
Periodically Exchange Teacher-Student for Source-Free Object Detection

Qipeng Liu, Luojun Lin*, Zhifeng Shen, Zhifeng Yang
College of Computer and Data Science, Fuzhou University

lqpwiki@gmail.com, linluojun2009@126.com, {shen zhifeng, yzf2001}@outlook.com

Abstract

Source-free object detection (SFOD) aims to adapt the
source detector to unlabeled target domain data in the ab-
sence of source domain data. Most SFOD methods follow
the same self-training paradigm using mean-teacher (MT)
framework where the student model is guided by only one
single teacher model. However, such paradigm can eas-
ily fall into a training instability problem that when the
teacher model collapses uncontrollably due to the domain
shift, the student model also suffers drastic performance
degradation. To address this issue, we propose the Peri-
odically Exchange Teacher-Student (PETS) method, a sim-
ple yet novel approach that introduces a multiple-teacher
framework consisting of a static teacher, a dynamic teacher,
and a student model. During the training phase, we period-
ically exchange the weights between the static teacher and
the student model. Then, we update the dynamic teacher
using the moving average of the student model that has al-
ready been exchanged by the static teacher. In this way, the
dynamic teacher can integrate knowledge from past peri-
ods, effectively reducing error accumulation and enabling
a more stable training process within the MT-based frame-
work. Further, we develop a consensus mechanism to merge
the predictions of two teacher models to provide higher-
quality pseudo labels for student model. Extensive exper-
iments on multiple SFOD benchmarks show that the pro-
posed method achieves state-of-the-art performance com-
pared with other related methods, demonstrating the effec-
tiveness and superiority of our method on SFOD task.

1. Introduction

Object detection has achieved significant progress with
rapid development of dataset scale and computation capa-
bility [31, 22, 4]. However, these detectors are typically
trained under an i.i.d assumption that the train and test data
are independently and identically distributed, which does
not always hold in real-world due to the existence of do-

*Corresponding author

𝑡0 𝑡1 𝑡n−1 𝑡n

Mean

Teacher

Periodically

Exchange

Teacher-

Student

S

ST: 𝑠𝑡𝑎𝑡𝑖𝑐 𝑡𝑒𝑎𝑐ℎ𝑒𝑟

S

T T

ST ST

DT DT DT DT

ST ST

S S S S

S

T

S

T

DT: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 S: 𝑠𝑡𝑢𝑑𝑒𝑛𝑡T: 𝑡𝑒𝑎𝑐ℎ𝑒𝑟

Figure 1: The training paradigms of the mean-teacher and the pro-
posed periodically exchange teacher-student method. T and S de-
note the teacher model and student model, respectively. ST repre-
sents the static teacher with fixed weights in each period, and DT
is the dynamic teacher updated by the EMA of the student models.
ti represents the i-th period in whole training stage.

main shift between the train and test data. This can cause
significant performance degradation when applying a model
well-trained on source domain (train data) to the target do-
main (test data). Unsupervised domain adaptation (UDA),
a recent research hotspot, can resolve this dilemma by en-
abling the model to adapt effectively to the target domain.
This is achieved through joint training, leveraging both la-
beled source domain data and unlabeled target domain data
to enhance the model’s performance in the target domain.

There are many UDA methods developed to address do-
main shift in image classification tasks [27, 35, 37, 46].
However, these methods cannot meet the growing demand
for data privacy protection. Moreover, directly applying
these UDA methods to object detection tasks cannot achieve
satisfactory performance. In light of the above consid-
erations, source-free object detection (SFOD) has rapidly
emerged as an urgent task to attract the attention of re-
searchers. The purpose of SFOD is to achieve effective
adaptation of a detector, originally trained on a labeled
source domain, to the unlabeled target domain, without ac-
cessing any source data during adaptation. Compared with
source-free image classification, SFOD is a more challeng-
ing task that not only requires regression, i.e., locating the
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bounding box of each object, but also involves classifica-
tion, i.e., identifying the associated class of each object in
diversely-scaled images.
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Figure 2: The training curves of different SFOD methods (i.e. con-
ventional MT and IRG [39]) with different EMA hyper-parameters
on C2F benchmark [33]. These methods show a consistent phe-
nomenon: when the performance of the teacher model crashes, the
student model always follows the downward trend of the teacher
model even with different EMA weights or stepsizes.

Most of the existing SFOD studies [24, 43, 25, 8, 40]
are based on self-training paradigm using a mean-teacher
(MT) framework [36] along with other improved UDA tech-
niques. These MT-based methods involves using a single
teacher model to guide the student model, where the teacher
model is an exponential moving average (EMA) of the stu-
dent model at different time steps, and the student model is
updated based on the pseudo labels provided by the teacher
model. The MT framework assumes that the teacher model
can be improved continuously as the training progresses,
and the student model can gradually approach the perfor-
mance of the teacher model. However, since the source-
pretrained model introduces inherent biases when applied to
the target domain, the teacher model, as an EMA of the stu-
dent model inherited from the source-pretrained model, is
susceptible to accumulating errors from the student model.
This error accumulation leads to a concerning issue of train-
ing instability for the teacher model, thereby making the ini-
tial assumption no longer holds true. That is, when the sin-
gle teacher model makes mistakes, the student model tends
to replicate the errors without any correction measures. It
finally leads to uncontrollable degradation of the detection
performance for MT-based SFOD methods.

In order to mitigate the training instability problem,
a natural solution involves adjusting the EMA hyper-
parameters to encourage a more gradual and stable evolu-
tion of the teacher model. For example, the recent works
[39, 8] have explored the strategy of employing a larger
EMA update stepsize, with the aim of slowing down the
updating process of the teacher model. Another line of ex-

ploration in this direction involves assigning a higher EMA
weight to the historical teacher model, amplifying the in-
fluence of the past iterations and consequently reducing the
updating rate of the teacher model. However, these efforts
have yielded limited success. As shown in Figure 2, the
efforts to enhance the EMA weights or increase the EMA
update stepsize do not completely resolve the issue of train-
ing instability problem within the MT-based frameworks.
Besides, it is inconvenient to search for an optimal EMA
hyper-parameter to properly update the teacher model.

In this paper, we aim to address the instability prob-
lem and thus propose a simple yet novel Periodically Ex-
change Teacher-Student (PETS) method to improve the self-
training paradigm of the MT framework. As shown in Fig-
ure 1, our method is a multiple-teacher framework consist-
ing of a static teacher model, a dynamic teacher model, and
a student model. Unlike the previous methods that keep
the roles of student and teacher unchanged throughout the
training, we periodically exchange the positions between
the student model and the static teacher model. Then, the
static teacher model freezes its weights until the next ex-
changing period; while the student model is trained using
the supervision signals provided by the two teacher models,
and the dynamic teacher model is updated by an EMA of
the student per iteration within each period. In this way, the
dynamic teacher implicitly reduces error accumulation to
improve its performance. Moreover, the exchange between
the static teacher and student helps to prevent a rapid de-
crease in the lower bound of the student model, ultimately
improving the robustness of whole models in our method.
Besides, we also propose a consensus mechanism to merge
the predictions from the static and dynamic teachers, which
can provide higher-quality pseudo labels to supervise the
student model.

Our method is evaluated on four SFOD benchmarks. The
experimental results show that our method achieves com-
petitive results compared with existing SFOD methods, and
demonstrate its effectiveness to solve the instability prob-
lem of current MT-based frameworks. The main contribu-
tions of our method are summarized as follows:

• We highlight the training instability issue within the
MT framework, where the errors from the teacher
model can be replicated by the student model with-
out correction measures. This will result in an uncon-
trollable degradation of detection performance in MT-
based SFOD methods.

• We propose a simple yet novel Periodically Exchange
Teacher-Student (PETS) method to address the train-
ing instability issue for MT framework. Our method
consists of a static teacher, a dynamic teacher and a
student model. At the end of each period of train-
ing, we exchange the weights between the student and
the static teacher to reduce error accumulation. Within
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each period, we train the student model through the
two teacher models, and update the dynamic teacher
with an EMA of the student model per iteration.

• We design a consensus mechanism to integrate the
predictions from the static teacher and the dynamic
teacher models. It integrates knowledge from histor-
ical iterations to prevent catastrophic forgetting, which
can achieve higher-quality pseudo labels to supervise
the student model.

• Extensive experiments on multiple SFOD benchmarks
show that the proposed method achieves state-of-the-
art performance compared with other related methods,
demonstrating the effectiveness and superiority of our
method on SFOD task.

2. Ralated Works
2.1. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) aims to trans-
fer knowledge from a source domain with labeled data to
a target domain without labeled data. The current UDA
methods can be roughly categorized into three types: do-
main translation, adversarial learning and pseudo labeling.
The domain translation methods aim to transform a target
image into a source-like image by using statistic informa-
tion in the model [45, 15] or employing a translation net-
work [20, 10, 41]. Adversarial learning is also frequently
adopted in UDA tasks by employing a domain discrimi-
nator [11] or designing adversarial loss functions, in or-
der to narrow the gap between source and target domains
in feature space [3, 37, 23, 29]. Unlike previous methods,
pseudo labeling, as one of the most popular self-training
paradigms [6], has been an effective approach for UDA,
which is mainly constructed based on the mean-teacher
(MT) framework [36] that exploits the pseudo labels pro-
vided by the teacher model to supervise the student model.
Most pseudo labeling methods concentrate on designing in-
teraction manners between the student and teacher mod-
els [19, 5, 51]. In this paper, we concentrate on source-free
object detection and try to improve self-training paradigm
for MT-based SFOD framework.

2.2. Source-Free Object Detection

Several UDA approaches have been applied to Unsuper-
vised Domain Adaptive Object Detection (UDAOD), which
can also be categorized into adversarial learning [7, 32, 13],
domain translation [16, 20] and pseudo labeling [1, 10].
Given that these methods have been introduced briefly in
previous section, we only discuss the final one since our
work is constructed on the basis of self-training. To obtain
more accurate pseudo labels, UMT [10] transforms target
domain data into source-like data in order to improve the

quality of generated pseudo-labels. SimROD [30] enhances
the teacher model by augmenting its capacity for generating
higher-quality pseudo boxes.

With the urgent need for data privacy protection, Source-
Free Object Detection (SFOD) has emerged as a new branch
of UDAOD in recent years. Due to the complexity of the
object detection task (numerous regions, multi-scale fea-
tures, and complex network structure) and the challenge of
the absent source data, simply applying the existing UDA-
Classification or UDAOD methods to SFOD tasks can not
get satisfied results [48, 26]. Therefore, SFOD [25] devel-
ops a novel framework that uses self-entropy descent to se-
lect high-quality pseudo labels for self-training. SOAP [43]
devises domain perturbation on the target data to help the
model learn domain-invariant features that are invariant to
the perturbations. LODS [24] proposes a style enhancement
module and graph alignment constraint to help the model
learn domain-independent features. A2SFOD [8] divides
target images into source-similar and source-dissimilar im-
ages and then adopts adversarial alignment between the
teacher and student models. IRG [39] designs an instance
relation graph network combined with contrastive loss to
guide the contrastive representation learning. While the ma-
jority of these approaches rely on the MT framework [28],
they tend to overlook the issue of training instability aris-
ing from a single teacher model. This oversight allows er-
rors to be replicated by the student model, consequently
constraining its performance. To tackle this concern, we
propose a Periodically Exchange Teacher-Student approach
that leverages knowledge from historical models to prevent
catastrophic forgetting for MT framework.

3. Preliminary
Let DS = (XS ,YS) represent the labeled data in the

source domain, and DT = (XT ) denote the unlabeled data
in the target domain, where XS = {xi

s}
NS
i=1 represents the

image set of the source domain, YS = {yis}
NS
i=1 represents

the corresponding label set containing object locations and
category assignments for each image, and XT = {xi

t}
NT
i=1

denotes the image set of the unlabeled target domain. Ns

and Nt correspond to the number of labeled source data and
unlabeled target data, respectively.

In the setting of SFOD task, a source pre-trained model,
denoted as fS : XS → YS , is initially available to per-
form adaptation on unlabeled target domain. However, due
to the inherent domain gap between the source and target
domains, the mapping fS diminishes performance when
directly applied to the target domain. Consequently, the
primary objective of SFOD is to acquire a new mapping
fT : XT → YT by leveraging the source-pretrained model
fS in conjunction with the unlabeled target data XT without
accessing any source data.

Most previous SFOD methods use Faster-RCNN [31] as
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Figure 3: The training pipeline of the proposed Periodically Exchange Teacher-Student method, which can be divided into two parts: (a)
Outer-period exchange of teacher-student: exchange the weights between the student and static teacher after each period; (b) Inner-period
training with consensus mechanism: update the dynamic teacher with an EMA of the student model, and train the student model with a
consensus mechanism that fusions the predictions from multiple teachers.

their backbone network. To ensure a fair comparison with
previous methods, we also adopt Faster-RCNN as the back-
bone network here. Therefore, the training goal of fT is
similar to Faster-RCNN, which can be written as:

Ldet = LRPN
cls + LRPN

reg + LROI
cls + LROI

reg , (1)

where LRPN
cls and LRPN

reg represent the losses of foreground
prediction and box location from the RPN network, respec-
tively. LROI

cls andLROI
reg are the losses of category prediction

and box location from the ROI head, respectively.

4. Methodology
4.1. Overview

Our method involves using a static teacher model, a dy-
namic teacher model, and a student model. The pseudo code
of training process can be seen in Algorithm 1. Figure 3
shows the training pipeline of our method, which can be
divided into two parts:

1) Outer-period exchange of teacher-student: After each
period of training, we exchange the weights between
the student model and the static teacher model. In
other words, the static teacher and the student reverse
their roles per period, as shown in Figure 3(a). Note
that the term “period” is synonymous with the concept
of an epoch during training.

2) Inner-period training with consensus mechanism: The
weights of static teacher model are fixed within each
period. The dynamic teacher is updated by the EMA
of the student model in each iteration, and the student
model is supervised by the pseudo labels merged from
the dynamic and static teacher models with consensus
mechanism, as shown in Figure 3(b).

Algorithm 1 Python-like code of training process

# Outer-period exchange of teacher-student
if epoch % time_period == 0:

exchange_weight(student, static_teacher)

# Inner-period training with consensus mechanism
for _, images in enumerate(loader):

# images: [N, C, H, W]
# N: number of images per mini-batch
# pre-process images by data augmentation
img_w = weak_aug(images)
img_s = strong_aug(img_w)

# obtain predictions
pred_s = student(img_s)
pred_st = static_teacher(img_w)
pred_dt = dynamic_teacher(img_w)

# produce pseudo label
pseudo_labels = consensus(pred_st, pred_dt)

# compute detection loss
loss = compute_loss(pred_s, pseudo_labels)

# update the student by back-propagation
loss.backward()

# update the dynamic teacher by EMA
update_teacher(student, dynamic_teacher)

Notations For better understanding our method, we use
ΘS , ΘST and ΘDT to denote the student model, the static
teacher model and the dynamic teacher model, respectively.

4.2. Outer-period Exchange of Teacher-Student

The training process can be divided into multiple inde-
pendent time periods (i.e., epochs). Each period is repre-
sented as t. At the 2t+ 2 period, the weights of the student
model are swapped by that of the static teacher model at the
2t + 1 period. Conversely, the weights of the static teacher
model at the 2t+2 period are exchanged by that of the stu-
dent model at previous period. The exchange process can
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be written as:

Θ2t+1
S −→ Θ2t+2

ST , Θ2t+1
ST −→ Θ2t+2

S , (2)

where Θ2t+2
ST and Θ2t+2

S denote the static teacher model and
the student model at the 2t + 2 period, respectively. This
exchange strategy keeps periodically recycling during the
whole training process.

The exchange strategy benefits each model from the fol-
lowing perspectives: 1) Student model: The static teacher
model serves as a performance lower bound for the stu-
dent model. If the student model crashes into a collapse
issue guided by the declined dynamic teacher, the exchange
can ensure that the student model reverts to previous pe-
riod, effectively mitigating its downward trend. In essence,
the exchange helps prevent a rapid decrease in the perfor-
mance lower bound of the student model, thus improving
its robustness. 2) Static teacher model: The exchange strat-
egy ensures periodic updating to the static teacher model’s
knowledge, which is executed at a notably slow rate to en-
able a more stable model. 3) Dynamic teacher model: The
dynamic teacher model is a temporal ensemble of the stu-
dent model exchanged by the past student model. In prac-
tice, the updating rate of the dynamic teacher model is
implicitly reduced. Thus, it has a better ability to resist
noise compared to the conventional mean-teacher frame-
work [36]. In summary, our periodically exchange teacher-
student strategy can enable the student and teacher models
to mutually prevent catastrophic forgetting and uncontrol-
lable collapse, thus improving the detection performance.

4.3. Inner-period Training with Consensus Mecha-
nism

During each period, the static teacher maintains fixed
weights until iterating to next period. Simultaneously, the
dynamic teacher model is updated by the temporal ensem-
bling of the student model, and the student model is updated
by pseudo labels as supervision signals, where the pseudo
labels are generated by combining the predictions of the
dynamic and static teachers through the consensus mech-
anism. This procedure is illustrated in Figure 3(b). The
following sections delve into the details of the consensus
mechanism, the learning process of the student model, and
the updating of the dynamic teacher model.

4.3.1 Consensus Mechanism

Our framework incorporates two distinct teachers: the static
teacher and the dynamic teacher. A notable advantage of
our approach is the ability to leverage predictions from both
teachers to enhance the quality of pseudo labels. To this
end, we design a consensus mechanism that includes two
main steps: filtering and fusion.

Filtering Since the output of teacher models contains in-
evitable noise (low-confidence predictions), we set a cat-
egory confidence threshold δ = 0.5 to pre-filter low-
confidence predictions. This can prevent the subsequent fu-
sion process suffering from the interference of noisy labels.

Fusion For a weakly-augmented target image xt ∈ XT ,
the predictions of the static teacher and dynamic teacher are
represented as YST = {(biST , c

i
ST , y

i
ST )}ni=0 and YDT =

{(bjDT , c
j
DT , y

j
DT )}mj=0, where b, c, y represent the bound-

ing box coordinates, classification confidence and category
label of each predicted object, and n,m denote the number
of predicted objects of the static teacher and the dynamic
teacher, respectively. Then, we select the objects with iden-
tical category and a higher intersection over union (IOU)
between the predicted boxes of the static teacher and the
dynamic teacher. The selection criterion can be represented
as IOU(biST , b

j
DT ) ≥ η & yiST = yjDT , where η is the

threshold of judging whether the predicted box belongs to
the same object. We usually set η = 0.5. Lastly, we employ
the weighted boxes fusion (WBF) strategy [34] to merge the
selected boxes derived from both the static teacher and dy-
namic teacher models. The process can be formulated as:

b̃ =
1

C
(

N∑
i=1

ciST ∗ biST +

M∑
j=1

cjDT ∗ b
j
DT ),

c̃ =
β

N

N∑
i=1

ciST +
1− β

M

M∑
j=1

cjDT ,

(3)

where N,M are the number of boxes belonging to the
same object predicted by the static teacher and the dy-
namic teacher, respectively. C is the sum of

∑N
i=1 c

i
ST and∑M

j=1 c
j
DT . β controls the fusion magnitude between the

static teacher and dynamic teacher, which is ranged in [0, 1]
and set to 0.5 in this paper. We ultimately obtain pseudo la-
bel Ỹ = {(̃b, c̃, ỹ)} for the unlabeled target image xt, where
b̃ and c̃ denote the coordinates and confidence of the fused
bounding box, respectively, and ỹ is equivalent to yiST . The
fused pseudo labels exhibit greater resistance to confirma-
tion bias compared to those single-teacher framework.

4.3.2 Student Learning

Given an unlabeled target image xt, its pseudo label can be
represented as Ỹ = {(̃b, ỹ)} that can be used as the super-
vision signal of the student model. Following Equation 1,
the training loss of the student model ΘS can be defined as:

Ls det =
∑

x̄t∈XT

LRPN
cls (ΘS(x̄t), ỹ) + LRPN

reg (ΘS(x̄t), b̃)+

LROI
cls (ΘS(x̄t), ỹ) + LROI

reg (ΘS(x̄t), b̃),
(4)
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where x̄t denotes the strongly-augmented version of the tar-
get image xt. Since the proposed consensus mechanism can
provide more precise bounding boxes compared with previ-
ous studies [10], we use both the category prediction loss
and box location loss to train the student model.

4.3.3 Dynamic Teacher Updating

Throughout each period, the static teacher model main-
tains fixed weights across various iterations, whereas the
dynamic teacher model adjusts its weights in each iteration.
We follow the conventional MT framework that uses the
exponential moving average (EMA) strategy to update the
dynamic teacher model ΘDT . This can be formulated as:

ΘDT ← αΘ′
DT + (1− α)ΘS , (5)

where ΘDT represents the dynamic teacher in current itera-
tion, while Θ′

DT pertains to the dynamic teacher in previous
iteration. The hyper-parameter α controls the update rate of
the dynamic teacher, with a higher value leading to a slower
update rate. In this study, we empirically set α to 0.999.

5. Experiments

We conduct comprehensive experiments to evaluate the
effectiveness of our method on multiple standard SFOD
benchmarks. Then, we perform ablation studies by using
different exchange strategies to stress the effectiveness of
the proposed periodic exchange strategy. Finally, we ana-
lyze the promising results of our method through detailed
visualization and component analysis.

5.1. Experimental Setup

Task Settings. Following the existing works [25, 8],
we validate our method on the four popular SFOD tasks
which represent different types of domain shift, includ-
ing 1) Cityscapes-to-Foggy-Cityscapes (C2F): Adaptation
from normal to foggy weather. 2) Cityscapes-to-BDD100k
(C2B): Adaptation from small to large-scale dataset. 3)
KITTI-to-Cityscapes-Car (K2C): Adaptation across differ-
ent cameras. 4) Sim10k-to-Cityscapes-Car (S2C): Adapta-
tion from synthetic to real images. The A-to-B represents
the adaption of the model pre-trained on the source domain
A to the target domain B.

Datasets. There are five datasets used in the aforemen-
tioned tasks: 1) Cityscapes [9] is a street view dataset con-
taining 5,000 images with instance-level pixel annotation
from different cities in different seasons, where 2,925 train-
ing images and 500 validation images are used in the fol-
lowing experiments. 2) Foggy Cityscapes [33] is also a
street view dataset similar to Cityscapes, but its images

are processed by three levels (0.005, 0.01, 0.02) of arti-
ficial simulation of extreme foggy scenes. 3) KITTI [12]
is a widely used benchmark dataset for autonomous driv-
ing which contains many images from different real-world
street scenes. There are only 7,481 training images used
in the experiments. 4) SIM10k [18] is a synthetic dataset
consisting of 10,000 city scenery images of cars. 5)
BDD100k [47] is a large-scale open source video dataset for
autonomous driving, including 100k images from different
times, different weather conditions and driving scenarios.

5.2. Implementation Details

Our method is implemented based on PyTorch platform
using detectron2 framework [42]. Following the previous
study [25], we use Faster-RCNN [31] with the backbone of
VGG16 pre-trained on the ImageNet as the base detection
model in our method. All images are scaled by resizing
the shorter edge of the image to 600 pixels before training.
The data augmentation strategy includes random erasing,
random horizontal flip, and color transformation. We adopt
the SGD as the optimizer with an initial learning rate of 8e-
4, a decay rate of 0.1. The batch size is set to 8.

The training process of our method consists of two
stages: warm-up and adaptation. In the warm-up stage, the
learning rate increases gradually from 0 to 8e-4. The static
teacher model freezes its weights and the dynamic teacher
model keeps updating during the first two epochs. In the
fine-tuning stage, the weights of the student model and the
static teacher model are exchanged per epoch, and the EMA
rate of the dynamic teacher model is set to 0.999. During
evaluation process, we reserve the dynamic teacher model
for inference and choose the mean average precision (mAP)
with an IOU threshold of 0.5 as the evaluation measure.

5.3. Comparison with Existing SOTA Methods

UDAOD and SFOD have a similar task setting. There-
fore, we compare our method with existing UDAOD and
SFOD methods. Table 1-4 show the comparison results,
where “Source only” and “Oracle” represent the models
which are only trained in source domain or target domain
data, respectively. They represent the upper and lower per-
formance bounds of the SFOD task.

C2F: Adaptation from Normal to Foggy Weather. In
real-world application scenarios, e.g., automated driving,
object detectors tend to encounter various complex weather
conditions. To study the domain shift caused by weather
conditions, we perform the adaptation from normal weather
to foggy weather. For fair comparison, our experiments are
conducted in two manners: 1) All levels: Using all target
data with three foggy levels for training. 2) Single level: Us-
ing partial target data with a foggy level at 0.02 for training.
The results are shown in Table 1. Our method achieves an
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Methods Person Rider Car Truck Bus Train Motor Bicycle mAP

Source only (Single level) 23.4 23.8 29.7 8.1 12.9 5.0 18.3 24.5 18.2
Source only (All levels) 35.1 39.4 47.0 10.7 32.5 10.1 30.0 36.9 30.7

UDAOD

MAF [13] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
SW-Faster [32] 32.3 42.2 47.3 23.7 41.3 27.8 28.3 35.4 34.8
iFAN [52] 32.6 40.0 48.5 27.9 45.5 31.7 22.8 33.0 35.3
CR-DA-DET [44] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
AT-Faster [14] 34.6 47.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7

SFOD

SED(Mosaic) [25] 33.2 40.7 44.5 25.5 39.0 22.2 28.4 34.1 33.5
HCL [17] 26.9 46.0 41.3 33.0 25.0 28.1 35.9 40.7 34.6
A2SFOD [8] 32.3 44.1 44.6 28.1 34.3 29.0 31.8 38.9 35.4
SOAP [43] 35.9 45.0 48.4 23.9 37.2 24.3 31.8 37.9 35.5
LODS [24] 34.0 45.7 48.8 27.3 39.7 19.6 33.2 37.8 35.8
IRG [39] 37.4 45.2 51.9 24.4 39.6 25.2 31.5 41.6 37.1
Ours (Single level) 42.0 48.7 56.3 19.3 39.3 5.5 34.2 41.6 35.9
Ours (All levels) 46.1 52.8 63.4 21.8 46.7 5.5 37.4 48.4 40.3

Oracle 51.3 57.5 70.2 30.9 60.5 26.9 40.0 50.4 48.5

Table 1: Results of adaptation from normal to foggy weather (C2F). “Source only” and “Oracle” refer to the models trained by only using
labeled source domain data and labeled target domain data, respectively.

Methods Truck Car Rider Person Motor Bicycle Bus mAP

Source only 9.9 51.5 17.8 28.7 7.5 10.8 7.6 19.1

UDAOD
DA-Faster [7] 14.3 44.6 26.5 29.4 15.8 20.6 16.8 24.0
SW-Faster [32] 15.2 45.7 29.5 30.2 17.1 21.2 18.4 25.3
CR-DA-DET [44] 19.5 46.3 31.3 31.4 17.3 23.8 18.9 26.9

SFOD

SED [25] 20.4 48.8 32.4 31.0 15.0 24.3 21.3 27.6
SED(Mosaic) [25] 20.6 50.4 32.6 32.4 18.9 25.0 23.4 29.0
A2SFOD [8] 26.6 50.2 36.3 33.2 22.5 28.2 24.4 31.6
Ours 19.3 62.4 34.5 42.6 17.0 26.3 16.9 31.3

Oracle 47.7 72.1 38.4 50.0 25.5 32.3 42.8 44.1

Table 2: Results of adaptation from small-scale to large-scale dataset (C2B).

Methods mAP Methods mAP

Source only 36.3 MeGA-CDA [38] 43.0
DA-Faster [7] 38.5 NL [19] 43.0
SW-Faster [32] 37.9 SAPNet [21] 43.4
MAF [13] 41.0 SGA-S [49] 43.5
AT-Faster [14] 42.1 CST-DA [50] 43.6

SOAP [43] 42.7 A2SFOD [8] 44.9
SFOD [25] 43.6 IRG [39] 45.7
LODS [24] 43.9 Ours 47.0
SED(Mosaic) [25] 44.6 Oracle 68.9

Table 3: Results of adaptation across cameras (K2C).

mAP score of 40.3%, which outperforms both the UDAOD
and SFOD methods on this benchmark.

C2B: Adaptation from Small-scale to Large-scale
Dataset. Annotating a large number of data for detection
task can be very expensive and time-consuming. There-
fore, the most economical way is to transfer knowledge
from small-scale labeled datasets to large-scale unlabeled

Methods mAP Methods mAP

Source only 40.5 NL [19] 43.0
MAF [13] 41.1 UMT [10] 43.1
AT-Faster [14] 42.1 MeGA-CDA [38] 44.8
HTCN [2] 42.5 CR-DA-DET [44] 46.1

SED [25] 42.3 A2SFOD [8] 44.0
SED(Mosaic) [25] 43.1 Ours 57.8
IRG [39] 43.2 Oracle 68.9

Table 4: Results of adaptation from synthetic to real scenes (S2C).

datasets. However, different datasets exhibit varying de-
grees of domain shifts. To validate the effectiveness of
our method on such task, we transfer the source-pretrained
model from Cityscapes (source domain) to BDD100k (tar-
get domain). Following the setting of previous stud-
ies [25, 8], we keep 8 categories in BDD100k that are the
same as Cityscapes. Since the detection performance of the
category “train” is always close to 0, we only report the
mAP score of 7 categories in Table 2. The results show that
our method achieves very competitive performance with the
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Figure 4: The training curves of each model within the multi-teacher framework during the whole training process.

Foggy level Method DT ST mAP

All levels

Source only - - 30.7
Single-teacher - ✓ 36.6
Single-teacher ✓ - 38.0

Ours ✓ ✓ 40.3

Single level

Source only - - 18.2
Single-teacher - ✓ 27.2
Single-teacher ✓ - 32.9

Ours ✓ ✓ 35.9

Table 5: Results of single-teacher and multi-teacher methods on
C2F benchmark. DT and ST represent the dynamic teacher and
static teacher, respectively.

Weights flowing strategy K2C C2F Avg

Baseline 43.8 36.6 40.2
S −→ ST 46.8 39.6 43.2
DT −→ S 44.1 37.8 41.0

DT −→ ST 46.4 38.9 42.7
S←→ ST (Ours) 47.0 40.3 43.7

Table 6: Results of different exchange strategies on K2C and
C2F benchmarks. “Baseline” means training the proposed multi-
teacher framework without any weights flowing.

latest state-of-the-art SFOD method on this benchmark.

K2C: Adaptation across Various Cameras. Due to dif-
ferent camera settings (e.g., angle, resolution, quality, and
type), domain shifts always occur in cross-camera images.
To explore our method on cross-camera images, we adapt
the model trained on KITTI to SIM10k, a dataset with
images taken from real-world but different photographic
equipment. Following previous studies, we only evaluate
the performance on “Car” category. The results are reported
in Table 3, where we can see that our method obtains state-
of-the-art performance on this benchmark.

S2C: Adaptation from Synthetic to Real Scenarios.
Synthetic images provide an alternative to address the chal-
lenges of data collection and manual labeling. However,
there is a substantial domain gap between synthetic data
and real data. To study the adaptation from synthetic to real
scenes, we use the model pre-trained on the entire Sim10k
dataset as the source model. The training set of Cityscapes

is used as target data by reserving car images and discarding
other categories. Results in Table 4 show that our method
outperforms the existing SFOD approach by a large mar-
gin of +13.8%, which demonstrates the superiority of our
method on this benchmark.

5.4. Ablation study

Single-teacher VS. Multi-teacher. We investigate the ne-
cessity of multi-teacher framework by comparing it with
single-teacher method on C2F benchmark. The single-
teacher methods employ either a static teacher or a dy-
namic teacher to guide the student learning process, which
no longer involves using the exchange strategy and consen-
sus mechanism. As shown in Table 5, our multi-teacher
framework achieves the best performance compared to the
single-teacher frameworks on both foggy levels. The suc-
cess can be attributed to the superiority of exchange strategy
and consensus mechanism in multi-teacher framework.

Weights Flowing Strategy. To verify the effectiveness of
the proposed method, we also explore the performance of
other weights flowing strategies. The comparison results
are shown in Table 6, where A → B represents the single-
direction weights flowing strategy that model B copies the
weights of model A, while model A retains its weights, and
A↔ B denotes our double-direction weights flowing strat-
egy. We can see that all weights flowing strategies show
the superiority to the baseline model that does not involve
any weights swapping. Moreover, the proposed double-
direction weights flowing strategy outperforms other single-
direction strategies on both K2C and C2F benchmarks. This
again demonstrates the superiority of our method.

5.5. Result Analysis

Training Stability. The training curves of each model
within our multi-teacher framework on the four benchmarks
are shown in Figure 4. Compared with the training curves
of the conventional MT framework (see Figure 2), the per-
formance of the student, static teacher and dynamic teacher
models is stably improved and gradually converges to a con-
sistent point as the training progresses. We can see that the
training instability problem of conventional MT framework
is effectively alleviated by our method.
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Figure 5: Detection results of different foggy-level images predicted by the dynamic teacher, static teacher, student models trained in
different times. “DT (4999)”, “ST (4999)”, and “Student (4999)” represent the dynamic teacher, static teacher, and student model in the
4999-th iteration, respectively. “Student (final)” represents the student model saved at the end of training.

Visualization. We conduct an analysis by visualizing the
detection results of the static teacher, dynamic teacher, and
student models. This visualization is performed by in-
putting several images with varying foggy degrees from the
Foggy Cityscape dataset [33]. The detection results of the
three models for these images are shown in Figure 5. It is
evident that the two teacher models yield varying detection
results for each image, implying the potential complemen-
tarity of their predictive results. This observation prompts
us to make a consensus on the divergent predictions of the
two teacher models to enhance the quality of pseudo la-
bels. The effectiveness of the consensus mechanism is fur-
ther proven by the detection results of the student model ob-
tained at the final iteration, which has shown superior recall
and accuracy compared to the student model at the interme-
diate (4, 999-th) iteration.

6. Conclusion
In this paper, we present a simple yet novel Periodically

Exchange Teacher-Student method to tackle the training in-

stability problem ignored by current MT-based SFOD meth-
ods. Our method employs a static teacher model, a dy-
namic teacher model, and a student model. At the end of
each training period, we exchange the weights between the
static teacher and student models. Within each period, the
static teacher maintains its weights, while the student model
is trained using pseudo labels generated by both teachers.
Meanwhile, the dynamic teacher is continually updated us-
ing the EMA of the student model per iteration through-
out the whole training phase. The extensive experimental
results demonstrate the effectiveness of our method. Our
method provides a new insight for MT-based self-training
methods.

Acknowledgements
This work was supported by the Fujian Provincial Natu-

ral Science Foundation (No. 2022J05135), the University-
Industry Project of Fujian Provincial Department of Science
and Technology (No. 2020H6005), and the National Natu-
ral Science Foundation of China (No. U21A20471).

6422



References
[1] Qi Cai, Yingwei Pan, Chong-Wah Ngo, Xinmei Tian, Lingyu

Duan, and Ting Yao. Exploring object relation in mean
teacher for cross-domain detection. In CVPR, pages 11457–
11466, 2019.

[2] Chaoqi Chen, Zebiao Zheng, Xinghao Ding, Yue Huang, and
Qi Dou. Harmonizing transferability and discriminability for
adapting object detectors. In CVPR, pages 8869–8878, 2020.

[3] Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi
Jin, and Enhong Chen. Reusing the task-specific classifier as
a discriminator: Discriminator-free adversarial domain adap-
tation. In CVPR, pages 7181–7190, 2022.

[4] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffu-
siondet: Diffusion model for object detection. arXiv preprint
arXiv:2211.09788, 2022.

[5] Weijie Chen, Luojun Lin, Shicai Yang, Di Xie, Shiliang Pu,
and Yueting Zhuang. Self-supervised noisy label learning for
source-free unsupervised domain adaptation. In IROS, pages
10185–10192, 2022.

[6] Weijie Chen, Shiliang Pu, Di Xie, Shicai Yang, Yilu Guo,
and Luojun Lin. Unsupervised image classification for
deep representation learning. In ECCVw, pages 430–446.
Springer, 2020.

[7] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In CVPR, pages 3339–3348, 2018.

[8] Qiaosong Chu, Shuyan Li, Guangyi Chen, Kai Li, and Xiu
Li. Adversarial alignment for source free object detection. In
Brian Williams, Yiling Chen, and Jennifer Neville, editors,
AAAI, pages 452–460, 2023.

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016.

[10] Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Un-
biased mean teacher for cross-domain object detection. In
CVPR, pages 4091–4101, 2021.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. J. Mach. Learn. Res., 17(1):2096–
2030, 2016.

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Int. J.
Robotics Res., 32(11):1231–1237, 2013.

[13] Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn
for unrestricted object detection. In ICCV, pages 6668–6677,
2019.

[14] Zhenwei He and Lei Zhang. Domain adaptive object de-
tection via asymmetric tri-way faster-rcnn. In ECCV 2020,
pages 309–324. Springer, 2020.

[15] Jin Hong, Yu-Dong Zhang, and Weitian Chen. Source-
free unsupervised domain adaptation for cross-modality ab-
dominal multi-organ segmentation. Knowl. Based Syst.,
250:109155, 2022.

[16] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih
Hung, Hung-Yu Tseng, Maneesh Singh, and Ming-Hsuan
Yang. Progressive domain adaptation for object detection.
In WACV, pages 749–757, 2020.

[17] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.
Model adaptation: Historical contrastive learning for un-
supervised domain adaptation without source data. NIPS,
34:3635–3649, 2021.

[18] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta,
Sharath Nittur Sridhar, Karl Rosaen, and Ram Vasudevan.
Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks? In ICRA, pages
746–753, 2017.

[19] Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and
William G Macready. A robust learning approach to domain
adaptive object detection. In ICCV, pages 480–490, 2019.

[20] Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon
Choi, and Changick Kim. Diversify and match: A domain
adaptive representation learning paradigm for object detec-
tion. In CVPR, pages 12456–12465, 2019.

[21] Congcong Li, Dawei Du, Libo Zhang, Longyin Wen, Tiejian
Luo, Yanjun Wu, and Pengfei Zhu. Spatial attention pyra-
mid network for unsupervised domain adaptation. In ECCV,
pages 481–497. Springer, 2020.

[22] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei
Geng, Liang Li, Zaidan Ke, Qingyuan Li, Meng Cheng,
Weiqiang Nie, et al. Yolov6: A single-stage object detec-
tion framework for industrial applications. arXiv preprint
arXiv:2209.02976, 2022.

[23] Jingjing Li, Zhekai Du, Lei Zhu, Zhengming Ding, Ke Lu,
and Heng Tao Shen. Divergence-agnostic unsupervised do-
main adaptation by adversarial attacks. IEEE Trans. Patt.
Anal. Mach. Intell., 44(11):8196–8211, 2021.

[24] Shuaifeng Li, Mao Ye, Xiatian Zhu, Lihua Zhou, and Lin
Xiong. Source-free object detection by learning to overlook
domain style. In CVPR, pages 8014–8023, 2022.

[25] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan,
Shiliang Pu, and Yueting Zhuang. A free lunch for unsuper-
vised domain adaptive object detection without source data.
In AAAI, volume 35, pages 8474–8481, 2021.

[26] Zhaoyang Li, Long Zhao, Weijie Chen, Shicai Yang, Di Xie,
and Shiliang Pu. Target-aware auto-augmentation for unsu-
pervised domain adaptive object detection. In ICASSP, pages
3848–3852, 2022.

[27] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In ICML, pages 6028–6039,
2020.

[28] Luojun Lin, Zhifeng Yang, Qipeng Liu, Yuanlong Yu, and
Qifeng Lin. Run and chase: Towards accurate source-free
domain adaptive object detection. In ICME, 2023.

[29] Rang Meng, Weijie Chen, Shicai Yang, Jie Song, Luojun
Lin, Di Xie, Shiliang Pu, Xinchao Wang, Mingli Song, and
Yueting Zhuang. Slimmable domain adaptation. In CVPR,
pages 7141–7150, 2022.

[30] Rindra Ramamonjison, Amin Banitalebi-Dehkordi, Xinyu
Kang, Xiaolong Bai, and Yong Zhang. Simrod: A sim-

6423



ple adaptation method for robust object detection. In ICCV,
pages 3570–3579, 2021.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NIPS, 28, 2015.

[32] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Strong-weak distribution alignment for adaptive ob-
ject detection. In CVPR, pages 6956–6965, 2019.

[33] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Se-
mantic foggy scene understanding with synthetic data. IJCV,
126(9):973–992, 2018.

[34] Roman Solovyev, Weimin Wang, and Tatiana Gabruseva.
Weighted boxes fusion: Ensembling boxes from different
object detection models. Image Vis. Comput., 107:104117,
2021.

[35] Tao Sun, Cheng Lu, and Haibin Ling. Prior knowledge
guided unsupervised domain adaptation. In ECCV, pages
639–655, 2022.

[36] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. NIPS, 30, 2017.

[37] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR,
pages 7167–7176, 2017.

[38] Vibashan Vs, Vikram Gupta, Poojan Oza, Vishwanath A
Sindagi, and Vishal M Patel. Mega-cda: Memory guided
attention for category-aware unsupervised domain adaptive
object detection. In CVPR, pages 4516–4526, 2021.

[39] Vibashan VS, Poojan Oza, and Vishal M Patel. Instance re-
lation graph guided source-free domain adaptive object de-
tection. In CVPR, pages 3520–3530, 2023.

[40] Vibashan Vs, Poojan Oza, Vishwanath A Sindagi, and
Vishal M Patel. Mixture of teacher experts for source-free
domain adaptive object detection. In ICIP, pages 3606–
3610, 2022.

[41] Hongsong Wang, Shengcai Liao, and Ling Shao. Afan:
Augmented feature alignment network for cross-domain ob-
ject detection. IEEE Trans. Image Process., 30:4046–4056,
2021.

[42] Yuxin Wu, Alexander Kirillov, Francisco Massa,
Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

[43] Lin Xiong, Mao Ye, Dan Zhang, Yan Gan, Xue Li, and
Yingying Zhu. Source data-free domain adaptation of object
detector through domain-specific perturbation. Int. J. Intell.
Syst., 36(8):3746–3766, 2021.

[44] Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, and Xiu-Shen
Wei. Exploring categorical regularization for domain adap-
tive object detection. In CVPR, pages 11724–11733, 2020.

[45] Chen Yang, Xiaoqing Guo, Zhen Chen, and Yixuan Yuan.
Source free domain adaptation for medical image segmen-
tation with fourier style mining. Medical Image Anal.,
79:102457, 2022.

[46] Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang.
Tvt: Transferable vision transformer for unsupervised do-
main adaptation. In WACV, pages 520–530, 2023.

[47] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike
Liao, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A
diverse driving video database with scalable annotation tool-
ing. arXiv preprint arXiv:1805.04687, 2(5):6, 2018.

[48] Peng Yuan, Weijie Chen, Shicai Yang, Yunyi Xuan, Di Xie,
Yueting Zhuang, and Shiliang Pu. Simulation-and-mining:
Towards accurate source-free unsupervised domain adaptive
object detection. In ICASSP, pages 3843–3847, 2022.

[49] Chong Zhang, Zongxian Li, Jingjing Liu, Peixi Peng, Qixi-
ang Ye, Shijian Lu, Tiejun Huang, and Yonghong Tian. Self-
guided adaptation: Progressive representation alignment for
domain adaptive object detection. IEEE Trans. Multim.,
24:2246–2258, 2021.

[50] Ganlong Zhao, Guanbin Li, Ruijia Xu, and Liang Lin. Col-
laborative training between region proposal localization and
classification for domain adaptive object detection. In ECCV,
pages 86–102, 2020.

[51] Lihua Zhou, Siying Xiao, Mao Ye, Xiatian Zhu, and
Shuaifeng Li. Adaptive mutual learning for unsupervised do-
main adaptation. IEEE Trans. Circuits Syst. Video Technol.,
2023.

[52] Chenfan Zhuang, Xintong Han, Weilin Huang, and Matthew
Scott. ifan: Image-instance full alignment networks for
adaptive object detection. In AAAI, volume 34, pages 13122–
13129, 2020.

6424


