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Abstract

We show that crowd counting can be viewed as a decom-
posable point querying process. This formulation enables
arbitrary points as input and jointly reasons whether the
points are crowd and where they locate. The querying pro-
cessing, however, raises an underlying problem on the num-
ber of necessary querying points. Too few imply underesti-
mation; too many increase computational overhead. To ad-
dress this dilemma, we introduce a decomposable structure,
i.e., the point-query quadtree, and propose a new counting
model, termed Point quEry Transformer (PET). PET im-
plements decomposable point querying via data-dependent
quadtree splitting, where each querying point could split
into four new points when necessary, thus enabling dy-
namic processing of sparse and dense regions. Such a
querying process yields an intuitive, universal modeling of
crowd as both the input and output are interpretable and
steerable. We demonstrate the applications of PET on a
number of crowd-related tasks, including fully-supervised
crowd counting and localization, partial annotation learn-
ing, and point annotation refinement, and also report state-
of-the-art performance. For the first time, we show that a
single counting model can address multiple crowd-related
tasks across different learning paradigms. Code is avail-
able at https://github.com/cxliu0/PET.

1. Introduction
Crowd counting aims to estimate the number of crowd

from an image. Existing approaches typically address
counting by learning surrogate targets such as density maps,
where the count is acquired by integrating the inferred den-
sity map. Despite being effective, they cannot provide an
intuitive understanding of the crowd, i.e., no instance-level
information is provided, which impedes high-level crowd
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analysis. Instead of merely predicting a count value from
an image, some approaches focus on estimating the fine-
grained information of crowd by either a head bounding
box [21, 26] or a single head point [3, 17, 29]. The former
casts crowd counting as a head detection problem. How-
ever, the detection accuracy has no guarantee in theory due
to the lack of box information. In contrast, the latter directly
outputs the head points, bypassing the error-prone stage of
bounding box estimation. Nevertheless, they often require
post-processing [3, 17] to obtain the location of each person.
As a result, congested scenes may render failures of count-
ing or localization. In addition, prior arts typically tackle a
specific counting task or a learning paradigm; each requires
a customized design. This impedes their use in different ap-
plications or tasks. For example, a fully-supervised count-
ing model often cannot well address semi-supervised crowd
counting [39].

In this work, we formulate crowd counting as a decom-
posable point querying process. The point querying design
allows a model to receive arbitrary points as input and to
reason whether each point is a person and where it locates.
An appealing property of this design is that it provides an
intuitive and universal modeling of crowd. To be specific,
the intuition lies in that each querying point physically cor-
responds to a person or background. The arbitrariness of
querying points implies that the position and the number of
input points are both steerable. Therefore, by simply adjust-
ing the input, our formulation naturally fits different crowd-
related tasks, such as fully-supervised crowd counting and
localization, partial annotation learning [39], and point an-
notation refinement (Fig. 1c).

However, since an input image may contain an arbitrary
number of crowd, it is non-trivial to predefine the number
of querying points. In practice, too few points lead to un-
derestimation, while too many points yield a large compu-
tational cost. To tackle this pitfall, we present a decompos-
able structure—point-query quadtree. The key advantage of
the quadtree is that it allows data-dependent splitting, where
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Figure 1: Comparison between prior arts and our point-query counting paradigm. In contrast to (a) prior arts, we
consider arbitrary points as input, and reason whether each point is a person and where the person locates. We devise (b)
a point-query quadtree to deal with dense crowd with adaptive tree splitting. The query design renders PET an intuitive
and universal approach, enabling (c) various applications, such as fully-supervised crowd counting and localization, partial
annotation learning, and point annotation refinement.

one querying point could split into several new ones when
necessary, hence enabling dynamic processing of sparse and
dense regions. Based on the quadtree, we instantiate a Point
quEry Transformer (PET) to achieve decomposable point
querying, as shown in Fig. 1b. Another key ingredient of
PET is the progressive rectangle window attention, where
the querying process is performed within a local window
rather than the whole image in a progressive manner for ef-
ficient inference.

Extensive experiments on four crowd-counting bench-
marks show that PET exhibits many appealing proper-
ties: i) generic: PET is applicable to several crowd-related
tasks, such as fully-supervised crowd counting and local-
ization, partial annotation learning, and point annotation re-
finement; ii) effective: PET reports state-of-the-art crowd
counting and localization performance against recent ap-
proaches. In particular, it achieves a mean absolute error
(MAE) of 49.34 on the ShanghaiTech PartA [42] dataset;
iii) intuitive: PET can proceed with the point query that
physically corresponds to an object or background, and out-
puts also interpretable points.

The contributions of this work include the following:

• We show that decomposable point querying can be
a universal crowd modeling idea to potentially unify
crowd-related tasks.

• We present PET, a Point Query Transformer for crowd
counting, featured by the point-query quadtree and
progressive rectangle window attention.

2. Related Work

We divide existing work according to whether they gen-
erate instance-level information of crowd, i.e., head bound-
ing boxes or head points. In addition, we also discuss the
recent progress of transformer-based approaches.

Counting by Density Map. The majority of state-of-the-
art approaches use density maps [11] as surrogate learning
targets, where the count value is computed by integrating
the predicted density map. These approaches advance the
progress of crowd counting from various aspects, such as
improving loss functions [24, 32, 34], dealing with perspec-
tive effects [1, 40, 41], and exploiting contextual informa-
tion [20]. To alleviate the inconsistency between the density
map and the counting value, another line of work adopts the
local counting paradigm [18, 19, 37, 38], by classifying the
count value of patches into discrete bins. Albeit success-
ful, density map based approaches typically do not provide
instance-level prediction. In contrast, our approach can out-
put the location of each person with a point, enabling a more
intuitive understanding of crowd.

Counting by Localization. Instead of predicting an inter-
mediate representation like density maps, another alterna-
tive is to simultaneously estimate the count and location of
crowd. Such fine-grained estimation of crowd has received
substantial interest in recent years. For example, some re-
cent approaches [13, 21, 26] cast counting as a head de-
tection problem, predicting the bounding boxes of heads.
However, the pseudo ground-truth boxes generated from
weak point supervision are error-prone, especially in con-
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Figure 2: Overall architecture of PET. We first use a CNN backbone to extract the image representation F . A transformer
encoder with progressive rectangle window attention is then applied to F to encode context. Subsequently, the quadtree
splitter receives sparse querying points and encoded features as input, outputting a point-query quadtree. The transformer
decoder then decodes the point queries in parallel, where attention is computed within a local window. These point queries
are finally passed through a prediction head to obtain crowd predictions, i.e., ‘no person’ or ‘a person’ with its probability
and localization.

gested regions. As a result, it not only hinders model train-
ing but also leads to inaccurate box predictions. Beyond
bounding boxes, several approaches [3, 17, 29] directly es-
timate the head points. However, these approaches often
need heuristic post-processing to identify individual crowd.
Different from previous methods, our approach receives ar-
bitrary points as input and predicts crowd by explicitly mod-
eling the relation between a point and its surroundings. It
streamlines the prediction process and enables applications
in other crowd-related tasks.

Transformer Based Counting. The recent success of
vision transformers [2, 5] has sparked their applications
in various computer vision tasks. Recently, much ef-
fort [6, 14, 15, 30, 31, 36] has been devoted to deploying
transformer architectures to crowd counting. Due to the
strong representation capability of transformer, existing ap-
proaches mainly focus on developing a strong transformer
backbone for feature extraction and incorporating it with a
prediction module to estimate the count value. In contrast,
we present a new formulation for crowd counting and in-
stantiate it with a customized point query transformer.

3. Counting Crowd by Querying Points

3.1. Problem Formulation

In this work, we formulate crowd counting as a decom-
posable point querying process. During the querying pro-
cess, sparse points could split into new points when neces-
sary such that dense regions can be processed adaptively. In
this way, counting can be achieved by querying those (split)
input points.

We embody this formulation with a customized Point
quEry TRansformer (PET). In PET, two ingredients are es-
sential: i) the design of the point-query quadtree; ii) a pro-
gressive rectangle window attention mechanism. The for-
mer adaptively generates querying points to tackle dense
crowd predictions, and the latter improves efficiency.

3.2. Architecture Overview

The overall architecture of PET is depicted in Fig. 2. It
includes four components: a CNN backbone, an efficient
encoder-decoder transformer, a point-query quadtree, and a
prediction head.

Given an input image, the CNN backbone first extracts
image representation, outputting the feature F ∈ Rh×w×c.
Each spatial element in F is treated as a token, which re-
sults in h×w tokens. These tokens are then passed through
a transformer encoder, implemented with progressive rect-
angle window attention, to encode contextual information.
The rationale behind this design is efficiency, because a
large number of tokens render global attention computation-
ally expensive, especially for high-resolution images.

To obtain an instance-level understanding of the crowd,
we construct a point-query quadtree to query the crowd.
The point-query quadtree allows data-dependent splitting in
congested regions such that dense and sparse scenes can be
processed adaptively. By receiving the point-query quadtree
and encoded features as input, the transformer decoder rea-
sons the relation between point queries under the guid-
ance of image context, and subsequently, decodes the point
queries in parallel. These decoded point queries finally pass
through a prediction head to acquire crowd predictions.
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Figure 3: Illustration of the point-query quadtree. The
split map Ms is upsampled to the original image size, where
red regions require quadtree splitting.

Figure 4: Examples of the split map. The red regions de-
note the congested regions that require tree splitting.

3.3. Point-Query Quadtree

The design of the point query is vital to the success of
our formulation. Considering that an input image may con-
tain an arbitrary number of crowd, it is irrational to use a
fixed number of queries as in object detection [2]. To enable
scalable crowd estimation, point query should be meaning-
ful and flexible. This yields three problems: 1) how to adapt
the number of querying points to different scenes; 2) how to
represent a point query; 3) how to predict crowd via point
queries. We address them as follows.

Quadtree Construction. To make point query scalable to
sparse and dense scenes, we propose a decomposable struc-
ture, termed point-query quadtree. The quadtree follows a
sparse to dense process, i.e., sparse querying points are first
spanned across the image, and they are adaptively split into
dense querying points in congested scenes for dense crowd
prediction. A criterion is thus necessary to decide when to
split sparse querying points. We consider that the splitting
process should be determined by inspecting a local region,
instead of relying on a single point. We therefore adopt a
region-based quadtree splitter to construct the quadtree.

Quadtree Splitting. Fig. 3 illustrates the construction
process of the point-query quadtree. Specifically, we first
uniformly set sparse querying points on the image with a
stride of K, which corresponds to the quadtree level 0. A
quadtree splitter is then applied to the encoded features, out-
putting a split map Ms ∈ Rh′×w′

. Each element in Ms

represents the probability of a region being dense, where 1
denotes dense regions and 0 denotes sparse ones. The initial

querying points in dense regions are split into dense query-
ing points, forming the quadtree level 1. This process re-
peats until the maximum splitting time L is reached, which
results in a L + 1-layer quadtree. A multi-layer quadtree
could be implemented by using multiple quadtree splitters
to predict the split map of each layer. One may consider
how many times the quadtree needs to split to tackle dense
regions. In practice, we find that splitting once (L=1) is
generally sufficient to deal with crowd estimation. Please
refer to the supplementary for a detailed analysis.

In particular, the quadtree splitter consists of an average
pooling layer and a 1 × 1 convolution layer followed by a
sigmoid function, so the computational cost is negligible.
We show some examples of the output of the quadtree split-
ter in Fig. 4, in which red regions denote congested regions
requiring quadtree splitting. We observe that the quadtree
splitter can distinguish the congested regions. Note that the
split map is binarized using a threshold of 0.5.

Point Query Representation. Given a querying point
with pixel location (x, y), we need to represent it as a point
query. Our intuition tells us that a point query should con-
tain both semantic and localization information. To en-
code the semantics of point query, we repurpose the CNN
feature. Technically, we interpolate the CNN features F
to the original image size and sample the feature vector
Fx,y ∈ R1×1×c. For position information, we adopt a fixed
spatial positional embedding following [2]. The positional
embedding and Fx,y are summed to form the point query
representation.

Crowd Prediction. The final step is how to predict crowd
via point queries. Following the philosophy of dotted an-
notations (one dot per person), we represent each person by
a unique point query. Specifically, we first pass the point-
query quadtree through the transformer decoder to obtain
the decoded representation. A prediction head is then ap-
plied to the decoded point queries, outputting a set of pre-
dicted persons Q = {qi}Ni=1. Note that qi consists of
the classification probability ci ∈ [0, 1] and the normalized
pixel location pi = (xi + ∆xi, yi + ∆yi), where (xi, yi)
is the pixel location of a point query and (∆xi,∆yi) is the
predicted offsets. The prediction head is composed of MLP
layers with ReLU activation.

We remark that the prediction head receives a varied
number of queries for different images, as the queries are
generated on-the-fly by the point-query quadtree. This en-
sures that sparse and dense point queries only operate on
corresponding regions, avoiding unnecessary computation.

3.4. Progressive Querying in Rectangle Window

Here we delineate the design of our transformer encoder
and decoder. In general, we perform object querying in a
progressive manner within rectangle window.
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The horizontal patch often contains more people than the
vertical one due to perspective prior.

Figure 6: Illustration of progressive encoder attention.

Progressive Encoder Attention. To encode crowd infor-
mation of different scales, we adopt a progressive attention
mechanism. The idea is that the transformer encoder first
inspects a sufficiently large region and then focuses on a
small one. Considering that the perspective change often
occurs in crowd images, we compute attention within a rect-
angle window. More specifically, we design a horizontal
window since it usually contains more people than the ver-
tical one (Fig. 5).

The idea of the progressive encoder attention is illus-
trated in Fig. 6. Given an input image, we first compute
attention within a relatively large rectangle window in the
first few encoder layers. Each window is with a size of
se × rese, where se is the height of the rectangle window,
and re is the aspect ratio. Then, a small rectangle window
(with a size of 1

2se×
1
2rese) is adopted to perform attention

in the subsequent encoder layers. The encoder attention is
computed as:

x̂l = LN(RectWin-SA(xl−1) + xl−1) ,

xl = LN(FFN(x̂l) + x̂l) , (1)

where xl−1 and xl are the output features of the encoder
layer l − 1 and the layer l, respectively. Note that x0 is
initialized with F . RectWin-SA, FFN, and LN denote
rectangle window self-attention, feed-forward network, and
layer normalization, respectively. Benefiting from the de-
sign of progressive rectangle window attention, we can
achieve efficient computation with linear complexity, which
is particularly helpful when processing high-resolution im-
ages. Detailed architecture of the encoder can be found in
the supplementary.

Decoding Within Rectangle Window. The transformer
decoder receives the point-query quadtree and encoded im-
age features as input, outputting decoded point queries.
It reasons crowd by modeling the relation between point
queries under the guidance of image context. Intuitively, we
decide whether a point query is a person based on its sur-
rounding point queries and context. We therefore propose
to compute decoder attention within local windows. Con-
sidering the hierarchy structure of quadtree, we also adopt
progressive attention when decoding point queries.

Technically, the attention of sparse point queries is com-
puted in a relatively large rectangle window (with a size of
1
2se×

1
2rese), and the window size of dense point queries is

reduced to 1
4se×

1
4rese. In particular, the decoder attention

is computed as:

ẑl = LN(RectWin-SA(zl−1) + zl−1) ,

ẑl = LN(RectWin-CA(ẑl,xN ) + ẑl) ,

zl = LN(FFN(ẑl) + ẑl) , (2)

where xN is the final output of the transformer encoder,
zl−1 and zl are the output features of the decoder layer l −
1 and the layer l, respectively. Note that z0 is initialized
with the representation of point queries. RectWin-SA and
RectWin-CA denote the rectangle window self-attention
and the rectangle window cross-attention, respectively.

3.5. Network Optimization

Training. The output of PET is a set of candidate per-
sons Q = {qi}Ni=1. We optimize the network using bipar-
tite matching [2] between the predictions and ground truth
points Y = {yi}Mi=1. The loss is computed as:

ℓpq =
1

N

N∑
i=1

ℓcls(ci, c
∗
i ) + λ1

1

M

M∑
i=1

ℓloc(pσ(i),yi) , (3)

where i is the index of a point query, ci is the predicted
classification probability, λ1 is a hyperparameter, and σ(i)
denotes the index of point query that is matched with the
ground-truth point yi. σ is obtained by bipartite match-
ing [2]. The classification label c∗i equals to 1 only if the
point query is matched with a ground-truth point, and 0 oth-
erwise. For the classification loss ℓcls and localization loss
ℓloc, we employ cross entropy loss and smooth ℓ1 loss [7].
In addition, the quadtree splitter is supervised by:

ℓsplit = 1(dense)(1−max(Ms)) + min(Ms) , (4)

where Ms is the split map, and 1(dense) equals 1 if the
input image has dense regions, otherwise 0. We consider an
image has dense regions if its crowd density is high. Re-
call that each element in Ms represents the probability of
a region being dense. Eq. (4) functions as a minimum su-
pervision for the quadtree splitter to discriminate dense and

1680



Table 1: Quantitative comparison of crowd counting results on the ShanghaiTech [42], UCF-QNRF [9], and JHU-
Crowd++ [28] datasets. The best performance is in boldface, and the second best is underlined.

Method Venue Localization SH PartA SH PartB UCF-QNRF JHU-Crowd++
MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet [12] CVPR’18 ✗ 68.2 115.0 10.6 16.0 - - 85.9 309.2
CAN [20] CVPR’19 ✗ 62.3 100.0 7.8 12.2 107.0 183.0 100.1 314.0
BL+ [24] ICCV’19 ✗ 62.8 101.8 7.7 12.7 88.7 154.8 75.0 299.9
ASNet [10] CVPR’20 ✗ 57.78 90.13 - - 91.59 159.71 - -
DM-Count [34] NeurIPS’20 ✗ 59.7 95.7 7.4 11.8 85.6 148.3 - -
NoisyCC [32] NeurIPS’20 ✗ 61.9 99.6 7.4 11.3 85.8 150.6 67.7 258.5
SDA+DM [23] ICCV’21 ✗ 55.0 92.7 - - 80.7 146.3 59.3 248.9
GauNet+CSRNet [4] CVPR’22 ✗ 61.2 97.8 7.6 12.7 84.2 152.4 69.4 262.4

GL [33] CVPR’21 ✓ 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5
P2PNet [29] ICCV’21 ✓ 52.74 85.06 6.25 9.9 85.32 154.5 - -
CLTR [14] ECCV’22 ✓ 56.9 95.2 6.5 10.6 85.8 141.3 59.5 240.6
PET - Ours - ✓ 49.34 78.77 6.19 9.69 79.53 144.32 58.5 238.0

sparse regions. We retain the second term as sparse regions
generally exist in an image. The final loss function is:

ℓtotal = ℓpq + λ2ℓsplit , (5)

where λ2 is a weight-balancing hyperparameter.
Dual Supervision. To prevent the loss from being di-

luted by samples with few people, we introduce dual super-
vision. Given a mini-batch of samples, we divide them into
sparse and dense packs according to crowd density, and sep-
arately compute ℓtotal on these two packs. The losses are
then summed for backpropagation.

Inference. During testing, the point-query quadtree is dy-
namically constructed based on the split map Ms. The final
predictions are obtained by thresholding the classification
probability of point queries, e.g., a threshold of 0.5.

4. Results and Discussion
4.1. Datasets and Implementation Details

Datasets. We evaluate our approach on four crowd count-
ing datasets, including ShanghaiTech [42], UCF-QNRF [9],
JHU-Crowd++ [28], and NWPU-Crowd [35]. Following
previous work [12, 42], we use mean absolute error (MAE)
and mean square error (MSE) as the evaluation metrics.

ShanghaiTech [42] has two subsets, including PartA
(300/182 images for train/test) and PartB (400/316 im-
ages for train/test). UCF-QNRF [9] contains 1535 im-
ages with diverse crowd density (1201/334 for train/test).
JHU-Crowd++ [28] is a large-scale crowd counting dataset
with 4372 images (2272/500/1600 images for train/val/test),
which covers various scenarios. NWPU-Crowd [35] is also
a large-scale dataset, which contains 3109, 500, and 1500
images for training, validation, and testing, respectively.

Implementation Details. PET is optimized using the
Adam optimizer [22] with the weight decay of 5 × 10−4.
The initial learning rate of 10−5 is set for the CNN back-
bone (we use VGG16 [27]), and 10−4 for the transformer.
The point-query quadtree has a maximum depth of 2, and
the initial stride of sparse point queries is set to K = 8. The
layer number of transformer encoder and decoder is 4 and 2,
respectively. Note that our point-query quadtree shares the
same decoder. We set window parameters as se = 16 and
re = 2. For loss coefficients, we set λ1 = 5.0 and λ2 = 0.1
to balance the contribution of different terms.

Regarding data augmentation, we randomly crop 256 ×
256 patches from each image as training samples, and per-
form random scaling and random flipping. For datasets that
contain high-resolution images, we resize the image and
keep the original aspect ratio. The longer side of each image
is constrained within 1536, 2048, and 2048 pixels for UCF-
QNRF, JHU-Crowd++, and NWPU-Crowd, respectively.

4.2. Main Results

The point query design of PET makes it applicable to
several crowd-related tasks. In this section, we demonstrate
three applications, including fully-supervised crowd count-
ing and localization, partial annotation learning, and point
annotation refinement.

Comparison With State of the Art. We compare PET
with state-of-the-art methods on four datasets, in the context
of fully-supervised crowd counting and localization.

Table 1 reports the crowding counting results on Shang-
haiTech [42], UCF-QNRF [9], and JHU-Crowd++ [28].
Our method not only achieves state-of-the-art results
but also outputs localization information. In particular,
PET significantly outperforms existing methods on Shang-
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Table 2: Crowd counting and localization results on the NWPU-Crowd [35] test set.

(a) Crowd counting results.

Method Venue MAE MSE

CSRNet [12] CVPR’18 121.3 387.8
BL+ [24] ICCV’19 105.4 454.2
S-DCNet [37] ICCV’19 90.2 370.5
NoisyCC [32] NeurIPS’20 96.9 534.2
DM-Count [34] NeurIPS’20 88.4 388.6
P2PNet [29] ICCV’21 77.44 362
MAN [15] CVPR’22 76.5 323.0

PET - Ours - 74.4 328.5

(b) Crowd localization results. F1-m/Prec/Rec: F-measure/precision/recall.

Method σl (large threshold) σs (small threshold)
F1-m Prec Rec F1-m Prec Rec

Faster RCNN [25] 0.067 0.958 0.035 0.063 0.894 0.033
TinyFaces [8] 0.567 0.529 0.611 0.526 0.491 0.566
RAZNet [17] 0.599 0.666 0.543 0.517 0.576 0.470
GL [33] 0.660 0.800 0.562 0.587 0.711 0.500
D2CNet [3] 0.700 0.741 0.662 0.632 0.670 0.598
CLTR [14] 0.685 0.694 0.676 0.591 0.599 0.583

PET - Ours 0.742 0.752 0.732 0.675 0.684 0.666

Table 3: Quantitative results of partial annotation learning
on the ShanghaiTech dataset. Ratio denotes the proportion
of annotated region in each image. F. S. stands for fully-
supervised and P. A. for partial annotation.

Method Type Ratio SH PartA SH PartB
MAE MSE MAE MSE

MCNN [42] F. S. 100% 110.2 173.2 26.4 41.3
CSRNet [12] F. S. 100% 68.2 115.0 10.6 16.0
BL+ [24] F. S. 100% 62.8 101.8 7.7 12.7

Xu et al. [39] P. A. 10% 72.79 111.61 12.03 18.70
PET - Ours P. A. 10% 60.36 104.13 10.75 19.40

haiTech PartA, with an MAE of 49.34. The good perfor-
mance on UCF-QNRF and JHU-Crowd++ also supports the
adaptation of PET to dense scenes, because these datasets
contain images with extremely dense crowd.

For the NWPU-Crowd [35] dataset, the crowd count-
ing results in Table 2a show that PET performs favorably
against state-of-the-art methods. It is worth noticing that
PET outperforms existing localization-based approaches by
a considerable margin, as indicated in Table 2b. This vali-
dates the localization accuracy of PET.

Results on Partial Annotation Learning. Learning with
partial annotations [39] is a new problem setting in crowd
counting, in which only a partial region of each image is
annotated. It aims to reduce the annotation cost and lever-
ages data captured under various scenes. PET is applicable
to this task because it can infer unlabelled regions based on
the annotated ones, owing to the design of the point query.
In particular, we follow the setting of [39] and simply adopt
a two-step training process. We first train PET with par-
tial annotations, then we infer the annotations around anno-
tated regions and retrain PET with a fusion of ground-truth
points and inferred annotations. In contrast to [39], we do

Figure 7: Examples of point annotation refinement. Red
and green points are ground-truth points and refined points,
respectively. The yellow circles highlight some refined
points that significantly differ from the original ground-
truth points. PET can distinguish the ‘noisy’ ground-truth
point and move them towards the center of heads.

not require a specifically designed consistency criterion to
constrain model training. Table 3 shows the quantitative re-
sults on the ShanghaiTech dataset. Despite the simplicity
of our training process, our approach outperforms [39] by a
large margin, especially on SH PartA. In addition, PET also
performs favorably against fully-supervised methods. This
validates the effectiveness of PET on limited data and also
the universal property of point-query modeling.

Application on Point Annotation Refinement. Learning
with noisy annotations [16, 32] is a recent emerging topic.
Existing crowd counting benchmarks typically use a dot to
represent a person. However, the noise may arise during the
annotation process [32], leading to inaccurate head points.
In this context, another interesting application of PET is
point annotation refinement. In practice, we first train PET
with original annotations and validate the quality of annota-
tions by setting annotated points as queries. Fig. 7 shows
some examples of the refined annotations. We observe
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Epoch 1 Epoch 3

Epoch 5 Epoch 10

Figure 8: Split maps of epoch 1, 3, 5, 10.

Table 4: Effect of point-query quadtree.

Configuration SH PartA UCF-QNRF

sparse point queries only 53.59 90.70
dense point queries only 54.16 98.14
point-query quadtree 49.34 79.53

that PET can distinguish ‘noisy’ annotations and calibrate
these points to the center of the head. To further investigate
whether the refined annotations can benefit counting perfor-
mance, we retrain PET with them. Our results show that the
MAE on SH PartA improves from 49.34 to 48.52. While
the improvement seems marginal at first glance, we remark
that this is because most annotations are reasonable in the
dataset. However, the visualizations in Fig. 7 do imply the
ability of PET for annotation refinement, which could make
a difference in more challenging scenarios when accurate
annotations are difficult to acquire.

4.3. Ablation Study

Here we justify the design choices of PET by conduct-
ing ablation studies on the ShanghaiTech PartA and UCF-
QNRF datasets.

Learning Process of the Quadtree Splitter. Fig. 8 shows
the outputs of the quadtree splitter during training. One can
observe that the initial split map (epoch 1) is meaningless.
After a few training epochs, e.g., 10 epochs, the quadtree
splitter can output a reasonable split map. This suggests
that Eq. (4) works well in supervising the quadtree splitter.

Effect of Point-Query Quadtree. Here we verify the ef-
fectiveness of the quadtree structure. For comparison, we
train PET using only sparse point queries or dense point
queries. Table 4 reports the results. Although sparse point
queries can achieve promising results on SH PartA, it is far
from satisfactory on UCF-QNRF. In addition, the inferior
results of dense point queries could be attributed to the am-
biguity during bipartite matching, because a ground-truth
point may correspond to several similar point queries when

Table 5: Effect of progressive rectangle window attention.
PET is trained with different configurations of attention.

Progressive Encoder Window Decoder Window MAE

✓ Rectangle Square 52.95
✓ Square Rectangle 51.93
✓ Square Square 52.48

✗ Rectangle Rectangle 52.00
✓ Rectangle Rectangle 49.34

Table 6: Comparison of different attention mechanisms.

Attention Mechanism MAE

Global Attention [2] 52.58
Deformable Attention [43] 51.0

Progressive Rectangle Window Attention (Ours) 49.34

dealing with sparse regions. This impedes the model from
discriminating valid points.

Comparatively, by adopting the point-query quadtree, we
obtain notable improvements on both SH PartA (∼4 MAE)
and UCF-QNRF (∼11 MAE). The quadtree structure en-
sures that sparse and dense regions can be processed by cor-
responding querying points, thus achieving better results.

Effect of Progressive Rectangle Window Attention. To
justify the effectiveness of the progressive rectangle win-
dow attention, we train with different configurations of PET
as in Table 5. One can observe that: i) progressive attention
works, which significantly outperforms its non-progressive
counterpart; ii) applying rectangle window to the encoder
and decoder achieves the best performance. We notice that
replacing either encoder or decoder with square window de-
teriorates performance. The reason perhaps is that a rectan-
gle window could capture more useful information about
the crowd due to the perspective prior.

We also compare our attention with existing attention
mechanisms. As shown in Table 6, while global attention
and deformable attention obtain promising results, their per-
formance fall behind our window attention. The inferior re-
sults of global attention could be attributed to the varied res-
olution of testing images, as the global-wise attention may
not adapt well to arbitrary resolution. In addition, perform-
ing global attention can easily exceed the memory limit of
the GPU when dealing with high-resolution images.

Efficiency of PET. Table 7 compares the model parame-
ters and inference time of different models. Our PET owns
the fewest parameters, and operates at a similar speed to ex-
isting methods. Note that the computational bottleneck lies
in the backbone, instead of the querying process.
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Table 7: Comparison of parameters and inference time with
localization-based methods. The inference time is measured
on a NVIDIA 3090 GPU with 1024× 1024 input.

Method P2PNet [29] CLTR [14] Ours

Parameters (M) 21.6 43.4 20.9
Inference Time (s) 0.074 0.107 0.097

(a) Encoder attention maps

(b) Decoder attention maps

Figure 9: Visualization of encoder and decoder attention
maps. Red points in the input images are reference points.

Qualitative Results. Here we show what is learned by the
transformer encoder and decoder. Fig. 9a illustrates the self-
attention maps of the transformer encoder for some refer-
ence points. The encoder can capture similar crowd within
a rectangle window, thus can encode valuable context in-
formation. Fig. 9b shows the decoder attention maps of
two point queries. One can observe that higher attention
value also occurs in similar crowd. Interestingly, the atten-
tion map of the encoder and decoder seems similar. This
may attribute to the single-class nature of the crowd, i.e.,
the model only needs to distinguish human heads.

5. Conclusion

We have shown that crowd counting can be viewed as
a decomposable point querying process, which provides an
intuitive and universal way of modeling crowd. Specifically,
we present a Point Query Transformer, featured by a point-
query quadtree structure and the progressive rectangle win-
dow attention mechanism. Extensive experiments justify
that PET implements the idea of decomposable point query-
ing and exhibits generality in several crowd-related tasks.

Albeit effective, PET still has limitations. For instance,
it may suffer from missing detections when encountering
large heads, because of the limited size of the rectangle win-
dow. The representation of the point query can also be im-
proved. For future work, we plan to extend our formulation
to other dense prediction tasks.
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