
Real-Time Neural Rasterization for Large Scenes

Jeffrey Yunfan Liu1,3† Yun Chen1,2* Ze Yang1,2∗ Jingkang Wang1,2 Sivabalan Manivasagam1,2

Raquel Urtasun1,2

1Waabi 2University of Toronto 3University of Waterloo

{jliu, ychen, zyang, jwang, siva, urtasun}@waabi.ai

FPS 126 FPS 141

FPS 134FPS 144

Figure 1. Neural Scene Rasterization. Our method renders urban driving scenes (1920×1080) at high quality and >100 FPS by

leveraging neural textures and fast rasterization. We reconstruct driving scenes in Bay Area and show the rendering at four streets on the

map. Please refer to our project page https://waabi.ai/neuras/ for more results on driving scenes as well as drone scenes.

Abstract

We propose a new method for realistic real-time novel-

view synthesis (NVS) of large scenes. Existing neural ren-

dering methods generate realistic results, but primarily

work for small scale scenes (< 50m2) and have difficulty

at large scale (> 10000m2). Traditional graphics-based

rasterization rendering is fast for large scenes but lacks re-

alism and requires expensive manually created assets. Our

approach combines the best of both worlds by taking a

moderate-quality scaffold mesh as input and learning a neu-

ral texture field and shader to model view-dependant effects

to enhance realism, while still using the standard graphics

pipeline for real-time rendering. Our method outperforms

existing neural rendering methods, providing at least 30×
faster rendering with comparable or better realism for large

self-driving and drone scenes. Our work is the first to en-

able real-time rendering of large real-world scenes.

*Indicates equal contribution. †Work done while an intern at Waabi.

1. Introduction

Synthesizing and rendering images for large-scale

scenes, such as city blocks, holds significant value in fields

such as robotics simulation and virtual reality (VR). In these

fields, achieving a high level of realism and speed is of

utmost importance. VR requires photorealistic renderings

at interactive frame rates for an immersive and seamless

user experience. Similarly, robot simulation development

requires high-fidelity image quality for real world transfer

and high frame rates for evaluation and training at scale,

especially for closed-loop sensor simulation [51].

Achieving both speed and realism in large-scale scene

synthesis has been a long-standing challenge. Recently, a

variety of neural rendering approaches [34, 44, 45] have

shown impressive realism results in novel view synthesis

(NVS). These methods fall into two primary paradigms:

implicit and explicit-based approaches. Implicit-based ap-

proaches [34, 6, 37, 65] represent scene geometry and ap-

pearance with multi-layer-perceptrons (MLPs) and render

novel views by evaluating these MLPs hundreds of thou-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8416



sands of times via volume rendering. Explicit-based ap-

proaches [44, 45] reconstruct a geometry scaffold (e.g.,

mesh, point cloud), and then learn image features that are

blended and refined with neural networks (NN) to render

a novel view. Both implicit and explicit methods require

large amounts of NN computation to perform NVS. As a

consequence, these approaches have primarily focused on

reconstructing objects or small-scale scenes (< 50m2), and

typically render at non-interactive frame rates (< 5 FPS).

Several recent methods have enabled rendering at higher

frame rates (> 20 FPS) while maintaining realism through

several strategies such as sub-dividing the scene [35, 69,

50, 54, 41], caching mechanisms [17, 21, 69, 22], and op-

timized sampling [60, 36, 25]. However, these approaches

still focus primarily on single objects or small scenes. They

either do not work on large scenes (> 10000m2) or far-

away regions due to memory limitations when learning and

rendering such a large volume, or have difficulty maintain-

ing both photorealism and high speed. One area where large

scenes are rendered at high speeds is in computer graph-

ics through rasterization-based game engines [23]. How-

ever, to render with high quality, these engines typically re-

quire accurate specifications of the exact geometry, light-

ing, and material properties of the scene, along with well-

crafted shaders to model physics. This comes at the cost

of tedious and time-consuming manual efforts from ex-

pert 3D artists and expensive and complex data collec-

tion setups for dense capture [15, 19]. While several re-

cent methods have leveraged rasterization-based rendering

in NVS [9, 13, 3, 40, 31, 24], they have only been demon-

strated on small scenes.

In this paper, we introduce NeuRas, a novel neural raster-

ization approach that combines rasterization-based graph-

ics and neural texture representations for realistic real-time

rendering of large-scale scenes. Given a sequence of sen-

sor data (images and optionally LiDAR), our key idea is

to first build a moderate quality geometry mesh of the

scene, easily generated with existing 3D reconstruction

methods [64, 46, 70, 35]. Subsequently, we perform ras-

terization with learned feature maps and Multi-Layer Per-

ceptrons (MLPs) shaders to model view-dependent effects.

Compared to computationally expensive neural volume ren-

dering, leveraging an approximate mesh enables high-speed

rasterization, which scales well for large scenes. Compared

to existing explicit-based geometry methods that use large

neural networks to perform blending and image feature re-

finement, we use light-weight MLPs that can be directly ex-

ported as fragment shaders in OpenGL for real-time render-

ing. We also design our neural rasterization method with

several enhancements to better handle large scenes. First,

inspired by multi-plane and multi-sphere image representa-

tions [73, 4], we model far-away regions with multiple neu-

ral skyboxes to enable rendering of distant buildings and

sky. Additionally, most NVS methods focus on rendering

at target views that are close to the source training views.

But for simulation or VR, we need NVS to generalize to

novel viewpoints that deviate from the source views. To

ensure our approach works well at novel viewpoints, we

utilize vector quantization [20, 55] to make neural texture

maps more robust and to store them efficiently.

Experiments on large-scale self-driving scenes and drone

footage demonstrate that NeuRas achieves the best trade-

off between speed and realism compared to existing SoTA.

Notably, NeuRas can achieve comparable performance to

NeRF-based methods while being at least 30× faster. To

the best of our knowledge, NeuRas is the first method of its

kind that is capable of realistically rendering large scenes

at a resolution of 1920 × 1080 in real-time, enabling more

scalable and realistic rendering for robotics and VR.

2. Related Work

Explicit-based synthesis: Classical 3D reconstruction

methods such as structure-from-motion and multi-view

stereo [47, 48, 2] have been extensively utilized to recon-

struct large-scale 3D models of real-world scenes. How-

ever, texture mapping applied during the reconstruction pro-

cess often produces unsatisfactory appearance due to reso-

lution limitations and lack of view-dependence modelling.

To address the challenges of NVS, image-based rendering

methods employ the reconstructed geometry as a proxy to

re-project target views onto source views, and then blend

the source views heuristically or by using a convolutional

network [8, 44, 12, 9, 56]. These methods typically require

a large amount of memory and may still have visual aberra-

tions due to errors in image blending. Alternatively, point-

based methods [26, 3, 40] use per-point feature descrip-

tors and apply convolutional networks to produce images.

However, these methods are inefficient in rendering due to

large post-processing networks and often exhibit visual ar-

tifacts when the camera moves. Similarly, multi-plane im-

ages [14, 73, 16, 33] or multi-sphere images [4] are applied

for outdoor-scenes rendering in real-time, but they can only

be rendered with restricted camera motion. Our work builds

on these techniques by leveraging an explicit geometry, but

then utilizes UV neural texture maps and fast rasterization

to boost speed and realism.

Implicit-based synthesis: In recent years, implict neural

field methods, especially NeRF [34], have become the foun-

dation for many state-of-the-art NVS techniques. NeRF

represents the scene as an MLP that is optimized based

on camera observations. To accelerate reconstruction time,

several methods have been proposed [35, 68, 50, 11, 28],

but cannot achieve real-time rendering for high resolution.

To accelerate rendering speed, “baking” methods [41, 17,

69, 21, 60] typically pre-compute and store the neural field

8417



Polygonal mesh

OpenGL rasterizer

Mesh feature buffer

Neural texture features Rendered imageNeural skybox renderings

Neural mesh rendering

MLP shader

Skybox feature buffers
CompositionMesh Skyboxes

View direction

Figure 2. NeuRas pipeline. We first rasterize screen-space feature buffers from the scene representation. Then a learned MLP shader takes

the rasterized feature buffers and view-direction as inputs and predicts a set of rendering layers. Finally the rendered layers are composited

to synthesize the RGB image.

properties for rendering. However, these methods require

a large amount of memory and disk storage, limiting their

applicability mainly to small objects. Several recent works

share similar ideas with our approach of utilizing the graph-

ics pipeline to accelerate neural rendering while maintain-

ing realism. MobileNeRF [13] also uses an explicit mesh

with UV feature representations and an MLP baked in

GLSL. However, its grid-mesh representation limits its scal-

ability to large scenes due to memory constraints, and its

hand-crafted mesh configurations fail to adapt to complex

outdoor scenes. Similarly, BakedSDF [67] requires a high-

resolution mesh that occupies a significant amount of space

even for smaller scenes, and MeRF [42] bakes NeRF to tri-

plane images, which reduces memory consumption but lim-

its its scalability to large scenes. In contrast, our approach

only requires a moderate-quality mesh as a proxy and uses a

quantized UV texture feature, which can be easily extended

to large scenes to achieve high realism in real-time.

Large-scene synthesis: Several methods have been pro-

posed to extend NeRF for large-scene synthesis. BlockN-

eRF [52] and MegaNeRF [54] divide large scenes into mul-

tiple spatial cells to increase the model capacity. Recent

work GP-NeRF [72] further improves the training speed by

using hybrid representations. READ [26] uses LiDAR point

cloud descriptors followed by a convolutional network to

synthesize autonomous scenes. BungeeNeRF [62] employs

a learnable progressive growing model for city-scale scenes.

These methods typically struggle with high computational

costs, especially for real-time rendering. For interactive vi-

sualization, URF [43] bakes mesh while MegaNeRF applies

techniques like caching and efficient sampling, but the real-

ism drops significantly. To the best of our knowledge, our

approach is the first to demonstrate realistic rendering in

real-time for such large-scale scenes.

3. Neural Scene Rasterization

In this section, we describe NeuRas, which aims to per-

form real-time rendering of large-scale scenes. Given a

set of posed images and a moderate-quality reconstructed

mesh, our method generates a scene mesh with neural tex-

ture maps and view-dependent fragment shaders. Using

the initial mesh, we first generate a UV parameterization

to learn neural textures on. We then jointly learn a discrete

texture feature codebook and view-dependent lightweight

MLPs that can effectively represent scene appearance. Fi-

nally, we bake the texture feature codebook and the MLPs

into a set of neural texture maps and a fragment shader that

can be run in real time with existing graphics pipelines.

We now first introduce our approach for representing large-

scale scenes (Sec. 3.1), then describe how we render and

learn the scene (Sec. 3.2-3.3), and finally how we export

our model into real time graphics pipelines (Sec. 3.4).

3.1. Scene Representation

In this paper our focus is on rendering large-scale out-

door scenes. In order to handle potentially infinite depth

ranges (e.g., sky, vegetation, mountain, etc.) as well as

nearby regions, we utilize a hybrid approach. The entire 3D

scene is partitioned into two regions: an inner cuboid region

(foreground) modelled by a polygonal mesh textured with

neural features, and an outer cuboid region (background)

modelled by neural skyboxes. Such a hybrid scene rep-

resentation allows us to model fine-grained details in both

close-by regions and far-away regions, and enables render-

ing with a remarkable degree of camera movement.

Foreground representation: For the foreground region,

we leverage an explicit geometry mesh scaffold to learn

and render neural textures. Our approach can be applied on

various sources of mesh, for example we can leverage ex-

isting neural reconstruction methods [64, 35] or SfM [47]

(see supp. materials for details). Initially, the recon-

structed mesh could contain over tens of millions of tri-

angle faces, which represents the geometry well, but may

have self-intersections and duplicate vertices. We thus pre-

process it to reduce computational cost and improve UV

mapping quality. We first cluster nearby vertices together

and perform quadric mesh decimation [18] to simplify the

mesh while preserving essential structure, and then per-

form face culling to remove non-visible triangle faces (w.r.t.

8418



source camera views). Finally we utilize a UV map gener-

ation tool [39] to unfold the mesh to obtain the UV map-

pings for each of its vertices. The resulting triangle mesh

M = {v, t, f} consists of vertex positions v ∈ R
N×3,

vertex UV coordinates t ∈ R
N×2, and a set of triangle

faces f . Based on the generated UV mapping, we initial-

ize a learnable UV feature map T ∈ R
V×U×D to represent

the scene appearance covered by the mesh. Using neural

features instead of a color texture map enables modelling

view-dependent effects during rendering (see Sec. 3.2).

Background representation: It is challenging to model

the far-away background regions with polygonal mesh be-

cause of the complexity and scale of that region. As

an alternative, we draw inspiration from the concept of

multi-plane images [73, 16, 33] and multi-sphere images [4]

to represent the background region using neural skyboxes.

The neural skyboxes represents the scene as a set of cuboid

layers, and each layer Si = {S1

i , · · · ,S
6

i } contains 6 indi-

vidual feature maps that each represents one plane of the

cuboid. The feature maps represent both geometry and

view-dependent appearance of the scene. Our neural sky-

boxes can represent a wide range of depths and can be inte-

grated in existing graphics pipelines [23], enabling efficient

rendering.

3.2. Rendering Large Scenes

Fig. 2 shows an overview of our rendering pipeline.

Our NeuRas framework is inspired by the deferred shad-

ing pipeline from real-time graphics [53]. We first rasterize

the foreground mesh and neural skyboxes with neural tex-

ture maps to the desired view point, producing a set of im-

age feature buffers. The feature buffers are then processed

with MLPs to produce a set of rendering layers, which are

composited to synthesize the final RGB image. We now

describe this rendering process in more detail.

Foreground rendering: Given the camera pose and in-

trinsics, we first rasterize the mesh into screen space, ob-

taining a UV coordinate (u, v) for each pixel (x, y) on the

screen. We then sample the UV feature map T ∈ R
V×U×D

using the rasterized UV coordinates and obtain a feature

buffer F0 ∈ R
H×W×D:

F0(x, y) = BilinearSample(u, v,T), (1)

where V × U is the UV feature map resolution, H × W

is the rendering resolution, and D is the feature dimension.

In addition to a feature buffer, the rasterization also gener-

ates a opacity mask O0 ∈ R
H×W to indicate if a pixel is

covered by the polygonal mesh. To render the RGB image,

we concatenate the rendered feature with the view direction

Feature map

Codebook 

0 1 N-1…

Vector Quantization Quantized Feature map

k …

Figure 3. Quantized feature representation. For each entry in

the feature map, we map it to the closest learnable latent code ek

in the codebook E .

d(x, y) and pass through a learnable MLPs shader fθT :

I0(x, y) = fθT (F0(x, y),d(x, y)) , (2)

where θT is the MLP parameters, I0(x, y) is the rendered

RGB color for pixel (x, y).

Background rendering: To render the neural skybox fea-

ture layers {Si}
L
i=1

representing distant background re-

gions, we project camera ray shooting each pixel (x, y) and

compute its intersection points {pi}
L
i=1

with layers 1 to L,

from near to far. Next, we sample the features {fi}
L
i=1

cor-

responding to the intersection points on the neural skybox

feature map at each layer, generating a set of feature buffers

Fi ∈ R
H×W×D, where i = 1, · · · , L. This step can be effi-

ciently performed with the OpenGL rasterizer. We then use

a learnable MLPs shader fθS to process the feature buffers

and outputs the opacity map Oi ∈ R
H×W and RGB color

map Ii ∈ R
H×W×3 for each layer:

Oi(x, y), Ii(x, y) = fθS (Fi(x, y),d(x, y)) , (3)

where θS represents the parameters of the MLPs. The

MLPs shader first processes the input feature Fi(x, y), and

outputs opacity Oi(x, y) and an intermediate feature vec-

tor. The feature vector is then concatenated with d(x, y),
the view direction of camera ray, and passed to the last lay-

ers that output the view-dependent color Ii(x, y).

Compositing foreground and background: To synthe-

size the final RGB image, we composite the rendered layers

from the foreground mesh {I0(x, y),O0(x, y)} and neural

skyboxes {Ii(x, y),Oi(x, y)}
L
i=1

by repeatedly composit-

ing the RGB and opacity layers, from near to far:

I(x, y) =
L
∑

i=0

Ii(x, y) ·Oi(x, y) ·
i−1
∏

j=0

(1−Oj(x, y)). (4)

The term Ii(x, y) · Oi(x, y) represents the color contribu-

tion of the current layer i, and
∏i−1

j=1
(1−Oj(x, y)) denotes

the fraction of the color that will remain after attenuation

through the layers in front. This compositing process en-

sures that the RGB values are correctly blended.

8419



Quantized texture representation: To encourage the

sharing of latent features in visually similar regions such as

roads and sky, we apply vector quantization (VQ) to regu-

larize the neural texture maps. This allows these features to

be supervised from a large range of view directions which

improves view-point extrapolation performance. Further-

more, it also significantly compacts the feature representa-

tions, reducing the offline storage space. We follow [55]

and maintain two codebooks ET and ES, each consists of

K learnable latent code ek ∈ R
D, with k = 1, · · · ,K.

In the forward pass, we quantize the UV feature map

TE ∈ R
V×U×D and neural skyboxes feature maps SE ∈

R
L×V×U×D by mapping each feature to its closest latent

code in the codebook:

TE(v, u) = argmin
ek∈ET

∥T(v, u)− ek∥,

SE(l, v, u) = argmin
ek∈ES

∥S(l, v, u)− ek∥,
(5)

where v, u are the spatial coordinates of the feature map,

and l is the layer index of the neural skyboxes. Fig. 3 shows

the feature map quantization process. We use the quantized

features to compute the synthesized image in Eqn. 4.

3.3. Learning NeuRas

We jointly optimize the feature map T, S, the code-

book ET, ES, as well as the parameters θT, θS of the MLP

shaders by minimizing the photometric loss and perceptual

loss between our rendered images and camera observations,

as well as the VQ regularizer. Our full objective is:

L = Lrgb + λpercLperc + λvqLvq. (6)

In the following, we discuss each loss term in more detail.

Photometric loss: Lrgb measures the ℓ2 distance between

the rendered and the observed images, the loss is defined as:

Lrgb = ∥I− Î∥2, (7)

where I is the rendered image from Eqn. 4 and Î is the cor-

responding observed camera image.

Perceptual loss: We use an additional perceptual loss [71,

57] to enhance the rendered image quality. This loss mea-

sures the “perceptual similarity” that is more consistent with

human visual perception:

Lperc =

M
∑

i=1

1

Ni

∥

∥

∥
Vi(I)− Vi(̂I)

∥

∥

∥

1

, (8)

where Vi denotes the i-th layer with Ni elements of the pre-

trained VGG Network [49].

1

20

21

22

23

24

25

26

27

FPS 
(log scale)

PSNR

Instant-NGP

FVS

10

ENeRF

UniSim

Ours
(120 FPS)

30 FPS

Multi-view Warping

Figure 4. Rendering realism vs efficiency. Our method achieves

the best tradeoff between realism and speed. The size of the mark-

ers indicates the memory consumption required for rendering.

VQ loss: To update the codebook E , we follow [55] and

define the VQ loss term as:

Lvq = ∥sg[T]−TE∥
2

2
+ ∥sg[S]− SE∥

2

2

+ β∥sg[TE ]−T∥2
2
+ β∥sg[SE ]− S∥2

2
,

(9)

where sg[·] denotes the stop-gradient operator that behaves

as the identity map at forward pass and has zero partial

derivatives at backward pass. The first two terms form

the alignment loss and encourage the codebook latents to

follow the feature maps. The last two terms form the

commitment loss which stabilizes training by discourag-

ing the features from learning much faster than the code-

book. It is noted that the quantization step in Eqn. 5 is non-

differentiable. We approximate the gradient of the feature

maps T,S using the straight-through estimator [7], which

simply passes the gradient from the quantized feature to the

original feature unaltered during back-propagation.

3.4. Real Time Rendering

To enable NeuRas to render in real time, we convert

our scene representations and MLPs to be compatible with

the graphics rendering pipeline. The mesh, skyboxes, and

texture representations are all directly compatible with the

OpenGL, while the learned MLPs fθT and fθS are con-

verted to fragment shaders in OpenGL. During each render-

ing pass, the triangle mesh M and the skyboxes {Si}
L
i=1

are rasterized to the screen as a set of fragments, and each

fragment is associated with a feature vector that is bilinearly

sampled from the neural texture maps. The fragment shader

then maps each fragment’s features to RGB color and opac-

ity. To ensure correct alpha compositing, the scene mesh

and cuboids are sorted depth-wise and rendered from back

to front, following the procedure outlined in Eqn. 4.

4. Experiments

In this section, we introduce our experimental setting,

and then compare our approach with state-of-the-art NVS

8420



NeuRasENeRFInstant-NGPGround Truth

FPS 5.10FPS 4.23

FPS 5.50

FPS 144

FPS 126FPS 5.10

Unisim

FPS 1.42

FPS 1.46

Figure 5. Qualitative results on driving scenes. Compared to existing novel view synthesis approaches, NeuRas produces competitive

realism and achieves real-time rendering (> 100 FPS).

Methods
Interpolation Lane Shift Resources

MSE↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ @2m FID↓ @3m Memory (MB) ↓ FPS↑

Instant-NGP [35] 0.0035 24.76 0.79 • 0.40 134.20 135.75 7491 3.2

ENeRF [28] 0.0034 • 24.92 • 0.77 0.34 190.96 243.93 7285 • 5.1 •
UniSim [64] 0.0030 • 26.28 • 0.78 • 0.26 • 92.78 • 100.63 • 7623 1.4

Multi-View Warping [10] 0.0095 20.55 0.64 0.39 164.09 177.19 1441 • 50 •
FVS [44] 0.0089 20.87 0.71 0.29 • 116.36 • 122.87 • 15243 0.3

Ours 0.0030 • 25.45 • 0.75 • 0.31 • 105.64 • 111.63 • 4538 • 120 •
Table 1. State-of-the-art comparison on PandaSet. Our method synthesizes novel views (1920×1080) in real time with high visual

quality on urban driving scenes. We mark the methods with best performances using gold •, silver •, and bronze • medals.

methods on large-scale driving scenes and drone footages.

We demonstrate that our neural rendering system achieves

the best balance between photorealism and rendering effi-

ciency. We then ablate our design choices, showing the

value of the neural shader and vector quantization for im-

proved realism and extrapolation robustness. Finally, we

show NeuRas can speed up various NeRF approaches in a

plug-and-play fashion by leveraging their extracted meshes

for real-time NVS of large scenes.

4.1. Experimental Setup

Datasets: We conduct experiments primarily on two pub-

lic datasets with large-scale scenes: PandaSet [63] and

BlendedMVS [66]. PandaSet is a real-world driving dataset

that contains 103 urban scenes captured in San Francisco,

each with a duration of 8 seconds (80 frames, sampled at

10Hz) and a coverage of around 300 × 80m2 meters. At

each frame, a front-facing camera image (1920×1080) and

360 degree point cloud are provided. We select 9 scenes

on Pandaset that have few dynamic actors for NVS evalua-

tion. Since our focus is on static scenes, the dynamic actor

regions are masked out during evaluation by projecting the

3D bounding boxes into images. The BlendedMVS dataset

offers a collection of large-scale outdoor scenes captured by

a drone and also provides reconstructed meshes generated

from a 3D reconstruction pipeline [1]. We select 5 large

scenes for evaluation which are diverse and range in size

from 200× 200m2 to over 500× 500m2.

Baselines: We compare our approach with two types of

novel view synthesis (NVS) methods: (1) Implicit-based

neural fields: Instant-NGP [35], ENeRF [29], UniSim [64].

Instant-NGP introduces a multi-resolution hashing grid and

tiny MLP for fast training and inference. UniSim and EN-

eRF leverage the LiDAR or depth information for efficient

ray generation (sparse grids) and efficient sampling along

each ray. (2) Explicit-based approaches: multi-view warp-

ing [10] uses the mesh to project nearby source images to

8421



Instant-NGP

FPS 4.58 FPS 388

NeuRasGround Truth

FPS 3.97 FPS 464

Multi-view Warping

FPS 65.0

FPS 65.0

Unism

FPS 4.45

FPS 4.97

Figure 6. Qualitative results on drone scenes. Compared to existing novel view synthesis approaches, NeuRas produces competitive

realism results and achieves real-time rendering (> 400 FPS) on drone scenes.

Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑

Instant-NGP [35] 24.40 0.780 0.241 8.7

UniSim [64] 24.37 0.792 0.204 4.9

Multi-View Warping [10] 21.11 0.738 0.248 65

Ours 24.19 0.790 0.176 462

Table 2. State-of-the-art comparison on BlendedMVS.

target views, and FVS [44] further uses neural networks to

blend the source images.

Implementation details: In our implementation, we uti-

lized a UV feature size of 8192×8192 with 12 channels for

the neural texture component. Additionally, we employed 6
skyboxes placed at a distance ranging from 150m to 2.4km
from the inner cuboid center. The MLP consists of 3 layers,

with each layer comprising of 32 hidden units. Both code-

books have a size of 1024. We trained the model using the

Adam optimizer with a learning rate of 0.01 for 20K iter-

ations. We use a single machine equipped with an A5000

GPU for all reported runtimes and memory usage bench-

marking, including the baselines. Further implementation

details are provided in the supp. materials.

4.2. Fast Rendering on Large­scale Scenes

Driving scenes on PandaSet: For self-driving, we need

to simulate the camera images at significantly different

viewpoints (interpolation and extrapolation). We evaluate

the interpolation setting following [27]: sub-sampling the

sensor data by two, training on every other frame and test-

ing on the remaining frames. We report PSNR, SSIM [58],

and LPIPS [71]. Moreover, we evaluate a more challenging

extrapolation setting (Lane Shift) following [64] by simu-

lating a new trajectory shifted laterally to the left or right

by 2 or 3 meters. We report FID [38] since there is no

ground truth for comparison. We use the neural meshes re-

constructed by UniSim [64] for the experiments.

As shown in Fig. 4, our approach strikes the best trade-

off between rendering quality and rendering speed. Table 1

shows all the metrics, specifically, our method only sacri-

fices 0.8 PSNR compared to the best approach while main-

taining > 100 FPS (80× faster than UniSim, 40× faster

than Instant-NGP). In contrast, implicit-based neural fields

obtain slightly better (UniSim) or worse (InstantNGP, EN-

eRF) PSNR with much lower inference speed. Compared

to geometry-based approaches such as multi-view warping

and FVS, NeuRas achieves better realism and faster render-

ing speed. Furthermore, the qualitative results presented in

Fig. 5 demonstrate that our method exhibits comparable or

superior visual realism when compared to the baselines.

Drone scenes on BlendedMVS: We leverage the pro-

vided reconstructed meshes in BlendedMVS as our geome-

try scaffold and evaluate interpolation setting (i.e., random

50−50 train-validation split). As shown in Table 2, NeuRas

strikes a good balance between rendering quality and speed.

Fig. 6 shows qualitative comparisons with state-of-the-art

NVS methods. Except for view-warping, which has visible

artifacts, it is difficult to discern differences between our

method and slower neural rendering methods.

8422



Methods PSNR↑ SSIM↑ LPIPS↓

No MLP 24.48 0.664 0.374

MLP-shader w/o viewdir 25.01 0.728 0.316

MLP shader 25.34 0.738 0.308

Table 3. Ablation on MLP shader. Metrics are reported on the

log-53 in PandaSet.

Methods
Interpolation Lane Shift

Storage ↓
PSNR↑ LPIPS↓ FID↓@2m FID↓@3m (MB)

w/o VQ 25.46 0.317 81.5 98.3 4644

w/ VQ 25.34 0.308 78.2 95.3 394

Table 4. Ablation on vector quantization. Vector quantization

improves extrapolation and reduces storage, with minimal impact

on realism. Metrics are reported on log-53 in PandaSet.

Ours with mesh-50K (PSNR: 26.14) Ours with mesh-500K (PSNR: 26.65)

Figure 7. Qualitative comparison between using mesh with 50K

and 500K vertices

Method Ablation: We ablate our design choices for

NeuRas on neural shader and vector quantization (VQ). As

shown in Table 3, using an MLP-backed fragment shader

can improve realism in generating view-dependent results.

It can also help compensate for artifacts in the geometry.

Please refer to supp. for visual comparison. In Table 4, we

show vector quantization significantly reduce the disk stor-

age while maintaining similar realism. Besides, adding VQ

helps regularize the neural texture maps thus resulting in

better perceptual quality especially in extrapolation results

(indicated by smaller FID in the lane-shift setting).

Mesh Ablation: We also demonstrate that NeuRas can

perform well with coarser low poly-count meshes in Fig 7.

Given the geometry mesh extracted with UniSim [64], we

perform triangle decimation [18] to achieve desired vertex

counts, and then learn the texture maps with NeuRas. Our

approach achieves similar visual quality despite the low res-

olution mesh, desmonstrating the value of the neural tex-

tures.

Comparison against real-time NeRFs: When compar-

ing our method with real-time rendering approaches such as

SNeRG [21], PlenOctrees [69], and MobileNeRF [13], we

encountered difficulties in applying these methods to large

scenes and achieving satisfactory results. These challenges

included low-resolution representation, out-of-memory er-

rors, limited model capacity, high training cost, and poor

geometry. We therefore compare against these methods on

Methods
Chair Lego

FPS↑
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [34] 33.00 0.967 0.046 32.54 0.961 0.050 0.02

Mip-NeRF [5] 37.14 0.988 0.011 35.74 0.984 0.013 0.02

TensoRF [11] 35.76 0.985 0.022 36.46 0.983 0.018 1.5

NSVF [30] 33.19 0.968 0.043 32.29 0.973 0.029 0.84

SNeRG [21] 33.24 0.975 0.025 33.82 0.973 0.022 176

PlenOctree [69] 33.19 0.970 0.039 32.12 0.965 0.046 270

MobileNeRF [13] 34.02 0.978 0.025 34.18 0.975 0.025 720

Ours 33.15 0.975 0.036 30.66 0.951 0.061 461

Table 5. Comparison with real-time NeRFs on synthetic

dataset. Despite being designed for large-scale scenes, our

method still achieves comparable performance when rendering

small objects.

Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑

InstantNGP [35] 23.55 0.75 0.23 8.2

Ours + InstantNGP 20.26 0.52 0.31 455

UniSim [64] 23.30 0.76 0.21 4.7

Ours + UniSim 21.19 0.65 0.23 336

Table 6. Speed up neural radiance fields. NeuRas is able to speed

up popular NeRFs even if the geometry is not high-quality. The

metrics are reported on Church in BlendedMVS.

object-level scenes in Table 5. We use VoxSurf [61] to ex-

tract the geometries for NeuRas. Please see supp. for more

details. While we focus on the real-time rendering for large

scenes, our approach has reasonable performance on small-

objects from NeRF synthetic dataset [34].

4.3. Speeding­up NeRFs

We highlight that NeuRas can speed up popular NeRF

approaches. We consider two representative approaches:

Instant-NGP (camera supervision, density geometry) and

UniSim (camera + depth supervision, SDF geometry). We

use marching cubes [32] to extract the geometry for a se-

lected scene in BlendedMVS and then adopt NeuRas for

real-time rendering. As shown in Table 6 and Fig 8, our ap-

proach dramatically speeds up rendering performance while

maintaining reasonable photorealism. Please see supp. ma-

terials for visual comparison and more analysis.

4.4. Limitations

Our method has several limitations, including the use

of opaque meshes, which poses challenges in accurately

modeling semi-transparent components such as fog and wa-

ter. Additionally, while our neural shader design improves

the robustness of the model w.r.t. geometry quality, render-

ing performance may still suffer when dealing with meshes

with severe artifacts in Fig. 9. Our method cannot fix se-

vere mesh artifacts and incorrect boundaries, which requires

a fully differentiable rasterization pipeline. Additionally,

our approach has difficulty rendering completely unseen re-

gions that are far from the training views. Scene completion

8423



Instant-NGP render Instant-NGP mesh NeuRas with Instant-NGP mesh UniSim render UniSim mesh NeuRas with UniSim mesh

FPS 462FPS 4.69FPS 462FPS 8.70

Figure 8. Speed up neural radiance fields with NeuRas. We use Marching Cubes [32] to extract the geometry from the trained radiance

fields model and then adopt NeuRas for real-time rendering. For each example, we show radiance field rendering in the left, extracted

mesh in the middle, and NeuRas rendering in the right. NeuRas can significantly speed up the rendering speed while maintaining a similar

rendering photorealism even with poor geometry scaffold (e.g. Instant-NGP [35]).

Intricate structures Boundary between foreground and background Lack detail at higher zoom levels.

Figure 9. Limitations of NeuRas. From left to right: Difficulties in modelling intricate structures such as power lines in the sky, artifacts

at the boundary of foreground mesh and skybox due to missing geometry at the top of building, and lack of details at high zoom levels.

may help address this. Moreover, the current implementa-

tion uses only one UV texture level, which can cause alias-

ing or blurriness when scaling extensively, such as when

moving very close to or far away from an object. Using

a multi-level texture representation such as mipmaps [59]

could mitigate these issues. More analysis is available in

the supp. materials.

5. Conclusion

In this paper, we present NeuRas, a novel approach for

realistic real-time novel view synthesis of large scenes. Our

approach combines the strengths of neural rendering and

traditional graphics to achieve the best trade-off between

realism and efficiency. NeuRas utilizes a scaffold mesh as

input and incorporates a neural texture field to model view-

dependent effects, which can then be exported and rendered

in real-time with standard rasterization engines. NeuRas

can render urban driving scenes at 1920 × 1080 resolu-

tion at over 100 FPS while delivering comparable realism

to existing neural rendering approaches. We hope NeuRas

can open up possibilities for scalable and immersive expe-

riences for self-driving simulation and VR applications.

Acknowledgements: We thank Ioan-Andrei Barsan for

profound discussion and constructive feedback. We thank

the Waabi team for their valuable assistance and support.

References

[1] Altizure: Mapping the world in 3d. https://www. al-

tizure.com.

[2] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.

Building rome in a day. Communications of the ACM, 2011.

[3] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-

ics. In ECCV, 2020.

[4] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian

Richardt, and James Tompkin. Matryodshka: Real-time 6dof

video view synthesis using multi-sphere images. In ECCV,

pages 441–459. Springer, 2020.

[5] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Pe-

ter Hedman, Ricardo Martin-Brualla, and Pratul P Srini-

vasan. Mip-NeRF: A multiscale representation for anti-

aliasing neural radiance fields. ICCV, 2021.

8424



[6] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In CVPR, 2022.

[7] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[8] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-

dering. Computer graphics and interactive techniques, 2001.

[9] Ang Cao, Chris Rockwell, and Justin Johnson. Fwd: Real-

time novel view synthesis with forward warping and depth.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 15713–15724, 2022.

[10] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-

Hornung, and George Drettakis. Depth synthesis and local

warps for plausible image-based navigation. ACM Transac-

tions on Graphics (TOG), 32(3):1–12, 2013.

[11] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In Computer

Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-

rael, October 23–27, 2022, Proceedings, Part XXXII, pages

333–350. Springer, 2022.

[12] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang,

Xinchen Yan, Sivabalan Manivasagam, Shangjie Xue, Ersin

Yumer, and Raquel Urtasun. Geosim: Realistic video sim-

ulation via geometry-aware composition for self-driving.

CVPR, 2021.

[13] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-

drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-

terization pipeline for efficient neural field rendering on mo-

bile architectures. arXiv, 2022.

[14] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H.

Kim, and Jan Kautz. Extreme view synthesis. ICCV, 2019.

[15] Yves Egels and Michel Kasser. Digital photogrammetry.

CRC Press, 2001.

[16] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned gra-

dient descent. In CVPR, pages 2367–2376, 2019.

[17] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie

Shotton, and Julien Valentin. Fastnerf: High-fidelity neural

rendering at 200fps. ICCV, 2021.

[18] Michael Garland and Paul S Heckbert. Surface simplification

using quadric error metrics. In Proceedings of the 24th an-

nual conference on Computer graphics and interactive tech-

niques, pages 209–216, 1997.

[19] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,

Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-

Escolano, Rohit Pandey, Jason Dourgarian, et al. The re-

lightables: Volumetric performance capture of humans with

realistic relighting. ACM Transactions on Graphics (ToG),

38(6):1–19, 2019.

[20] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 16000–

16009, 2022.

[21] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,

Jonathan T Barron, and Paul Debevec. Baking neural ra-

diance fields for real-time view synthesis. arXiv, 2021.

[22] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya

Jia. Efficientnerf efficient neural radiance fields. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 12902–12911, 2022.

[23] Brian Karis and Epic Games. Real shading in unreal engine

4. Proc. Physically Based Shading Theory Practice, 2013.

[24] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer,

Kari Pulli, and Gordon Wetzstein. Neural lumigraph render-

ing. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 4287–4297,

2021.

[25] Naruya Kondo, Yuya Ikeda, Andrea Tagliasacchi, Yutaka

Matsuo, Yoichi Ochiai, and Shixiang Shane Gu. Vaxnerf:

Revisiting the classic for voxel-accelerated neural radiance

field. arXiv preprint arXiv:2111.13112, 2021.

[26] Zhuopeng Li, Lu Li, Zeyu Ma, Ping Zhang, Junbo Chen,

and Jianke Zhu. Read: Large-scale neural scene rendering

for autonomous driving. arXiv, 2022.

[27] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel

dataset and benchmarks for urban scene understanding in 2d

and 3d. PAMI, 2022.

[28] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,

Hujun Bao, and Xiaowei Zhou. Efficient neural radiance

fields for interactive free-viewpoint video. In SIGGRAPH

Asia Conference Proceedings, 2022.

[29] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,

Hujun Bao, and Xiaowei Zhou. Efficient neural radiance

fields for interactive free-viewpoint video. In SIGGRAPH

Asia 2022 Conference Papers, pages 1–9, 2022.

[30] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. arXiv, 2020.

[31] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,

Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. Mix-

ture of volumetric primitives for efficient neural rendering.

ACM Transactions on Graphics (ToG), 40(4):1–13, 2021.

[32] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM

siggraph computer graphics, 21(4):163–169, 1987.

[33] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. ACM Transac-

tions on Graphics (TOG), 38(4):1–14, 2019.

[34] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. ECCV, 2020.

[35] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. 2022.

[36] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas

Kurz, Joerg H Mueller, Chakravarty R Alla Chaitanya, Anton

Kaplanyan, and Markus Steinberger. Donerf: Towards real-

time rendering of compact neural radiance fields using depth

oracle networks. In Computer Graphics Forum, 2021.

8425



[37] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 3504–3515, 2020.

[38] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On

aliased resizing and surprising subtleties in gan evaluation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11410–11420, 2022.

[39] John C. Perry. xatlas: A c++11 library for texture atlas gen-

eration. https://github.com/jpcy/xatlas, 2018.

GitHub repository.

[40] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lem-

pitsky, and Evgeny Burnaev. Npbg++: Accelerating neural

point-based graphics. In CVPR, 2022.

[41] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. KiloNeRF: Speeding up neural radiance fields with

thousands of tiny MLPs. ICCV, 2021.

[42] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P.

Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T.

Barron, and Peter Hedman. Merf: Memory-efficient radi-

ance fields for real-time view synthesis in unbounded scenes.

arXiv preprint arXiv: Arxiv-2302.12249, 2023.

[43] Konstantinos Rematas, An Liu, Pratul P. Srinivasan, J. Bar-

ron, A. Tagliasacchi, T. Funkhouser, and V. Ferrari. Urban

radiance fields. Computer Vision And Pattern Recognition,

2021.

[44] Gernot Riegler and Vladlen Koltun. Free view synthesis.

ECCV, 2020.

[45] Gernot Riegler and Vladlen Koltun. Stable view synthesis.

CVPR, 2021.

[46] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. CVPR, 2016.

[47] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[48] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,

and Jan-Michael Frahm. Pixelwise view selection for un-

structured multi-view stereo. In European Conference on

Computer Vision (ECCV), 2016.

[49] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. 2015.

[50] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. CVPR, 2022.

[51] Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wi-

jmans, Yili Zhao, John Turner, Noah Maestre, Mustafa

Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets,

et al. Habitat 2.0: Training home assistants to rearrange their

habitat. Advances in Neural Information Processing Systems,

34:251–266, 2021.

[52] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-

han, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Bar-

ron, and Henrik Kretzschmar. Block-nerf: Scalable large

scene neural view synthesis. In CVPR, 2022.

[53] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural tex-

tures. Acm Transactions on Graphics (TOG), 38(4):1–12,

2019.

[54] Haithem Turki, Deva Ramanan, and Mahadev Satya-

narayanan. Mega-nerf: Scalable construction of large-scale

nerfs for virtual fly-throughs. In CVPR, 2022.

[55] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete

representation learning. NeurIPS, 30, 2017.

[56] Jingkang Wang, Sivabalan Manivasagam, Yun Chen, Ze

Yang, Ioan Andrei Bârsan, Anqi Joyce Yang, Wei-Chiu Ma,

and Raquel Urtasun. CADSim: Robust and scalable in-the-

wild 3d reconstruction for controllable sensor simulation. In

6th Annual Conference on Robot Learning, 2022.

[57] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

CVPR, 2018.

[58] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibility

to structural similarity. TIP, 2004.

[59] Lance Williams. Pyramidal parametrics. In Proceedings of

the 10th annual conference on Computer graphics and inter-

active techniques, pages 1–11, 1983.

[60] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,

and David Forsyth. Diver: Real-time and accurate neural ra-

diance fields with deterministic integration for volume ren-

dering. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 16200–

16209, 2022.

[61] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong XU, Christian

Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-based

efficient and accurate neural surface reconstruction. In The

Eleventh International Conference on Learning Representa-

tions, 2023.

[62] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,

Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.

Bungeenerf: Progressive neural radiance field for extreme

multi-scale scene rendering. In Computer Vision–ECCV

2022: 17th European Conference, Tel Aviv, Israel, Octo-

ber 23–27, 2022, Proceedings, Part XXXII, pages 106–122.

Springer, 2022.

[63] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang,

Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun

Jiang, et al. Pandaset: Advanced sensor suite dataset for

autonomous driving. In ITSC, 2021.

[64] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-

vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Urta-

sun. Unisim: A neural closed-loop sensor simulator. arXiv,

2023.

[65] Ze Yang, Sivabalan Manivasagam, Yun Chen, Jingkang

Wang, Rui Hu, and Raquel Urtasun. Reconstructing objects

in-the-wild for realistic sensor simulation. In IEEE Inter-

national Conference on Robotics and Automation (ICRA),

2023.

[66] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan

Ren, Lei Zhou, Tian Fang, and Long Quan. Blendedmvs:

A large-scale dataset for generalized multi-view stereo net-

works. CVPR, 2020.

8426



[67] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,

Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,

and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for

real-time view synthesis. arXiv preprint arXiv: Arxiv-

2302.14859, 2023.

[68] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong

Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:

Radiance fields without neural networks. CVPR, 2022.

[69] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and

Angjoo Kanazawa. Plenoctrees for real-time rendering of

neural radiance fields. ICCV, 2021.

[70] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-

tler, and Andreas Geiger. Monosdf: Exploring monocu-

lar geometric cues for neural implicit surface reconstruction.

NeurIPS, 2022.

[71] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. CVPR, 2018.

[72] Yuqi Zhang, Guanying Chen, and Shuguang Cui. Effi-

cient large-scale scene representation with a hybrid of high-

resolution grid and plane features. arXiv preprint arXiv:

Arxiv-2303.03003, 2023.

[73] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view syn-

thesis using multiplane images. SIGGRAPH, 2018.

8427


