rows present the
visual results of optimizing siren-based models for 500 steps. Re-
sults from models with partition contain much fewer artifacts with
the same optimization steps.

not connected with the same labels and the number of re-
gions is always too large. Thus, we apply the connected-
components algorithm on the initial segmentation results
to re-label those unconnected parts. And we finally apply
a greedy region-merging algorithm to obtain segmentation
results with a particular number of regions.

The performance of PoG and PoS methods are demon-
strated in Figure 4 while we present the formalization of the
PoS algorithm in Appendix C.

5. Experiments
In this part, we will first compare the convergence speed

of learning the INR for a single in-the-wild image with two
modern MLP architectures under the condition of taking
partition or not taking partition. We show that our parti-
tion methods achieve good performance on both two INR
architectures. Then we choose SIREN [29] as our basic ar-
chitecture and follow MetaSDF [28]’s setting to train meta
models with or without partition.

5.1. Partition-based Learning INRs

Settings. We first choose a landscape image with dimen-
sion 380× 254 (shown in Figure 5 ground truth) and try to
learn an INR for this image. Two popular network archi-
tectures are chosen to evaluate our methods: one is SIREN
with periodic activation functions [29] and the other is MLP
with ReLU activation functions and positional embedding.

On top of these two baselines, our two partition rules are
implemented. To fairly demonstrate the effect of our par-

（a）

（b） （c）

Figure 6. Typical results for applying models with different par-
titioned heads on images. (a) shows the original image and (b)
shows its 12-part segmentation result. (c) presents the PSNR val-
ues of all models. The results indicate that models with more heads
tend to achieve higher PSNR at fixed training steps.

Table 1. Mean PSNR values for LSUN test images. We optimize
the SIREN-based models for 300 steps and ReLU-MLP-based
models for 1000 steps. More results are in Appendix G

Methods PSNRs↑ Methods PSNRs↑
SIREN 21.211 ReLU-MLP 19.844
SIREN-PoG 23.864 ReLU-PoG 22.672
SIREN-PoS 24.485 ReLU-PoS 22.863

tition methods, we dedicate neural networks with the same
architecture and hyper-parameters but smaller capacity to
fit each sub-region, namely heads. We guarantee that the
total capacity of all heads is close to the capacity of base-
lines. The detailed implementation of these two INR archi-
tectures as well as model parameter settings are presented
in Appendix E. Following [29]’s implementation, we apply
the Adam optimizer with a learning rate of 1e− 4. To make
a comparison between the two partition methods, the num-
ber of partitioned regions is fixed to 4 (2× 2 for PoG).

Results. We first present the PSNR curves with re-
spect to optimization steps for applying partition methods
on both two baselines, as shown in Figure 5 (the running
time and memory consumption of partition-based models
are the same or less than the baseline models, which will be
discussed in Appendix G.). On both two baseline architec-
tures, our two partition rules result in faster convergence,
while partition based on semantic segmentation maps has
better performance than partition based on regular grids. We
can observe that for SIREN-based architecture, the model
with PoS converges to a high PSNR with very limited steps
(less than 100), while the original SIREN needs more than
500 steps to converge to the same PSNR value. For ReLU-
MLP-based architecture, the required steps of three cases
that the PSNR value reaches 20 are 957, 672, and 445 re-
spectively, which indicates that our partition method based
on regular grids (PoG) boosts to 50% speed-up while the
partition method based on segmentation maps (PoS) results
in 100% speed-up.
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Figure 7. Training curves and intermediate results for example
super-resolution image. The first row contains the experiments for
SIREN-based models while the second row contains experiments
for ReLU-MLP-based models. We present the intermediate results
of optimizing SIREN-based models for 400 steps and optimizing
ReLU-MLP-based models for 4000 steps.

Fewer artifacts for SIREN. As shown in Figure 5,
SIREN [29] fails when fitting a large image and tends to
generate periodic artifacts. This failure has been reported by
[44] and is due to the imperfect frequency recovery. How-
ever, the results from our partition-based models generate
fewer artifacts with the same optimization steps. This is
because partition helps to reduce the high-frequency com-
ponents that one single SIREN needs to represent, which
partly alleviates the negative effect of SIREN.

Robustness. To prove the robustness of our partition
methods, we also evaluate our methods on LSUN bedroom
image test set [43], which contains 300 in-the-wild images.
We explore the mean PSNR values with 300 optimization
steps for SIREN-based models and 1000 optimization steps
for ReLU-MLP-based models. The results are reported in
Table 1. We can observe that both of our partition meth-
ods drive the models to a higher PSNR value with the same
optimization steps.

More heads, faster convergence. We conduct exper-
iments to find the optimal number of heads for both two
architectures and two partition methods. A typical exam-
ple is shown in Figure 6. With a different number of heads
and two partition methods, we optimize SIREN-based mod-
els with 200 steps and ReLU-MLP-based models with 1200
steps. The results show that the models with more heads
generally tend to converge to better results and achieve
higher PSNR values at the fixed training step. Extensive
experiments and discussions of models with different num-
bers of heads on more images are presented in Appendix F.

Scale to super-resolution images. Due to the previ-
ous conclusion, we can easily improve the INR optimiza-
tion efficiency of super-resolution images by increasing the
number of partition heads. A typical example of learning
INRs for a super-resolution image with 700× 1000 dimen-
sion is shown in Figure 7. By partitioning the whole image

Table 2. Mean PSNR values performance for SIREN models with
different training and fine-tuning methods. For short, we rewrite
G as the PoG partition method and S as the PoS partition method.
We mark a superscript G/S if we apply the corresponding method
in the training stage and mark a subscript G/S if we apply the cor-
responding method in the fine-tuning stage.

Setting PSNR ↑ Setting PSNR ↑
1 View 3 View 1 View 3 View

SIREN 19.42 22.60 - - -
SIRENG 19.64 22.95 SIRENS 19.85 23.09
SIRENG

G 19.77 24.23 SIRENS
S 20.00 23.93

SIRENS
G 19.93 23.89 SIRENG

S 18.11 20.33

into 9 parts, we can significantly improve the reconstruc-
tion performance of both SIREN-based models and ReLU-
MLP-based models. More experiments of learning INRs for
super-resolution images are presented in Appendix G.

5.2. Partition-based Learning-to-learn INRs

Settings. To verify the effect of our partition-
based learning-to-learn INRs framework, we follow
MetaSDF [28] and apply our partition methods in the
MAML framework to learn an initial weight that can
quickly fine-tune to an unseen image. The outdoor church
images from LSUN dataset [43] with the size of 256× 256
are chosen for evaluating the method. The training set con-
tains about 126k images and the test set includes 300 im-
ages. Following [28, 33], we choose SIREN as our ba-
sic model and set up the number of inner loop step N as
3, which means that our model sees each image only three
times. We apply the per-parameter-per-step inner learning
rate strategy with initial learning rate α = 1e − 5. All of
the meta-models are trained with an outer loop learning rate
β = 1e− 4 and a batch size of 4.

Since our partition methods duplicate the initial weight
for each head, we maintain one copy of per-parameter-per-
step learning rates for a single head and share it with all
heads. The SIREN model in our implementation contains
3 hidden layers and 128 hidden features, which is also the
set-up for each head in our models with partition. As a re-
sult, the weights trained from the original SIREN and the
weights trained from our partitioned-based models have the
same keys. Thanks to these settings, in the inference phase
we can fine-tune based on our partition methods with the
initialized weights trained from the original SIREN.

Results. On top of baseline SIREN, We demonstrate
the effect of our two partition methods both on the train-
ing phase and the inference phase. The mean PSNR values
for 1 View and 3 View fine-tuning on 300 images based
on models with different training and fine-tuning mecha-
nisms are shown in Table 2. The results show that only
fine-tuning based on our partition methods with the initial-
ized weights trained from the original SIREN can lead to
better performance than baseline, no matter whether we use
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Figure 8. Visual results of models with different training and fine-tuning methods. The same abbreviation as in Table 2. The results from
our partition-based models contain less noise and sharper edges than the SIREN model. (Better view in color.)

SIRENSIREN

Figure 9. Performance of fine-tuning with PoS on the PoG trained
initialized weight, and its opposite case. The model trained with
PoG but fine-tuned with PoS fails, while the model trained with
PoS but fine-tuned with PoG achieves good performance. (Better
view in color.)

PoG partition or PoS partition. And the experimental re-
sults also indicate that the model employing PoG partition
during both training and inference phases exhibits the high-
est PSNR for 3 View fine-tuning, while the model utilizing
PoS partition during both phases achieves the highest PSNR
for 1 View fine-tuning. Therefore we prove that fine-tuning
based on our partition methods with the initialized weight
trained from the partition models has the best performance.
For detailed description, a typical example is presented in
Figure 8. The result shows that the images obtained from
our partition methods contain less noise and sharper bound-
aries than the result from the baseline SIREN. More visual
results and discussions are attached in Appendix H.

PoS partition as a more flexible choice. As shown in
Figure 9, fine-tuning with the PoS method from the initial-
ized weights trained with the PoG method leads to a poor
result, while the opposite case still maintains good perfor-
mance. This phenomenon meets our expectations because
each head in the PoG method only learns to fit a regular
region and fails to fit an irregular region when fine-tuning
with the PoS method. On the contrary, the heads in the PoS
method learn to fit regions with arbitrary shapes, including
the regular grid. As a result, the PoS method can be consid-
ered more flexible than the PoG method.

6. Conclusion
In this paper, we investigate the dilemma of fitting a dis-

continuous signal via a continuous function (e.g., a neural
network) and demonstrate that the time complexity to force
a neural network to fit a discontinuous function is exponen-
tially increasing with the number of high gradients in the
input domain, which we call exponential-increase hypoth-
esis. We consider the exponential-increase hypothesis as a
quantitative description of spectral bias [19, 34, 44] from
the spatial domain. We prove that partitioning the input do-
main into several sub-domains and dedicating smaller neu-
ral networks for each sub-domain help to alleviate this con-
tradiction. Based on this observation, we propose two par-
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tition methods for learning and learning-to-learn INRs. We
also present two partition rules: one is partitioning based
on regular grids and the other is based on semantic seg-
mentation maps. Our methods significantly speed up the
convergence of learning INRs from scratch and also lead
to better results for fine-tuning a new image at fixed steps
for learning-to-learn INRs. Our findings in the paper can
serve as theoretical support and inspire the follow-up work
on learning more powerful INRs for in-the-wild scenes.
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Doyle, Michael Guthe, and Jiřı́ Bittner. A survey on bound-
ing volume hierarchies for ray tracing. In Computer Graph-
ics Forum, volume 40, pages 683–712, 2021. 2

[11] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-
face representations as layers in neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4743–4752, 2019. 2

[12] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 16

[13] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 3

[14] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11453–11464, 2021. 2

[15] Henri J Nussbaumer. The fast fourier transform. In Fast
Fourier Transform and Convolution Algorithms, pages 80–
111. Springer, 1981. 12

[16] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019. 2

[17] Samuel Pfrommer, Mathew Halm, and Michael Posa.
Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. arXiv preprint
arXiv:2009.11193, 2020. 2

[18] Dian Qin, Haishuai Wang, Zhe Liu, Hongjia Xu, Sheng
Zhou, and Jiajun Bu. Hilbert distillation for cross-
dimensionality networks. Advances in Neural Information
Processing Systems, 35:11726–11738, 2022. 2

[19] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019. 1, 2, 4, 8

[20] Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computa-
tional physics, 378:686–707, 2019. 2

[21] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14153–14161, 2021. 2, 5

5482



[22] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In IEEE/CVF International Confer-
ence on Computer Vision, pages 14335–14345, 2021. 2, 5

[23] Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin
Tong, and Baining Guo. Global illumination with radi-
ance regression functions. ACM Trans. Graph., 32(4):130–1,
2013. 2

[24] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritch-
man. The convergence rate of neural networks for learned
functions of different frequencies. Advances in Neural In-
formation Processing Systems, 32, 2019. 2

[25] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2304–2314, 2019. 2

[26] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J
Black. Scanimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2886–2897, 2021. 2

[27] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems, 33:20154–20166, 2020. 2

[28] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. Advances in Neural Information
Processing Systems, 33:10136–10147, 2020. 2, 3, 4, 6, 7

[29] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 1, 2,
3, 6, 7, 12, 16

[30] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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