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Abstract

This paper introduces SKiT, a fast Key information
Transformer for phase recognition of videos. Unlike pre-
vious methods that rely on complex models to capture long-
term temporal information, SKiT accurately recognizes
high-level stages of videos using an efficient key pooling op-
eration. This operation records important key information
by retaining the maximum value recorded from the begin-
ning up to the current video frame, with a time complexity
of O(1). Experimental results on Cholec80 and AutoLa-
paro surgical datasets demonstrate the ability of our model
to recognize phases in an online manner. SKiT achieves
higher performance than state-of-the-art methods with an
accuracy of 92.5% and 82.9% on Cholec80 and AutoLa-
paro, respectively, while running the temporal model eight
times faster ( 7ms v.s. 55ms) than LoViT, which uses Prob-
Sparse to capture global information. We highlight that the
inference time of SKiT is constant, and independent from the
input length, making it a stable choice for keeping a record
of important global information, that appears on long sur-
gical videos, essential for phase recognition. To sum up, we
propose an effective and efficient model for surgical phase
recognition that leverages key global information. This has
an intrinsic value when performing this task in an online
manner on long surgical videos for stable real-time surgi-
cal recognition systems.

1. Introduction
Surgical Artificial Intelligence uses data to understand

surgical workflows, evaluate surgeon performance, and pro-
vide assistance to surgeons in real time[30]. One of the core
tasks towards achieving these aims is the recognition of the
transitions of high-level stages of surgery, a problem coined
Surgical Phase Recognition [15]. Accurate predictions of
what surgical phase a part of a video relates to might ben-
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efit the provision of automated and improved feedback for
trainees [12, 24], the potential to optimize surgical work-
flows [32], and the retrospective review of a particular phase
from surgical video. While past and future information is
used for phase recognition of a particular video frame in an
offline manner, only past information is used for classify-
ing in an online manner the phase where the last (current)
video frame locates. Although online recognition is more
challenging, it could help alert surgeons [33] and support
decision-making [8] in real-time during surgery. This paper
focuses on online phase recognition.

Early work in surgical phase recognition proposed work-
flow recovery models using Dynamic Time Warping with
temporal registration [1], graphical probabilistic models
based on Hidden Markov Models (HMM) [2, 3], rule-
based interpretation models for context-awareness using
ontologies [23], and machine learning models for phase
recognition using Support Vector Machines and Random
Forests [15]. Although these methods are mathematically
rigorous, the use of hand-crafted features is specific to the
surgery type and leads to a design that is not fully gener-
alisable. Deep learning brought in new methods for surgi-
cal phase recognition, which allows for more sophisticated
spatio-temporal feature extraction mechanisms. While ad-
ditional information, such as surgical tools presence, is con-
sidered by other methods in a multi-task learning manner to
improve accuracy [21, 37], annotation requirements limit
their influence on online recognition.

Online surgical phase recognition requires models that
can capture long-range temporal dependencies since the du-
ration of surgical videos could range from 40 minutes to a
few hours. Single-task surgical phase recognition models
that add temporality can be broadly categorized into three
types which use recurrent neural networks (RNN) [34],
convolution neural networks (CNN) [27], or Transform-
ers [39]. However, while RNNs, including Long Short-
Term Memory (LSTM), struggle with modelling long-term
dependencies due to their sequential nature, CNN-based
methods such as Temporal Convolutional Networks (TCNs)
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Figure 1: The Key-recorder aggregates previous and current local features to predict the current phase. The surgical phase is
updated only when new key information is recognised. Working principle of our Key-recorder on an illustrative video stream
to record the global appeared key information (2nd row) together with the current local feature (1st row) for recognising the
phase (last row) of a current image frame.

use dilated convolution with fixed-sized filters to capture
long temporal information, which can be problematic for
long sequences. Moreover, dilated convolution can re-
sult in information loss while processing long sequences
due to sparse sampling of input features. In contrast,
Transformer-based methods have shown promising results
as they can capture relationships between different tokens
in a sequence, regardless of positions. This makes it eas-
ier to model long-term dependencies. One disadvantage
is that time and memory complexity of the self-attention
mechanism used by Transformers is quadratic, which limits
their usefulness for long videos. Even with the use of Prob-
Sparse attention [44] that decreases the complexity of self-
attention, inference time is still related to the input length
and could be time-consuming for long sequences. Further-
more, complex temporal models, especially for time-series
data, may face greater challenges in retaining redundant
information, which can cause overfitting. This is due to
the frequent presence of autocorrelation and periodicity in
time-series data, which may exacerbate overfitting when the
model is overly complex. Further research is required to ef-
ficiently and effectively capture global information while
ensuring processing time is independent of the input length.

To process the input with varying lengths while main-
taining efficiency and effectiveness, it is important to con-
sider previously captured information along with that ap-
pearing in the current frame. As depicted in Figure 1, cer-
tain local temporal features, such as ‘Move grasper’, may
appear in multiple phases, such as ‘Preparation’ and ‘Calot-
TriangleDissection’, and the key information that distin-
guishes them is crucial. Assume that we recorded the ap-

peared key information where it is from the beginning of
the video to the current frame (not included), and we can
efficiently combine it with the current local feature to up-
date the appeared key information of the next frame, en-
abling us to reuse captured information, rather than search-
ing it from the beginning of the video. Motivated by this,
we propose a fast Key information video Transformer (ab-
breviated as SKiT), which has the ability to record global
appeared key information along the temporal dimension
by an efficient and effective key pooling operation. After
knowing the global appeared key information and current
local fine-grained feature, SKiT could recognise the current
phase accurately. Our main contributions are: 1) a new key
pooling method that globally records important key events
within O(1) time complexity, 2) a more efficient and sta-
ble approach that ensures inference time is not affected by
video length, and 3) an efficient and accurate model that
maintains state-of-the-art performance. The code website:
https://github.com/MRUIL/SKiT.

2. Related Work
Multi-task learning methods. With the advent of deep
learning, research has transformed into using only video as
input, rather than operating on extra information that might
be inconvenient to collect. Some works jointly learn phase
recognition and tool presence detection through shared fea-
tures [21]. Twinanda et al. [37] presented the multi-task
network EndoNet which had two branches that shared early
layers for visual feature extraction. However, it detached
crucial temporal dependencies from the unified framework.
In order to improve EndoNet’s ability to understand tem-
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poral context, Twinanda [35] replaced HMM with LSTM
gates [19]. Zisimopoulos et al. [45] proposed a two-stage
approach for cataract video analysis, using a ResNet [18]
for tool presence recognition and an RNN for phase recog-
nition, achieving promising results. Nakawala et al. [31] in-
troduced a network integrating deep models with ontology
and production rules to recognize surgical contexts. Jin et
al. [21] utilized a correlation loss to enhance the perfor-
mance of both tool presence detection and surgical phase
recognition tasks by leveraging their correlation.

Single-task learning methods. Single-task models for
phase recognition have been proposed since multi-task
learning methods require extra tool annotations, which lim-
its model training scenarios and increases annotation work-
load. Some methods [20, 41, 13] employed LSTMs [19] for
temporal feature aggregation of surgical videos. However,
as mentioned before, LSTMs suffer from the vanishing gra-
dients problem, which limits their ability to capture long-
term dependencies, particularly in surgical videos that can
last for hours [5]. Although TMRNet [22] attempted to use
a non-local operator to establish the relationship between
the current feature and the global feature sequence, this
approach was limited in addressing the issue because the
global features affected the current feature independently
rather than collaboratively. Czempiel et al. [5] presented
TeCNO, based on TCNs [26, 11], that are able to capture
long-term temporal correlations. However, by essentially
adapting dilated convolutions [38] for long sequences us-
ing TCNs, the increased receptive field obtained through
dilation can result in a loss of fine-grained relationships
between more distant time steps. Moreover, the receptive
field of TCNs is limited by the size of the convolutional
filters, which can be problematic when dealing with long
sequences. Transformer-based [39] models have also been
proposed for general computer vision tasks, such as ac-
tion recognition[10, 28] and action anticipation [16], which
share similarities with surgical phase recognition. However,
these methods have been designed for short video inputs.
For surgical phase recognition, Trans-SVNet [14] aims to
fuse spatial and temporal features by developing a small
Transformer-based fusion head. However, the dilated con-
volution structure in TCNs still leads to fine-grained tem-
poral information loss and fixed reception field. Czem-
piel et al. [6] also introduced a Transformer-based model for
aggregating temporal features, but the quadratic time and
memory complexity caused by its self-attention mechanism
pose a particular problem for long surgical videos. Most
recently, Long Video Transformer (LoViT) [29] employed
ProbSparse [44] to decrease the time complexity of the
vanilla Transformer to capture global information. How-
ever, the inference time of these temporal models is highly
dependent on the length of the input sequence because they
require a global reception field that needs additional compu-

tations to process long-term features. As the length of sur-
gical videos increases, their inference time also increases,
which is undesirable for building stable real-time surgical
recognition systems. A naive solution used by these models
consists of fixing the input length and dropping early input
frames, which causes preceding information to be lost. The
TeSTra [43] proposed for nature video action recognition
update global features by selectively discarding older in-
formation, achieving an efficient time complexity of O(1).
However, it’s worth noting that older long-term events re-
tain significance in the context of current phase recognition.

Building on previous work, our research also leverages
the Transformer network to extract local fine-grained tem-
poral features and spatial information. However, to process
the variable long surgical video and capture global tempo-
ral information, we needed an effective and efficient solu-
tion. To address this, we propose key pooling, which no
longer needs to build a complex global temporal model.
This idea was inspired by CornerNet [25], which proposed
corner pooling to detect image objects as paired key points.
The main idea behind corner pooling is to take the maxi-
mum value from different boundaries of the image to the
current position and add them together. For online video
streams, our key pooling approach records key information
that appears along the time dimension from the beginning to
the current frame. This allows us to reuse previous frame-
wise output while capturing global key information up to
the current frame.

3. Methods
Figure 2 illustrates our proposed SKiT architecture. Our

model takes a video stream Xt = {xi}ti=1 as input to recog-
nise the surgical phase p̂t of the current frame xt in an on-
line manner, where xi is the i-th video frame contained in
Xt. We propose an architecture with a novel Key-recorder
that captures global information by recording key events,
thereby eliminating the need for costly aggregation opera-
tions. This approach addresses the computational limita-
tions that result from large-sized local and global feature
aggregator operations inherent in LoViT [29], which be-
gins with extracting spatial features, followed by the ex-
traction of small- and large-sized local temporal features,
and then aggregates global long sequence features using a
global temporal feature aggregator while performing multi-
scale fusion with local features. We describe our proposed
architecture in the following sections.

3.1. Spatial Feature Extractor

Surgical videos can last for up to a few hours and ex-
hibit strong dependence among different phases. There-
fore, it is essential for a recognition model to have the abil-
ity to process long video inputs. However, training such
a model in an end-to-end manner is challenging. Previous
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Figure 2: SKiT architecture. First, a spatial feature extractor SR is used to independently extract a sequence of spatial
features (e1, ..., et) from a t-frames video stream (x1, ..., xt). A Transformer-based local temporal aggregator (L-aggregator)
with a window size of λ generates the local fine-grained temporal feature sequence (l1, ..., lt). The Key-recorder is then used
to record global appeared key information, where gt represents the recorded key information from the beginning to the t-th
frame. Last, a Fusion head is adopted to fuse lt and gt to predict the phase p̂t while a linear layer uses lt to predict the
current phase transition map value ĥt. Note that we only need to run SR and L-aggregator once during inference. Fusion
head. A linear layer first embeds the first branch (black) input into the same length as the second branch (grey), followed
by element-wise addition, and a residual layer [18] that is tailed to output final fusion. L-aggregator. It contains an m-layer
self-attention for encoding the first branch, and an n-layer cascaded self-attention and cross-attention decoder.

works [14, 5, 6] attempted to first train a spatial feature ex-
tractor and then freeze its weights before training the rest of
the temporal modules. However, learning phases from a sin-
gle image frame can be challenging since the feature extrac-
tor model may have similar image frames appearing at dif-
ferent phases as inputs, and phase recognition depends not
only on the current frame but also on previous frames. To
address these problems, we use the method proposed in [29]
to train a temporally-rich spatial feature model SR which is
based on ViT [9]. We input a sequence of 30 image frames
X ′

t ⊆ Xt = {xi}ti=1 where xi is the i-th frame of online
video stream Xt, and t is the current frame index. X ′

t con-
sists of image frames sampled at equal intervals from the be-
ginning of the current phase up to the current frame, and is
used to build a more robust phase recognition compared to
the one that uses only one single image frame. We first use
SR to embed all frames of X ′

t into spatial features indepen-
dently, followed up by a Transformer that aggregates them
to predict the phase p̂t of the current image frame xt. The
temporally-rich supervision method SR can be more well-
trained and could extract spatial features more accurately.

Note that, for each xi we define the extracted spatial feature
by SR as ei, and we freeze the weight of SR while training
the temporal module of SKiT during the second stage.

3.2. Local temporal feature aggregator

The spatial features extracted by SR are used by a
Transformer-based local temporal feature aggregator L-
aggregator that captures the current fine-grained temporal
information, such as actions, moving tools, and operated
organs. L-aggregator is defined as follows:

(lt−λ+1, ..., lt) = L-aggregator (et−λ+1, ..., et). (1)

Here, et is the current spatial feature extracted by SR,
lt represents the current local temporal feature of the t-th
frame, and λ is the input window size of the L-aggregator.

We implement L-aggregator using a Transformer-based
module inspired by [44, 29], as shown in Figure 2. It
consists of an m-layer self-attention encoder that receives
one branch input and an n-layer cascaded self-attention
and cross-attention decoder that receives the second branch
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the current element along the sequence direction (see ar-
rows in brown) to get a global feature sequence (g1, ..., gt).

input and fuses it with the encoder’s output. We then
duplicate the current λ-length spatial feature sequence
(et−λ+1, ..., et) into two branches and input them into the
decoder and encoder, respectively. Note that, we use slid-
ing windows to promise an online setting during the training
stage.

3.3. Global Key-recorder

Global key information and its long-term dependencies
across surgical phases are crucial for surgical phase recog-
nition. While previous methods have proposed the inte-
gration of global features using complex temporal mod-
els, inference time increases with input sequence length,
even when using efficient self-attention mechanisms such
as ProbSparse [44], which is used by LoViT [29]. More-
over, these complex temporal models are easy to over-fit
and result in remembering confusing information. To ad-
dress these issues, we propose Key-recorder, which uses
key pooling to only record the limited appeared key infor-
mation, and discard confusing information.

As shown in Figure 3, given a local temporal feature se-
quence Lt = (l1, l2, ..., lt), we first use a linear layer to
embed them into a low-dimensional key feature sequence
Kt = {ki}ti=1, where ki ∈ Rdk is the i-th feature vector
of Kt containing dk key information. The j-th value of ki
represents the response level of the i-th frame local feature
to the j-th key information. In other words, it represents
the possibility that the i-th frame contains the j-th key in-

formation, where the key information could be the result of
a feature with actual physical meaning, such as tool, organ,
and action, or other abstract meaning, which is learned by
the model. Key pooling then aims to determine if the j-th
key information appears in the global sequence up to the
i-th frame. Specifically, Key pooling uses an element-wise
max operation to record the maximum value of the i-th po-
sition in feature vectors from the beginning of the feature
sequence up to the j-th feature vector as the value gji :

gji =

{
max(gji−1, k

j
i ), if i > 1

kji , otherwise
. (2)

During test inference, Key-recorder only needs to com-
pare two feature vectors gt−1 and kt to recall the appeared
global key information gt needed for recognizing the cur-
rent t-th frame, with time complexity of O(1). As a result,
the time consumption of the Key-recorder is negligible and
independent of the length of the surgical video.

3.4. Fusion Head

The phase of the current frame is then determined by the
current local information and the previous global informa-
tion. Specifically, we adopt a small fusion head that com-
bines the global appeared key feature gt with the current
local feature lt. As shown in Figure 2, we first adopt a lin-
ear layer to encode the key feature gt to the same dimension
as lt before adding them together. Following that, a residual
layer [18] is adopted to optimize the output.

3.5. Loss Function

In order to give importance to the key information
existing during the phase transitions, we employ the
phase transition-aware supervision mechanism proposed in
LoViT [29]. It consists of phase transition points projected
onto a one-dimensional left-right asymmetric Gaussian ker-
nel heatmap, called phase transition map H = {hi}Ti=1,
where hi is the i-th phase transition map value of T -frame
video, expressed as:

hi =


exp(− (i−bpi )

2

2σ2
l

), bpi − 3σl<i<bpi

exp(− (i−bpi )
2

2σ2
r

), bpi<i<bpi + 3σr

0, otherwise

(3)

where bpi is the index of the frame where the current
phase pi starts, and 3σl and 3σr are the left- and right-
side kernel length departing from bpi

respectively. Conse-
quently, our loss function is a weighted sum of the phase
transition map loss and phase classification loss:

L = L1(ĥ, h) + LCE(p̂, p). (4)

Here, L1(ĥ, h) denotes the L1 loss between the predicted
heatmap ĥ and its ground truth h, whereas LCE(p̂, p) rep-
resents the cross-entropy loss between the predicted phase
p̂ and its ground truth p.
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4. Experiments

4.1. Experimental Design

Datesets. We conducted experiments on two public surgi-
cal video datasets: Cholec80 [37] and AutoLaparo [40].
Cholec80 comprises 80 laparoscopic surgical videos, with
an average duration of 39 minutes at 25 frames per second
(fps). The dataset includes manual annotations of seven sur-
gical phases that we used for our study. We kept the dataset
split into 40 videos for training and 40 videos for testing,
following previous works [5, 14, 29]. AutoLaparo consists
of 21 videos with seven phases, with an average video du-
ration of 66 minutes recorded at 25 fps. We split the dataset
into 10 videos for training, 4 videos for validation, and 7
videos for testing following [40, 29]. Both datasets were
sampled into 1 fps following previous works [14, 29].
Training details. Our experiments were conducted on a
single NVIDIA Tesla V100 GPU. We utilized a 12-head,
12-layer Transformer encoder as our spatial feature ex-
tractor SR based on the ViT-B/16 architecture following
LoViT [29]. This model was pretrained on ImageNet-
1K (IN1k) [7] and produced 768D representations, with an
input image size of 248×248 pixels. We trained the fea-
ture extractor using SGD+momentum for 35 epochs, with
a 5-epoch warm-up period [17] and a 30-epoch cosine an-
nealed decay. For the local temporal feature extractor, we
used a window size of λ = 100, producing 512D feature
vectors with m = 2, n = 2. The Key-recorder generated
64D and 32D key information representations on Cholec80
and AutoLaparo respectively. The temporal modules were
trained for 40 epochs using SGD+momentum with a learn-
ing rate of 3e−4, weight decay of 1e−5, a 5-epoch warm-up
period [17], and a 35-epoch cosine annealed decay, with a
batch size of 8.
Metrics. To assess our model’s effectiveness, we use four
widely-used benchmark metrics for surgical phase recog-
nition: accuracy, precision, recall, and Jaccard. Accuracy
is a video-based measure, indicating the percentage of cor-
rectly recognized phases while minimizing the effect of
video length. However, the class (phase) distribution in the
dataset is imbalanced, and short phases have little impact on
overall video accuracy. Therefore, we additionally employ
class-level precision, recall, and Jaccard to evaluate the per-
formance of our model across different dimensions. These
metrics represent the positive predictive value, positive rate,
and intersection rate of recognition versus ground truth at
the phase level, respectively.

Prior works [14, 22, 42] employed a relaxed met-
ric, which lacks a clear explanation in their manuscripts.
This metric considers predictions falling into neighbouring
phases within a 10-second window around the phase transi-
tion as correct, even if they do not match the ground truth.
Nonetheless, phase transition prediction is a vital model in-

Dataset Method Relaxed metric
Video-level Metric Phase-level Metric

Accuracy ↑ Precision ↑ Recall ↑ Jaccard ↑

Cholec80

PhaseNet [36] ✓ 78.8± 4.7 71.3 76.6 -
SV-RCNet [20] ✓ 85.3± 7.3 80.7 83.5 -

OHFM [41] ✓ 87.3± 5.7 - - 67.0

TeCNO [5] ✓ 88.6± 7.8 86.5 87.6 75.1

TMRNet [22] ✓ 90.1± 7.6 90.3 89.5 79.1

Trans-SVNet [14] ✓ 90.3± 7.1 90.7 88.8 79.3

Not End-to-End [42] ✓ 91.5± 7.1 - 86.8 77.2

LoViT [29] ✓ 92.4± 6.3 89.9 90.6 81.2

SKiT (ours) ✓ 93.4± 5.2 90.9 91.8 82.6

Trans-SVNet 89.1± 7.0 84.7 83.6 72.5

AVT [16] 86.7± 7.6 77.3 82.1 66.4

TeSTra [43] 90.1± 6.6 82.8 83.8 71.6

LoViT [29] 91.5± 6.1 83.1 86.5 74.2

SKiT (ours) 92.5± 5.1 84.6 88.5 76.7

AutoLaparo

SV-RCNet 75.6 64.0 59.7 47.2

TMRNet 78.2 66.0 61.5 49.6

TeCNO 77.3 66.9 64.6 50.7

Trans-SVNet 78.3 64.2 62.1 50.7

AVT 77.8 68.0 62.2 50.7

LoViT [29] 81.4± 7.6 85.1 65.9 56.0

SKiT (ours) 82.9± 6.8 81.8 70.1 59.9

Table 1: The results (%) of different state-of-the-art meth-
ods on both the Cholec80 and AutoLaparo datasets. The
best results are marked in bold.
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Figure 4: Inference time comparison with LoViT for differ-
ent input video lengths.

dicator [29].
Additionally, to handle missing phases in some videos

while computing the standard metric, we combined the pre-
dictions and ground truth of all videos into one sequence
and computed the average per phase. However, we dis-
covered that the previous code using the relaxed boundary-
based metric calculated each phase in each video indepen-
dently and then obtained the average score but overlooked
’NaN’, which was not introduced before, and We kept the
same approach while using the relaxed boundary metric.

4.2. Comparison With State-of-the-art Methods

We conducted a comparative study of SKiT with other
state-of-the-art methods for surgical phase recognition and
action anticipation on Cholec80 and AutoLaparo datasets.
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Figure 5: Qualitative comparisons with other methods on
selected frames from Cholec80 and AutoLaparo datasets.
We show multiple methods’ results on a given video with its
ground truth (GT). Our method is able to correctly recog-
nise key transition frames (green) and ignore ambiguous
frames (red), whereas previous methods fail in those spe-
cific misleading cases.

Table 1 shows the quantitative results. SKiT outperformed
the previous state-of-the-art method, LoViT, with an im-
provement in accuracy of 1 pp (percentage points) on
Cholec80 (from 91.5% to 92.5%) and 1.5 pp on AutoLa-
paro (from 81.4% to 82.9%), while maintaining a simpler
and more efficient framework. Moreover, SKiT exhibited
superior phase-level metrics such as precision, recall, and
Jaccard, which address the issue of phase imbalance effects.
SKiT also achieved lower standard deviations of accuracy
across different videos, with a reduction of 1 pp and 0.8 pp
on Cholec80 and AutoLaparo datasets, respectively, com-
pared to LoViT. This indicates that SKiT achieved more sta-
ble performance across various surgical videos. Following
the same setup as Trans-SVNet on the Cholec80 dataset, we
do not have a separate validation set. However, the trained
model of the final epoch shows only a slight 0.3 pp de-
crease in accuracy compared to the reported best model’s
performance, which proves that our model is not overfit-

ting. It is important to note that some methods, such as
Opera [6], did not make their code publicly available and
used different approaches to split the training and testing
datasets. Therefore, we were unable to compare our re-
sults with these methods. For the Anticipative Video Trans-
former (AVT) [16] method, which was proposed for ac-
tion anticipation, we implemented it using the released code
with 32-frame input. Moreover, we also implemented TeS-
Tra [43] using their official code. As for the results on the
AutoLaparo dataset, we used the reported results on [40]. It
is worth mentioning that most of the reported methods were
from the same team that worked on this dataset, which adds
to the credibility of the reported results. We present repre-
sentative visual results for phase recognition on Cholec80
and AutoLaparo datasets in Figure 5. Overall, SKiT outper-
formed other methods in most places where “key feature”
(as shown in frames highlighted in green) was recognized
by our model as key information to correctly classify the
phase, while being robust to confusing image frames.

4.3. Runtime Analysis

We study the inference time of SKiT in contrast with the
previous version of LoViT using different numbers of input
frames, as illustrated in Figure 4. It should be noted that the
measured values may be slower than the actual values due
to testing on a GPU cluster and sharing the CPU with other
tasks, which leads to unstable inference times. To com-
pare the temporal module inference time, we excluded the
spatial feature extractor inference time, which takes about
9 ms per frame of inference time. Our results show that
SKiT is eight times faster than LoViT, with an online infer-
ence time of approximately 7 ms per frame (142 fps) versus
55 ms per frame (18 fps) for the reported 3000 frames in-
put in [29]. Notably, the speed advantage of SKiT increases
as the input length becomes longer. Additionally, the in-
ference time of SKiT is not dependent on the input length
required to capture the entire video-length receptive field,
making it highly suitable for constructing a stable and ef-
ficient surgical recognition system. Although Trans-SVNet
achieved a high-speed inference time of 10 ms per frame (91
fps) reported in [14], its perceptive field is fixed after design
due to the TCN structure, which means it cannot maintain
the whole-video receptive field when processing videos of
variable lengths. TMRNet [22] has the ability to process
variable-length videos while maintaining a global receptive
field with the non-local structure, but its inference time in-
creases with the length of the video, and its average infer-
ence speed is slow, at 80 ms per frame (11 fps) as reported
in the original paper.

4.4. Ablation Study

Key-recorder module. We investigated the impact of our
proposed Key-recorder for recording globally appeared
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Feature Video-level Metric Phase-level Metric
Accuracy Precision Recall Jaccard

l 89.3± 7.3 81.1 85.1 71.1
gT 90.9± 6.9 82.1 88.1 74.2

l + gS 88.1± 7.1 77.8 80.8 65.9
l + gT 92.5± 5.1 84.6 88.5 76.7

Table 2: The results (%) of different combinations of fea-
tures on both the Cholec80 dataset. Combination of features
include: (l) - using only local temporal feature sequence ex-
tracted from L-aggregator, (gT ) - using only the global key
feature recorded from local features l, (l + gS ) - l in com-
bination with the global key feature recorded from spatial
features e, and (l + gT ) - l in combination with the global
key feature recorded from local features l. The best results
are marked in bold.

key information. Table 2 presents the results, where ‘l’
represents the local temporal feature extracted by the L-
aggregator, ‘gS ’ denotes the global key feature recorded
from spatial feature e, and ‘gT ’ stands for the key feature
recorded from local temporal feature l. By adding the global
key feature recorded from the local temporal feature, we
achieved improvements in recognition performance on both
datasets across all metrics. For example, on the Cholec80
dataset, we observed an accuracy improvement of 3.2 pp
(from 89.3% to 92.5%). This highlights the significance
of capturing global appeared key information for recogniz-
ing the current phase. We observed that if the global fea-
ture is solely recorded from the spatial feature e, the result-
ing recorded key feature gS may have a negative impact
on phase recognition. This is because the spatial feature
alone may not accurately capture the status of every frame,
including some ambiguous frames, leading to noise in the
recorded key feature. This noise negatively affects the over-
all quality of the recorded key information since it is con-
sidered in the maximum operation of our key pooling mech-
anism. To address this issue, we incorporated local window
size frames to more accurately describe the features of each
frame and reduce the negative impact of noise.

We also replace our Key-recorder with some other tem-
poral modules and do some experiments on Cholec80 as
shown in Table 3, it shows that the Key-recorder out-
performs the rest three classic backbones, LSTM [19],
GRU [4], and TCN [26], which further proves the effete-
ness of the proposed Key-recorder.
Key feature length. We also examined the impact of the
length parameter dg on the recognition performance of Key-
recorder. The length of the key feature dg determines the
amount of key information that Key-recorder can store. As
shown in Table 4, the model’s performance is affected by
this length parameter, highlighting the importance of stor-
ing an appropriate amount of key information to improve

Method Video-level Metric Phase-level Metric
Accuracy Precision Recall Jaccard

L-aggregator + LSTM 89.5± 7.5 80.8 86.5 71.8
L-aggregator + GRU 89.6± 6.8 81.7 84.1 70.8
L-aggregator + TCN 90.1± 7.2 82.0 85.8 72.5

L-aggregator + Key-recorder (SKiT) 92.5± 5.1 84.6 88.5 76.7

Table 3: The results (%) of different temporal modules
replacing with our Key-recorder of SKiT on Cholec80
dataset. The best results are marked in bold.

Dataset dk
Video-level Metric Phase-level Metric

Accuracy Precision Recall Jaccard

Cholec80

8 90.6± 6.4 82.9 86.2 73.6
16 90.6± 6.8 83.3 86.3 74.0
32 92.1± 5.4 85.1 86.6 75.7
64 92.5± 5.1 84.6 88.5 76.7
128 92.1± 5.6 83.8 88.1 75.7

AutoLaparo

8 82.6± 6.9 79.6 70.1 60.5
16 80.9± 8.4 73.0 64.7 55.0
32 82.9± 6.8 81.8 70.1 59.9
64 81.9± 6.9 82.7 68.9 58.4
128 81.5± 8.2 70.3 66.1 55.5

Table 4: The results (%) of different key feature lengths,
dk, with SKiT on both the Cholec80 and the AutoLaparo
datasets. The best results are marked in bold.

recognition performance. Insufficient key information can
lead to inadequate learning, while excessive information
can result in redundancy and overfitting. Therefore, it is
crucial to strike a balance between the amount of key in-
formation and the risk of overfitting. In other words, Key-
recorder should store a limited number of key events that are
likely to occur in the video to efficiently capture the neces-
sary information.

λ
Video-level Metric Phase-level Metric

Accuracy Precision Recall Jaccard

20 92.5± 5.3 84.3 88.4 76.4
50 92.4± 5.1 84.9 87.3 76.1

100 92.5± 5.1 84.6 88.5 76.7
200 92.3± 5.0 84.5 87.8 76.2

Table 5: The results (%) of different local temporal window
sizes, λ, with SKiT on Cholec80 dataset. The best results
are marked in bold.

Local size. We conducted a comparison of different local
sizes λ for the L-aggregator on the Cholec80 dataset, as pre-
sented in Table 5. Our results indicate that the choice of λ
does not significantly impact the proposed SKiT.
Different Input Sizes. We experimented with different in-
put sizes T , as detailed in Table 6, and found that longer
inputs generally led to better performance. In order to train
SKiT using multi-batch sizes, we did not use the entire
video as input.
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T
Video-level Metric Phase-level Metric

Accuracy Precision Recall Jaccard

100 90.2± 7.0 82.3 86.2 73.1
500 91.9± 5.4 84.5 87.5 76.0

1000 92.0± 5.0 85.0 86.6 75.6
3000 92.5± 5.1 84.6 88.5 76.7

Table 6: The results (%) of different input sizes T of SKiT
on the Cholec80 dataset. The best results are marked in
bold.

5. Visualization of Key Information

Video41

Video43

Video42

Video44

Video45

D1 D2 D3 D4 D5

Figure 6: Illustrative examples of key information. Five
videos from the Cholec80 test dataset (rows) are used to vi-
sualise the key feature k ∈ Rdk resulting from our local
temporal feature l. We randomly choose five dimensions
D1, D2, D3, D4, D5 (columns) out of the total of 32 dimen-
sions (dk = 32) and plot the image frames corresponding
to the maximum value of the key feature along the entire
video. We highlight that the key information, represented as
each dimension, has similarities across videos demonstrat-
ing the interpretability of key events occurring in videos.

In order to gain insight into the key information pre-
sented in each dimension of the key feature, we plotted the
image frames that corresponded to the maximum value of
each dimension in key feature k throughout the entire video.
Some examples of these plots are shown in Figure 6. It is
important to note that each dimension of the key feature
carries distinct physical implications, which we refer to as
key information, supporting our initial assumption. For ex-
ample, we observed that all instances in the fifth dimension
(D5) include the tool ‘Clipper’. This finding confirms the
relevance of the key feature and highlights its potential to
capture important features in surgical videos.

6. Conclusion

We propose a fast and effective method for surgical
phase recognition called SKiT, which utilizes a novel Key-
recorder to record limited key information that appears in
surgical videos. Our proposed method achieves improved
performance compared to previous state-of-the-art work,
while having inference times of temporal models approx-
imately eight times faster than LoViT. The time complexity
of the key pooling operation as part of the Key-recorder is
only O(1), making it fast and enabling the inference time
of SKiT to remain unaffected by the number of input video
frames. However, despite achieving state-of-the-art perfor-
mance with efficient inference time, SKiT still requires a
two-step training process due to the lengthy nature of sur-
gical videos, which is a limitation existing in other surgical
phase recognition methods. While we evaluated the per-
formance of Key-recorder on different datasets and through
ablation studies in addressing some of the limitations of the
previous state-of-the-art work [29], further investigation is
necessary to ascertain the effect Key-recorder has on other
proposed models. Moreover, although the proposed model
can reuse previous global recorded key feature while recog-
nising the current frame to greatly improve inference time,
it remains difficult to do so during training resulting in a
process that is still time-consuming. If some information
can be reused in training and the training cost can be re-
duced, end-to-end training of the model with long sequence
inputs could be achieved, a topic that is in our future re-
search plans.
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