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Figure 1: Unsupervised Image Decomposition. Our approach is able to decompose a dataset of unlabeled images into different concepts.
We name each decomposed concept for easy understanding.

Abstract

Text-to-image generative models have enabled high-

resolution image synthesis across different domains, but re-

quire users to specify the content they wish to generate. In

this paper, we consider the inverse problem – given a col-

lection of different images, can we discover the generative

concepts that represent each image? We present an unsu-

pervised approach to discover generative concepts from a

collection of images, disentangling different art styles in

paintings, objects, and lighting from kitchen scenes, and

discovering image classes given ImageNet images. We show

how such generative concepts can accurately represent the

content of images, be recombined and composed to gener-

ate new artistic and hybrid images, and be further used as

a representation for downstream classification tasks.

1. Introduction

When presented with a set of images, we can infer and
discover common concepts across images. For instance,
given a set of images of kitchen scenes in Figure 1, we

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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can grasp different illumination patterns in the kitchen and
identify various elements within kitchens, such as dining
tables, kitchen islands, and cabinets. Moreover, we possess
the ability to conjure up vivid mental images of new scenes
that combine elements between different kitchen scenes or
visualize how these elements may manifest in unfamiliar
settings – envisioning, for instance, how a dining table may
appear in a forest.

Can we construct computer vision systems that may like-
wise understand, recombine, and imagine the visual world?
Most existing work in concept discovery focus on discover-
ing latent vectors or directions representing individual con-
cepts [15, 24, 18, 44, 55], but require supervised data label-
ing each concept. Other works have focused on discovering
compositional generative concepts from images but focus
only on discovering objects [4, 34]. Recently, COMET [11]
proposes an approach to decompose scenes into a set of gen-
erative concepts representing both global scene concepts,
such as lighting and camera position, and local concepts,
such as objects. However, the approach is only applied to
simple datasets and fails to generate complex images.

In this work, we illustrate how we can leverage the
rich semantic information in large text-to-image generative
models to discover a set of diverse compositional generative
concepts from unlabeled natural images. Our work extends
the approach in [11] using the interpretation of diffusion
models as EBMs [32] and decomposes each image into a
set of different probability distributions. We illustrate how
each decomposed probability distribution captures different
global and local scene concepts in an image, ranging from
ImageNet class identity to portions of images such as is-
lands and cabinets in a kitchen.

In Figure 1, we show how our approach can discover
compositional concepts across a wide set of different do-
mains. In the top row of Figure 1, we illustrate how our
approach can discover different art concepts, such as wheat
fields, cafes, and bedrooms, from paintings by either Van
Gogh or Claude Monet. In the middle row of Figure 1, we
demonstrate how our approach can discover classes of im-
ages, such as couches, starfish, elephants, and cars, from
a collection of unlabeled ImageNet images. Finally, in the
bottom row of Figure 1, we show how our approach can
discover the compositional components of a kitchen, such
as lighting patterns and kitchen islands.

In this work, we contribute the following: (1) We illus-
trate a scalable approach to discover unsupervised composi-
tional concepts in realistic images using existing generative
models. (2) Our method achieves state-of-the-art perfor-
mance on concept discovery across different domains, in
both global and local concept discovery, such as automati-
cally discovering painting styles, and decomposing scenes
into lighting and objects. (3) We illustrate that the discov-
ered generative concepts can be used for diverse tasks, such

as generating novel creative images or as effective represen-
tations for downstream classification tasks.

2. Related Works

Compositional Generation. Compositional generation,
where we seek to generate an image subject to a set of un-
derlying specifications, has attracted increasing attention in
recent years [10, 31, 32, 14, 45, 7, 6, 9, 22, 36, 53, 28, 52,
47, 23]. Existing work on compositional generation focuses
either on modifying the feedforward generative process to
focus on a set of specifications [14, 45, 7, 22, 23], or by
composing a set of independent models specifying desired
constraints [10, 31, 32, 36, 9, 53, 28]. Our work utilizes the
compositional operators defined from [10, 32], but aims to
discover a set of compositional components from an unla-
beled dataset of images.
Unsupervised Concept Discovery. Existing works in con-
cept discovery in computer vision typically focus on discov-
ering a latent space to manipulate images [15, 24, 18, 44,
55, 42] but require supervised data to specify each concept.
Some work has focused instead on discovering multiple
concepts from images, but focus on discovering objects rep-
resented as separate segmentation masks [4, 34, 13]. Most
similar to our work is that of COMET [11], which decom-
poses images into a set of composable energy functions rep-
resenting both objects and scene-level factors such as light-
ing or camera position. Our work builds on this work, but
represents each individual energy function with a diffusion
model. We illustrate how this enables us to generate and
decompose complex, high-resolution images.
Text-Conditioned Generative Modeling. In recent years,
tremendous efforts have been made towards text-based 2D
and 3D synthesis using various types of generative models,
including GANs [17], VAEs [25], Normalizing Flows [40],
Energy-Based Models [27, 12] and Diffusion Models [46,
20]. Diffusion models have become the de facto method for
2D text-to-image synthesis [35, 43, 39, 42, 29, 5, 3, 1, 54,
2, 16, 41, 15, 26] and text-to-3D synthesis [37, 30]. Most
relevant to our work, textual inversion [15] leverages pre-
trained text-to-image diffusion models to map a visual con-
cept to a single-word representation (i.e., a supervised ap-
proach). In contrast, we demonstrate how such diffusion
models can be leveraged to discover multiple visual rep-
resentations from a set of images simultaneously without
using image labels.

3. Background

In this section, we introduce background knowledge on
diffusion models and on composing different concepts with
diffusion models.

2086



Reconstructed Images

! "#,  $)

Unlabeled Images 

! "#,  %)

Score 
Composition

Diffusion Model
(Pre-trained)

…

Unsupervised Compositional Concept Discovery
"$

"%

Scores conditioned on 
the discovered concepts

Weighting

&'(&)

Figure 2: Compositional Concept Discovery. We discover a set of compositional concepts given a dataset of unlabeled images. Score
functions representing each concept {c1, . . . , cK} are composed together to form a score function ✏unsup that is trained to denoise images.
The inferred concepts can be used to generate new images.

3.1. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [46,
20] are a class of generative models where the generation
of images x0 is formed by iteratively denoising an image
corrupted with Gaussian noise. Given a randomly sampled
noise ✏ ⇠ N (0, 1), and a set of t different noise levels ✏t =
↵t✏ added to a clean image x0

1, a denoising model ✏✓ is
trained to denoise the image at specified noise level t:

LMSE = k✏� ✏✓(x0 + ✏t, t))k2 (1)

To generate an image from the diffusion model, a sam-
ple xT at noise level T is initialized from Gaussian noise
N (0, 1). This sample xT is used for generation by iterative
denoising:

xt�1 = xt � �✏✓(x
t, t) + ⇠, ⇠ ⇠ N

�
0,�2

t I
�
, (2)

where � is the step size2. The final sample x0 after de-
noising corresponds to a generated image. The denoising
function ✏✓ learns the score of an underlying EBM (unnor-
malized) probability distribution [51, 49, 32] and thus the
above expression is equivalent to

xt�1 = xt � �rxE✓(x
t) + ⇠, ⇠ ⇠ N

�
0,�2

t I
�
, (3)

where the denoising network ✏✓(xt, t) represents an unnor-
malized (EBM) density of data p(x) / e�E✓(x) by param-
eterizing rxE✓(x) with the denoising function. This EBM
interpretation of diffusion models enables the composition
of different diffusion models together as discussed in Sec-
tion 3.2 and further enables us to decompose images into
multiple sets of different diffusion models.

3.2. Composable Diffusion Models

Given two separate DDPM models ✏c1 and ✏c2 which pa-
rameterize two conditional EBM distributions [12] p(x|c1)

1Note that in practice, x0+ ✏t is also scaled by a contraction �t before
being fed into the diffusion model.

2An additional linear decay is further typically applied to the output xt.

and p(x|c2) specifying the likelihood of images exhibiting
concept c1 and c2, composable diffusion [32] proposes to
generate images with both attributes by modifying the iter-
ative denoising procedure using the hybrid denoising score
✏comb:

xt�1 = xt � �
�
✏comb(x

t, t)
�
+⇠, ⇠ ⇠ N (0,�2

t I). (4)

The hybrid denoising function ✏comb corresponds to a com-
position of score functions:

✏comb(x
t, t) = ✏c1(x

t, t) + ✏c2(x
t, t)� ✏�(x

t, t), (5)

where ✏� corresponds to a DDPM representing the uncondi-
tional image distribution p(x). Sampling using this hybrid
denoising function corresponds to sampling from the com-
posite EBM distribution [32] 3:

p(x|c1, c2) /
p(x|c1)p(x|c2)

p(x)
. (6)

This property of composable diffusion enables us to con-
struct and sample from complex novel compositions of dif-
ferent concepts at test time. In this paper, we aim to infer
a set of composable concepts from training images in an
unsupervised manner.

4. Method

In this section, we introduce our unsupervised approach
that discovers compositional concepts from a set of images
using a pretrained diffusion model. We first formulate how
we may decompose data points into unsupervised concepts
with diffusion models. Next, we illustrate how we may infer
these unsupervised concepts using learned latent represen-
tations (i.e., word embeddings) in a text-to-image genera-
tive model.

3Assuming that c1 and c2 are independent.
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4.1. Unsupervised Compositional Discovery

Given a dataset of images {xi}, we aim to discover a set
of independent compositional concepts {c1i , · · · , cKi } for
each image xi in an unsupervised manner, each specifying
a conditional EBM distribution p(xi|cki ), which represent
different components of the image. In particular, the proba-
bility of each individual image xi can be decomposed as a
product of K independent concepts:

pdecomp(xi) = p(xi|c1i , . . . , cKi ) / p(xi)
QK

k=1
p(xi|ck

i )
p(xi)

, (7)

where we represent each individual probability distribution
p(x|cki ) using a different denoising model ✏k(xt, t).

Modeling this decomposed distribution pdecomp(xi) cor-
responds to sampling from the score function of a composite
EBM [32]:

rxE(xi) +
KX

k=1

(rxE(xi|cki )�rxE(xi)) (8)

This then corresponds to constructing a new noise predic-
tion model ✏unsup:

✏unsup(x
t
i, t) = ✏(xt

i, t) +
KX

k=1

�
✏(xt

i, t|cki )� ✏(xt
i, t)

�
, (9)

where ✏(xt
i, t) corresponds to the unconditional score pre-

diction. To discover an independent set of compositional
concepts for an image, we then wish to learn a denoising
function such that for each image xi and noise ✏t:

LMSE = k✏� ✏unsup(xi + ✏t, t))k2. (10)

To ensure that the set of decomposed concepts cki in each
image is consistent across different images in our dataset,
we parameterize each cki as the weighted sum wk

i of a li-
brary of K concepts ck shared across all images. We op-
timize both a set of concepts ck as well as a set of per im-
age/concept weight assignments wk

i , where
P

k w
k
i = 1

for each image i. Our final modified score prediction corre-
sponds to:

✏unsup(xt
i, t) = ✏(xt

i, t) +
PK

k=1 w
k
i

�
✏(xt

i, t|ck)� ✏(xt
i, t)

�
. (11)

This corresponds to representing each image with the prod-
uct distribution

pdecomp(xi) / p(xi)
KY

k=1

✓
p(xi|ck)
p(xi)

◆wk
i

. (12)

When the vector of weights wi for each image is one-hot,
images are “clustered” into K separate concepts ck, where
each image is represented by a single concept ck that rep-
resents its class identity (i.e. dog or cat). In contrast, when

Algorithm 1 Unsupervised Concept Discovery

1: Require Diffusion model ✏✓(xt
i, t|c), training im-

ages {x1, . . . ,xN}, weights {w1, . . . ,wN},wi 2
RK , K randomly initialized concept embeddings
{c1, . . . , cK}, learning rate �.

2: for i = 0, . . . , N do

3: Initialize a Gaussian noise ✏ ⇠ N (0, 1)
4: Initialize a noise ✏t = ↵t✏ at a random time step t
5: xt

i = xi + ✏t // add t levels of noise
6: ✏k  ✏✓(x

t
i, t|ck) // compute K conditional scores

7: ✏�  ✏✓(x
t
i, t|�) // compute unconditional score

8: ✏unsup  ✏� +
PK

k=1 w
k
i (✏k � ✏�) Equation (11)

9: LMSE = k✏� ✏unsupk2 // train score to denoise
10: // update the weight wi and all K concepts.
11: wi = wi � �rwiLMSE

12: ck = ck � �rckLMSE

13: end for

the vector of weights wi is mixed across multiple different
concepts ck, each image can be decomposed into a set of
factors representing multiple image attributes, such as scene
lighting and objects.

To discover concepts, we train ✏unsup on each image with
the objective in Equation (10) and jointly optimize per im-
age weights wi and shared concepts ck:

wi = wi � �rwiLMSE,

ck = ck � �rckLMSE,
(13)

where � is the learning rate. We provide the full pseudocode
for discovering concepts in Algorithm 1.

4.2. Parameterizing Concepts with Text-to-Image

Generative Models

In section 4.1, we aim to construct a set of K different
conditional denoising networks ✏(xt

i, t|ck) and an uncondi-
tional denoising network ✏(xt

i, t) which can jointly denoise
images across our dataset. Directly discovering this score
functions from scratch using a dataset of images is diffi-
cult as there may be substantial ambiguity on how images
should be factored, with this difficulty compounded by the
small dataset.

To more efficiently parameterize and discover these K
different score functions, we propose to parameterize each
denoising prediction network ✏(xt

i, t|ck) using a randomly
initialized word embedding ck in a text-to-image diffusion
model so that ✏(xt

i, t|ck) = ✏✓(xt
i, t|ck). Parameterizing a

denoising function in text embedding space is substantially
lower dimensional than discovering the score function from
scratch, enabling learning / concept discovery from limited
sets of data. Furthermore, the semantic space of text elimi-
nates a lot of ambiguity when discovering concepts.
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Note, that while in our current implementation, we opti-
mize each shared concept ck using a word embedding and a
weight vector wi 2 RK for each image xi, we can param-
eterize these K different denoising networks ✏✓(xt

i, t|ck)
in other ways. For instance, we can directly parameterize
these K score functions by optimizing all parameters of the
text-to-image model per concept or by optimizing a small
adapter in a similar fashion as [42] on the model weights.

5. Experiments

In this section, we compare our approach with baseline
methods in concept discovery on three different tasks, in-
cluding object discovery, indoor scene discovery, and artis-
tic concept discovery. We further show the results of com-
positional image generation and representation learning us-
ing the discovered concepts. We also provide visualizations
and analysis on sensitivity and robustness in Appendix A.

5.1. Datasets

ImageNet [8]. For the experiment, we select 4 sets of class
combinations, denoted as ImageNet S1, S2, S3 and S4.
Each set consists of 5 classes from ImageNet, with 5 ran-
domly chosen images per class. During testing, we generate
64 images per concept for evaluation.
ADE20K [56]. In this experiment, our goal is to discover
concepts from kitchen images in the ADE20K dataset. We
randomly select 25 images as the training data.
Artistic Paintings. To further demonstrate the ability of
our method to discover a wide range of visual concepts, we
collected a dataset of artistic paintings from the internet.
The dataset includes 5 paintings by Van Gogh, 7 painting
samples by Claude Monet, and 5 painting images by Pablo
Picasso.

5.2. Evaluation Metrics

Classification Accuracy. To evaluate the effectiveness of
each method on decomposing unlabeled ImageNet images
into a set of meaningful classes, we utilize a pre-trained
classification model to compute image classification accu-
racy. For each class present in the training data, we feed the
generated images into the pre-trained ResNet-50 and extract
the largest value from the logit values of target classes (i.e.,
the 5 class targets in our setting). To evaluate the accu-
racy of our model predictions, we establish a threshold of
10 for the logit value. Predictions with logit values above
this threshold are counted as correct, while those below are
deemed incorrect. We find that this threshold represents a
high prediction confidence from ResNet-50. Finally, we re-
port the per-set accuracy and average accuracy across all the
sets as our final results.
CLIP Accuracy. To further evaluate the accuracy of de-
composed concepts in ImageNet, we compute a CLIP ac-

curacy using the pairwise CLIP similarity score between
generated images from each concept with the set of classes
present in the training data, using pre-trained CLIP en-
coders [38]. The highest-scoring caption is then selected
as the model prediction. We count a prediction as correct if
the CLIP similarity score is greater than a certain threshold
(i.e., 0.3 in our experiments).
KL Divergence. We use Kullback-Leibler divergence to
further evaluate the effectiveness of capturing diverse im-
age concepts on ImageNet. This dataset primarily consists
of object concepts, making it an ideal choice for measuring
and illustrating the differences we are interested in. Ideally,
each decomposed concept should reflect a separate class in
the data, resulting in an equal number of generated images
per class. We assign an image to a class based on the class
label that receives the highest logit value. We then compute
the KL divergence between the distribution of classes in-
ferred in this manner with a uniform distribution of classes
in the training data (ground truth). In our experiments, we
calculate KL divergence by computing logits with regards
to both pre-trained ResNet-50 and CLIP encoders.
Representation Accuracy. Our proposed method aims to
discover a set of concept representations, which can be fur-
ther used for downstream tasks, such as classification. Thus,
we also evaluate the quality of representations using cluster-
ing for classification. First, we utilize K-means clustering,
where we assign a cluster to an ImageNet class based on the
most frequent class of training images in that cluster. In test
time, we count each test example as correct if it is assigned
to the cluster with the same image label.
We use the pretrained Stable Diffusion v2.1 model in our
experiments. For image generation, we utilize classifier-
free guidance [21] to sample 64 images for each ImageNet
class with 50 steps using the DDIM sampler [48].

5.3. Baselines

COMET [11] is the first work that utilizes a composite of
EBMs to decompose images into a set of concepts in an
unsupervised manner, but it scales poorly to more complex
in-the-wild images. In contrast, our approach enables auto-
matic concept discovery across in-the-wild images.
Textual Inversion [15] is one of the first works to utilize
the text-to-image diffusion model to learn a mapping from
a set of similar images to a single-word representation. Un-
like our unsupervised method, textual inversion optimizes a
single representation using a set of similar images, thus as-
suming a correspondence between training images and the
target word representation. In contrast, our method enables
unsupervised learning of multiple concepts simultaneously
in one single training run. To provide a fair comparison, we
developed a baseline using textual inversion to map all im-
ages into an unconditional word representation. Each Ima-
geNet set has 5 distinct classes, so the single unconditional
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Models
ImageNet S1 ImageNet S2 ImageNet S3 ImageNet S4 Average

Acc " KL # Acc " KL # Acc " KL # Acc " KL # Acc " KL #

Textual Inversion [15] 4.06 0.5756 7.19 0.1152 36.88 0.1525 63.44 0.4958 27.89 0.3348
Textual Inversion (KM) 44.37 0.3799 22.50 0.0926 37.81 0.2123 78.75 0.3576 45.86 0.2606
Textual Inversion (CKM) 48.13 0.0282 24.38 0.2367 63.75 0.1569 69.38 0.2249 51.41 0.1617
Ours 56.88 0.1613 26.56 0.2929 56.56 0.1323 82.81 0.0285 55.70 0.1538

CLIP " KL # CLIP " KL # CLIP " KL # CLIP " KL # CLIP " KL #

Textual Inversion [15] 13.13 0.4195 3.44 0.1182 9.38 0.0554 33.75 0.7193 14.93 0.3281
Textual Inversion (KM) 29.06 0.1299 9.38 0.0803 12.19 0.3325 44.37 0.3799 23.75 0.2307
Textual Inversion (CKM) 40.31 0.0020 10.00 0.3384 14.37 0.1490 69.69 0.4232 33.59 0.2281
Ours 42.19 0.2091 30.00 0.1518 30.63 0.1513 51.56 0.0224 38.60 0.1337

Table 1: Quantitative Evaluation of Discovered Concepts. We assess the accuracy of decomposed concepts in capturing each ImageNet
class in the data using pre-trained ResNet-50 and CLIP classifiers. We also report the KL divergence of discovered classes.

Training Images Ours
Textual 

Inversion (KM)
Textual 

Inversion (CKM)

Figure 3: Object Decomposition. Our proposed method can dis-
cover different object categories from a set of unlabeled images.

representation may ideally learn a uniform distribution of
all 5 image concepts. For evaluation, we sample 320 im-
ages for classification accuracy. In contrast, we sampled 64
samples for each of the 5 concepts, thus a total of 320 im-
ages, in our method for ImageNet dataset.
Textual Inversion + K-means is a modified version of tex-
tual inversion [15]. Since images are unlabeled, we uti-
lize K-means clustering [33] to obtain pseudo-labels. In
our experiments, we use two variants of K-means clus-
tering: K-means (KM) in pixel space and CLIP-based K-
means (CKM). We first utilize K-means clustering to obtain
pseudo-labels for the given training images, and then train
textual inversion on such image-label pairs.

Input Image

Kitchen Range

Cross Attention 
Map

Cabinet Lighting

Figure 4: Cross Attention Concept Visualization. We visualize
the attention maps of three discovered concepts from unlabelled
images. The concepts focus on different portions of the dataset.

Kitchen Range LightingKitchen Island

Figure 5: Kitchen Scene Decomposition. We show generated
images (odd columns) along with the attention maps of the corre-
sponding concept (even columns) with respect to the image.

5.4. Unsupervised Concept Discovery

Our method can decompose images from different do-
mains into concepts, including objects, components in in-
door scenes and artistic styles, without using any labels.

5.4.1 Object Discovery

We show that our proposed method can automatically dis-
cover object concepts from a set of unlabeled images.
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Figure 6: Unsupervised Concept Decomposition on Arts. Our method allows unsupervised concept decomposition from just a few
paintings (i.e., 5� 7 per artist), with each concept ci representing a distinct concept. For instance, in the first row, c1 represents “drinkers”,
while in the third row, c3 represents “guitarist”.

Qualitative results. We first demonstrate that our method
can faithfully decompose ImageNet images into a set of
object concepts. We qualitatively compare our method
with multiple variants of textual inversion [15] in Fig-
ure 3. Although all three methods achieve similar perfor-
mance on “mosque” and “Chihuahua” in the top two rows,
both clustering-based textual inversion methods (KM and
CKM) fail to capture visual concepts of “shopping cart” and
“geyser” in the bottom two rows. In contrast, our method
can capture all four concepts faithfully. We further evaluate
COMET [11] on this setting, but find that it obtains low per-
formance in our setting as it fails to generate photorealistic
images. See appendix A for additional qualitative results of
COMET and other approaches.
Quantitative results. In Table 1, we compare our method
with baselines quantitatively using image classification ac-
curacy. Our proposed method achieves a higher or com-
parable classification performance across different sets of
ImageNet combinations using pre-trained ResNet-50 [19]
and CLIP [38]. Furthermore, we evaluate the diversity of
discovered concepts using discrete KL divergence between
prediction distribution and target distribution. Intuitively,
a lower KL divergence value indicates that the probability
distribution of the generated images is closer to the uniform
distribution, thus implying greater diversity in the generated
images. Compared to the baselines, our method achieves a
consistently low KL divergence across different ImageNet
sets. In contrast, the baselines exhibit a wider range of KL
scores, suggesting that our proposed approach is more sta-
ble in terms of learning diverse concepts across these sets.
As shown in the rightmost column of Table 1, the averaged
results across all four sets further show that our method
achieves the best performance on both accuracy and KL di-

vergence, indicating its ability to learn diverse concepts.

5.4.2 Indoor Scene Discovery

To further verify the effectiveness of our approach, we
demonstrate our method can decompose kitchen scenes into
multiple sets of factors.
Qualitative results. We evaluate our method on concept
discovery for indoor scenes, specifically kitchen scenes
from ADE20K [56]. Since our method discovers concepts
in an unsupervised manner, there is no label for the learned
concepts. Thus, we utilize Diffusion Attentive Attribu-
tion Maps (DDAM) [50] to visualize the relation between
learned concepts and image contents. Specifically, DAAM
utilizes word-pixel scores from cross attention layers to gen-
erate heap maps for visualization. As shown in Figure 4,
we obtain DDAM associated with each concept by running
DDIM inversion [48] on the training image. Our method
can decompose the kitchen scenes into different compo-
nents such as kitchen range (i.e., stove and microwave),
cabinets, and lighting effects. Furthermore, we visualize
images that are generated conditioned on each individual
inferred concept in Figure 5. Both figures show that our
model can decompose challenging kitchen scenes into a set
of meaningful factors.

5.4.3 Artistic Concept Discovery

Art has been a long-standing topic being studied in the com-
puter vision and computer graphics community. Here we
provide qualitative evaluations in the artistic domain to fur-
ther demonstrate the versatility of our method.
Qualitative results. As shown in Figure 6, we demonstrate
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Convertible Elephant Convertible AND Elephant

Mosque Shopping cart Mosque AND Shopping cart

Figure 7: Object Composition. Our proposed method can gen-
erate images that showcase a composition of object concepts.

concept decomposition on artistic paintings from different
artists, including Van Gogh, Claude Monet, and Pablo Pi-
casso. In the second row, we show that our model can de-
compose training images into different concepts, including
“trees on the side”, “a lady sitting on a bench”, “an embroi-
dering lady” and “a boat”, with similar artistic styles to the
original images. In the next section, we will discuss that
the discovered concepts can be further composed together
to generate images.

5.5. Composing Discovered Concepts

After a set of factors is discovered from a collection of
images, our method can further compose these concepts for
compositional image generation using compositional oper-
ators from previous works [10, 32]. As our approach is
unsupervised and there is no label for the discovered con-
cepts, we add names for the discovered concepts manually
for easy understanding. As shown in the previous section,
our method can decompose images into meaningful con-
cepts, such as objects in indoor scenes and artistic styles.
These concepts can be further composed with other con-
cepts to generate images with specific styles.
Object Composition. We are able to use the conjunction
operator (e.g., AND) from Composable-Diffusion [32] to
generate images that contain combinations of concepts that
are unseen during training. As shown in Figure 7, we show
examples of generated images with the combination of a
convertible car and elephants, as well as a composition of a
shopping cart and a mosque.
Scene Composition. We further demonstrate the proposed
method can enable scene composition using discovered
concepts other than objects in the kitchen setting. As shown
in Figure 8, our approach can discover concepts such as
lighting and kitchen islands, and generate scenes with the
specified objects and lighting effects.
Style Composition. We can also combine artistic concepts
discovered from paintings to generate images. As shown
in Figure 9, we compose two types of discovered artistic
styles to generate images using the conjunction operator.
For example, images in the first row combine Van Gogh’s

Kitchen Range Kitchen Island Kitchen Range AND Kitchen Island

Kitchen Island Lighting Kitchen Island AND Lighting

Figure 8: Kitchen Concept Composition. Our method demon-
strates the ability to compose different components, such as
kitchen ranges and lighting effects.

Van Gogh Claude Monet Van Gogh AND Claude Monet

Picasso Van Gogh Picasso AND Van Gogh

Figure 9: Style Composition. Our proposed method can com-
pose artistic concepts learned from paintings, with each style
named after the respective artist for better understanding.

starry night with Claude Monet’s Camille Monet. Images
in the second row combine Van Gogh’s drinkers with the
Cubism style of Picasso.
External Composition. Finally, our method can combine
discovered concepts with external or existing knowledge
from pre-trained generative models to generate images with
new combinations. As shown in Figure 10, we combine tex-
tual descriptions with discovered concepts to create images
that depict “an astronaut riding a horse“ AND wheat field
in the first row, “intergalactic wormhole“ AND a boat in the
second row, and “cyberpunk bar” AND drinkers in the last
row, where the former is the text input, the latter is our dis-
covered concepts and “AND” is the conjunction operator.

5.6. Representation Learning

By decomposing images into a weighted combination of
compositional concepts, our approach discovers a represen-
tation for each training image. We can further obtain a rep-
resentation for a test image xj by optimizing Equation (10)
and obtaining a weight vector wj 2 RK for the image,
while freezing the discovered concept representations ck.
We assess how this representation can be used for down-
stream tasks such as classification.
Quantitative Results. We evaluate the effectiveness of the
representation learned by our model for image classifica-
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Existing Concept Discovered Concept Concept Composition

Figure 10: External Composition. We demonstrate the ability to seamlessly integrate discovered concepts with existing concepts (text)
to generate images with specified factors. For clarity, we omit the text descriptions. For instance, the 1st, 2nd, 3rd images in the 1st column
are created using the phrase “an astronaut riding a horse”. “intergalactic wormhole” and “cyberpunk bar”, respectively.

Methods ImageNet S1 " ImageNet S2 " ImageNet S3 " ImageNet S4 " Average "

K-means 37.00 34.00 37.00 21.00 32.25
Textual Inversion 24.00 24.00 25.00 24.00 24.25
Ours 58.00 51.00 59.00 83.00 62.75

K-means (CLIP) 65.00 77.00 87.00 65.00 73.50

Table 2: Generative Representation Evaluation. Generative representations of images learned by our method can accurately classify
images. K-means (CLIP) is a supervised method and achieves the best average result.

tion. First, we use the optimized weight wi for each train-
ing image xi to fit a logistic regression model that predicts
the ImageNet class based on the weight representation for
each training image. We then evaluate the accuracy of the
model on test images xj using the optimized weights wj .

In this experiment, we compare our method with two
variants of K-means clustering methods, one in pixel space
and another in CLIP space. We also fit a logistic regres-
sion model on representations per image found using tex-
tual inversion [15]. We evaluate the accuracy of these meth-
ods for predicting ImageNet class on a test set of 100 im-
ages. As shown in Table 2, our method achieves the best
performance of 62.75% mean accuracy compared to all the
other unsupervised methods. The method of CLIP-based
K-means clustering is better than our method because the
CLIP representation is directly trained in a supervised way
on millions of image-text pairs.

6. Conclusion

We presented an approach to decompose datasets of im-
ages into a set of compositional generative concepts. Our
approach is effective across a variety of datasets, includ-
ing artistic paintings, indoor scenes, and ImageNet images.
Additionally, we illustrated how discovered generative con-
cepts can be combined with both each other and external
concepts to generate novel images. Finally, we illustrated
how discovered generative concepts can serve as a repre-
sentation of an image which can be used for downstream
tasks such as image classification. We hope our work opens
a new direction of research on how generative models may
not only be used to generate images but also as way to un-
derstand and represent images.
Acknowledgments. Yilun Du is supported by a NSF Grad-
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