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Abstract

Learning-based multi-view stereo (MVS) method heav-
ily relies on feature matching, which requires distinctive
and descriptive representations. An effective solution is
to apply non-local feature aggregation, e.g., Transformer.
Albeit useful, these techniques introduce heavy computa-
tion overheads for MVS. Each pixel densely attends to the
whole image. In contrast, we propose to constrain non-
local feature augmentation within a pair of lines: each
point only attends the corresponding pair of epipolar lines.
Our idea takes inspiration from the classic epipolar geom-
etry, which shows that one point with different depth hy-
potheses will be projected to the epipolar line on the other
view. This constraint reduces the 2D search space into
the epipolar line in stereo matching. Similarly, this sug-
gests that the matching of MVS is to distinguish a series
of points lying on the same line. Inspired by this point-to-
line search, we devise a line-to-point non-local augmenta-
tion strategy. We first devise an optimized searching algo-
rithm to split the 2D feature maps into epipolar line pairs.
Then, an Epipolar Transformer (ET) performs non-local
feature augmentation among epipolar line pairs. We incor-
porate the ET into a learning-based MVS baseline, named
ET-MVSNet. ET-MVSNet achieves state-of-the-art recon-
struction performance on both the DTU and Tanks-and-
Temples benchmark with high efficiency. Code is available
at https://github.com/TQTQliu/ET-MVSNet.

1. Introduction

As a fundamental topic in computer vision, Multi-view
stereo (MVS) aims to reconstruct dense 3D representations
from multiple calibrated images given corresponding cam-
era parameters. MVS can facilitate many applications such
as automatic driving and augmented reality [12]. A criti-
cal part of MVS is to match pixels to find the correspond-
ing points. This matching process heavily relies on the fea-
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Figure 1. Our methods and results. (a) Inspired by classic epipo-
lar geometry in stereo matching, we propose an efficient non-local
feature aggregation paradigm that aggregates features on the cor-
responding epipolar line pairs. (b) We instantiate the proposed
non-local mechanism with a Transformer, termed Epipolar Trans-
former (ET), which attains state-of-the-art performance with lim-
ited computation overhead.

ture representation: corresponding points in different views
should be close in the embedding space. Traditional MVS
approaches [11, 14, 27, 28] adopt hand-craft feature rep-
resentation, which faces challenges on repetitive-pattern,
weak-texture, and reflective regions.

To remedy the weak representation of the traditional
MVS approaches, learning-based methods are proposed
and show superior performance. Learning-based MVS ap-
proaches adopt deep neural networks to encode features,
which forms the foundation for the subsequent feature
matching and depth generation. Powerful as convolutional
neural networks (CNNs) are, they still prefer to aggregate
local context [22], which may be less accurate for matching.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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One feasible solution is to adopt non-local feature augmen-
tation strategy with large receptive field and flexible feature
aggregation, which is crucial for robust and descriptive fea-
ture representations.

To this end, techniques such as deformable convolu-
tion [8], attention [2], and Transformers [29], are intro-
duced to the feature encoding of MVS. Albeit useful, these
general-purpose non-local operators introduce huge com-
putation overhead for MVS, as each point need to densely
attend the reference and source images. In this case, dis-
tractive or irrelevant features can also be attended which
are harmful to the feature matching, e.g., repetitive patterns
shown in Fig. 7. This raises a fundamental question: where
and how to mine non-local context for MVS? Inspired by the
classic epipolar geometry, we propose to constrain the non-
local feature aggregation within the epipolar lines, which
enjoys both efficiency and descriptive representation.

According to the epipolar geometry theory, the actual
point corresponding to a pixel in one view can only be pro-
jected on the epipolar line in the other view. Hence, when
searching the corresponding points, the 2D search space can
be reduced into a 1D line. This reduces the computation and
eliminates background interference. Naturally, each source
image can form a stereo matching problem with the refer-
ence image. As shown in Fig. 2, points with different depth
hypotheses will be projected onto the epipolar line in the
other image. Therefore, the feature encoding in MVS can
be viewed as describing different points on the epipolar line.

Since the points to be distinguished lie on the same line,
inspired by this epipolar constraint, we propose a line-to-
point feature aggregation strategy. For each point, the in-
formation from the corresponding epipolar line is used to
describe it. A similar line-based feature aggregation has
been adopted by CSwin [10] for vision backbones, which is
proved to be efficient and effective. We find that for MVS,
with epipolar geometry as a theoretical basis, using epipo-
lar lines as the source of non-local features can efficiently
achieve high-quality representation, as shown in Fig. 1 (b).

Specifically, we propose an epipolar line-guided non-
local mechanism, which only fetches features from the cor-
responding epipolar lines. First, we decompose the ref-
erence and source feature map into pixel groups; each
group shares identical epipolar line pairs. This process is
processed with an optimized search algorithm. For each
point in the reference image, we calculate its correspond-
ing epipolar line in the source image. Then, points with
approximate epipolar line parameters are clustered into the
same group. With this step, all the pixels in the source and
reference features can find their epipolar line pairs. Then, as
shown in Fig. 1 (a), we perform non-local feature aggrega-
tion within the source epipolar line and across the epipolar
line pairs. We also add a local augmentation module to miti-
gate the discontinuities of epipolar line partition. We instan-
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Figure 2. Epipolar Geometry. A pixel with different depth
hypotheses in the reference image can be projected to the same
epipolar line in the source image, termed point-to-line. The plane
that passes through two camera centers and a 3-D point produces
an epipolar line when intersecting with an image plane. The two
epipolar lines of two images form an epipolar line pair, termed
line-to-line.

tiate this epipolar line-guided non-local mechanism with a
Transformer model termed Epipolar Transformer (ET).

To demonstrate the effectiveness of the proposed mod-
ules, we present a coarse-to-fine framework termed ET-
MVSNet, which applies the Epipolar Transformer (ET) to
the feature encoding part of recent works [15, 31]. We con-
duct extensive experiments to demonstrate the effect of our
method. Thanks to Epipolar Transformer (ET), the depth
estimation and 3-D representations have greatly improved
and achieved state-of-the-art results on both the DTU [1]
and the Tanks and Temple [19] benchmark. Besides, com-
pared with the prevailing global attention that mines global
context, Epipolar Transformer (ET) shows significantly bet-
ter performance and efficiency.

Our main contributions can be summarized as follows:

• We propose an epipolar line feature aggregation strat-
egy for the representation learning of MVS.

• We devise an optimized epipolar pair search algorithm,
and an Epipolar Transformer (ET) to enable non-local
feature augmentation on epipolar lines.

• Our method achieves state-of-the-art performance on
both the DTU dataset and Tanks-and-Temples bench-
mark.

2. Related Work

Learning-based MVS. The core of MVS is a feature-
matching problem, where representation and similarity met-
rics play critical roles. The performance of traditional MVS
is limited due to poor representation ability, especially in
weak-texture or repetitive areas. Powered by the strong
representation of neural networks, the learning-based MVS
is first proposed by MVSNet [35] and quickly becomes
the main stream due to better robustness and performance.
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MVSNet proposes an end-to-end pipeline for depth estima-
tion with a post-processing procedure for fusion. Subse-
quent work improves the learning-based MVS from differ-
ent aspects. e.g., reducing memory and computation over-
head with RNN-based approaches [32, 33, 36] and coarse-
to-fine paradigms [6, 15, 34, 39], optimizing the cost aggre-
gation by adaptively re-weighting different views [21, 38].
An important line is to enhance the feature representation
with a non-local feature aggregation mechanism, e.g., De-
formable Convolution Network [8]. However, existing non-
local techniques suffer from expensive computational over-
heads attributable to multi-image inputs. In this paper, we
focus on the characteristics of the MVS task and propose a
novel and efficient feature enhancement method.
Feature Representation in MVS. To obtain descriptive
representation for matching, Dai et al. [8] utilizes de-
formable convolution [8] to capture instance cues for split-
ting foreground and background, such that the context of
them would not interact and the feature representations are
not sensitive to the perspective changing. Transformer [29]
was first introduced into the MVS pipeline by TransMVS-
Net [9] for its global receptive field and dynamic feature
aggregation ability. TransMVSNet applies intra- and inter-
image attention to transfer context and uses a linear Trans-
former [18] to reduce computational cost. MVSTER [31]
employs a parameter-free attention mechanism to re-weight
the aggregated contribution of different pixels. The suc-
cess of the attention mechanism highlights the significance
of learning robust feature representations, as the essence of
MVS lies in feature matching. Although more advanced
feature aggregation approaches such as attention are intro-
duced for MVS, the efficiency decreases significantly. The
existing Transformer-based MVS methods adopt efficient
attention operators, while proper constraints on the feature
aggregation remain unstudied. In this paper, inspired by
epipolar geometry constraints, we propose to perform non-
local feature augmentation only on the epipolar pairs.

3. Preliminaries
Learning-based MVS. Most learning-based methods fol-
low a cost volume-based pipeline first introduced by MVS-
Net [35]. Given a reference image and N − 1 source im-
ages, learning-based methods aim to recover the depth map
of the reference image. The pipeline consists of four steps.
The first step is the feature encoding where images are pro-
jected in feature representation. In the second step, the cost
volume is constructed by feature matching. Specifically, ac-
cording to a set of predefined depth hypotheses, each source
feature map is warped into reference camera frustum via
differentiable homography to measure their similarity and
obtain feature volumes. These N − 1 feature volumes are
then aggregated to construct a 3D cost volume that encodes
the cost of each depth hypothesis for the reference image.

Figure 3. Visualization of the epipolar pairs. The same color
represents the corresponding epipolar lines.

After that, a 3D CNN can be applied to the cost volume
for regularization and obtain the probability volume to in-
fer depths. As mentioned above, the basic idea of depth
estimation is to perform point matching to estimate final
depths based on predefined depth hypotheses, where the
feature representation capacity directly affects the accuracy
of matching. Therefore, we aim to propose an effective and
efficient information aggregation strategy to capture non-
local context and enhance feature representation.
Epipolar Constraint. The epipolar constraint is a com-
mon geometric constraint in stereo matching. Given a pair
of stereo images, stereo matching aims to find the corre-
sponding points between the two images. As shown in
Fig. 2, for a given point in one image, its corresponding
point in the other image must lie on a specific line, which is
called the epipolar line. Geometrically, an epipolar line is
an intersection between the image plane and the plane pass-
ing through the two camera centers and the corresponding
3D point. In addition, epipolar lines occur in pairs, meaning
that any point on one epipolar line corresponds to the same
epipolar line in the other image.

With this constraints, the search space of the stereo
matching [7, 3, 13, 16, 26], can be reduced from the whole
image plane into a single line. MVS can be viewed as a mul-
tiple stereo matching problems. Points with different depth
hypotheses in the reference view will be projected on the
epipolar line in the source images. Hence, the feature en-
coding can be viewed as describing different points which
are on the same line.

4. ET-MVSNet

The overall architecture of our ET-MVSNet is illustrated
in Fig. 4. The proposed Epipolar Transformer (ET) module
is integrated into the Feature Pyramid Network (FPN) [20].
To perform non-local feature aggregation on epipolar lines,
we first search the epipolar line pairs between reference and
source images. With the searched line pairs, the original
feature maps are decomposed into different epipolar line
pairs via sampling. Then, the Intra-Epipolar Augmentation
(IEA) and the Cross-Epipolar Augmentation (CEA) mod-
ules transfer non-local context among these epipolar line
pairs.
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Algorithm 1: Epipolar Pair Search
Input: Camera parameters; image size (H,W );

parameters matrices K,B of ks,bs; seach
threshold δ.

Output: Epipolar pairs
1 for (x, y) = (0, 0) to (W − 1, H − 1) do
2 calculate slope Kx,y and bias Bx,y

3 end
4 for k in set(Quantify(K)) do
5 for b in set(Quantify(B)) do
6 for (x, y) = (0, 0) to (W − 1, H − 1) do
7 epipoline ref : Kx,y = k and Bx,y = b

8 epipoline src : |y−kx−b|√
1+k2

< δ

9 end
10 end
11 end

4.1. Epipolar Pair Search

The key component of MVS is to match pixels to the
most suitable depth hypothesis from a set of pre-defined hy-
potheses through feature matching. If a hypothesis is close
to the actual depth of the ground, the features of the pixel
pairs are supposed to be similar, indicating that the discrim-
ination of the hypothesis relies heavily on feature represen-
tation. Since the feature volume used for matching naturally
lies on the epipolar line, using epipolar lines as the source of
non-local features can efficiently achieve high-quality rep-
resentation, benefiting in distinguishing different hypothe-
ses. It should be noted that epipolar lines exist in both the
reference view and the source view and appear in pairs due
to geometric constraints. It suggests the pixels on the same
epipolar line share the same source of non-local features
and the process of aggregating features for these pixels is
the same. A parallel aggregation would improve the effi-
ciency. To realize the parallel process, pixels located on the
same epipolar line pair are required to be pre-searched and
we propose an epipolar-pair search algorithm for it.

As shown in Algorithm 1, the searching of epipolar pairs
consists of two steps: point-to-line search and epipolar line
matching. In the first step, we compute the epipolar line pa-
rameters for each pixel in the reference view. Then, we ag-
gregate the pixels in the reference view into different clus-
ters; pixels in the same cluster share the same epipolar line.
Hence, after the epipolar pair search, pixels in the reference
and source images are partitioned into epipolar line pairs.

Since a one-to-many view matching can be decomposed
into multiple one-to-one view matching, for easy under-
standing, here we illustrate the epipolar pair search with
one source view. Given a pixel pr in the reference view,

the corresponding pixel ps in the source view is

ps(d) = Ks[R(K−1
r prd) + t] , (1)

where d denotes the depth. R and t denote the rotation
and translation between the reference and the source view.
Kr and Ks denote the intrinsic matrices of the reference
view and source view, respectively. Hence, the coordinate
of ps(d) can be computed by

xs(d) =
a1d+ b1
a3d+ b3

, ys(d) =
a2d+ b2
a3d+ b3

, (2)

where {ai}3i=1 and {bi}3i=1 are constants associated with
the camera parameters and the coordinate of pr (refer to
the Supplementary Materials for more details). Then, we
can eliminate the depth d to obtain the standard equation
ys(d) = kxs(d)+b of the epipolar line, which is formulated
as: 

k =
∆ys(d)

∆xs(d)
=

a2b3 − a3b2
a1b3 − a3b1

b = ys(0)− kxs(0) =
b2
b3

− k
b1
b3

. (3)

Specifically, when ∆xs(d) → 0, we use the equation
xd(s) = k

′
ys(d) + b

′
. As k, b are independent of the d and

are expressed by constants associated with the coordinate of
pr, if two pixels are on the same epipolar line, the ks and bs
of them would be theoretically the same. However, in prac-
tice, due to the discrete coordinates of pixels, the ks and bs
calculated by different pixels around the epipolar line may
vary in a tiny range, such that directly grouping the pixels
with identical ks or bs will lead to over-splitting.

To alleviate the over-splitting, we quantify ks and bs by
rounding. Therefore, pixels with approximate parameters
will be grouped into the same epipolar line. Have finished
the grouping of the reference view. Then, we search for the
corresponding epipolar line in the source view. The ks and
bs represent the corresponding epipolar lines on the source
view, as the coordinates of pixels around the epipolar line
will meet Eq. (3). For the source image, whether a pixel is
on the epipolar line expressed by k and b is determined by
calculating the distance of them.

By dividing pixels into their corresponding epipolar
pairs, both the reference and the source feature maps are
decomposed into sets of feature sequences. Specifically,
supposing that m pairs of epipolar lines are obtained, we
define the reference and source feature sets as ER and ES
which are formulated as:

ER = {E1
R, E

2
R, ..., E

m
R }, ES = {E1

S , E
2
S , ..., E

m
S } . (4)

Ei
R and Ei

S are feature sequences with the shape of n × c,
where n denotes the number of pixels in the correspond-
ing epipolar line, and c denotes the feature dimension. We
visualize the searched epipolar line pairs in Fig. 3.
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Figure 4. ET-MVSNet architecture. We apply the Epipolar Transformer (ET) to common learning-based MVS frameworks by integrating
it into the FPN. Firstly, the epipolar pairs are searched via our algorithm and the epipolar feature sequences are obtained by sampling the
coarsest feature map of the FPN. The sequence is then fed into the Intra-Epipolar Augmentation (IEA) and Cross-Epipolar Augmentation
(CEA) blocks, which can be stacked Na layers. In our implementation, we set Na = 1. The resulting sequences are mapped back to a
feature map, followed by the Local Augmentation (LA) module to smooth the enhanced feature map. Finally, the enhanced feature map is
sent to the upsampling layers of the FPN, followed by cost volume construction and regularization.

4.2. Intra- and Cross-Epipolar Augmentation

With the epipolar line pairs ER and ES , we then perform
the non-local feature augmentation. Since points with dif-
ferent depth hypotheses fall on an epipolar line, the match-
ing process is to distinguish a series of points lying on the
same line. Inspired by the point-to-line searching strategy in
stereo matching, we propose a line-to-point non-local aug-
mentation: each pixel in the reference image only attends to
its corresponding epipolar line pairs.

As shown in Fig. 4, to describe the pixel with non-local
information in the source image, an Intra-Epipolar Aug-
mentation (IEA) module is devised based on self-attention.
A Cross-Epipolar Augmentation (CEA) module then prop-
agates the information on reference epipolar line ER into
the source epipolar line ES with cross-attention.
Intra-Epipolar Augmentation (IEA). IEA utilizes the
self-attention within an epipolar line to aggregate non-local
structural information, which can generate descriptive fea-
ture representations for difficult regions, e.g., weak-texture
areas. For each epipolar line Ei

S in the ES , the augmenta-
tion process is defined as:

Ei
S = MHSA

(
Ei

S

)
+ Ei

S , (5)

where MHSA(x) refers to the multi-head self attention [29]
that takes a sequence x as input.
Cross-Epipolar Augmentation (CEA). Due to the varying
viewpoints, the potential perspective transformation ren-

ders challenges for the same semantic pixels with differ-
ent geometries. We alleviate this by transferring informa-
tion across the epipolar lines. Specifically, we use a cross-
attention module to propagate the information from refer-
ence line ER into the ES , denoted by CEA. In CEA, Ei

S is
first processed by a cross-attention layer:

Ei
S = MHCA

(
Ei

S , E
i
R, E

i
R

)
+ Ei

S , (6)

where MHCA(q, k, v) refers to the multi-head cross atten-
tion [29] layer with q, k and v as the input query, key and
value sequences. Specifically, we add a feed-forward net-
work as in the standard Transformer block [29] after the
cross-attention layer. The block of IEA and CEA can be
stacked for feature augmentation.

Local Augmentation (LA). Although the non-local feature
augmentation within epipolar lines is efficient and proved
to be effective in our experiments. We find that the en-
hanced feature map contains some holes where pixels that
are located outside the common view of two images or
are not detected by the algorithm due to the quantification
error caused by the discrete nature of pixels, which can
lead to discontinuities in feature representation and is un-
friendly for matching. To remedy this issue, we use an ad-
ditional convolution layer after the IEA and CEA block to
re-aggregate the local context for filling feature holes and
smoothing the augmented feature.
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Figure 5. Comparison of reconstructed results with state-of-the-art methods [31, 9] on DTU evalution set [1].

4.3. Implementation Details

Inherited from MVSTER [31], we use a four-stage depth
estimation with 8, 8, 4, and 4 depth hypotheses, and adopt
the inverse depth sampling. To simplify the training, the
original monocular depth estimation auxiliary branch from
MVSTER is removed. We integrate the proposed Epipolar
Transformer (ET) into the FPN processing the coarsest fea-
ture map with a downsampling rate of 8 to save computation
costs.

We use the cross-entropy loss for all stages. The total
loss is as follows:

Loss =

N∑
k=1

λkLk (7)

where N refers to the number of stages, Lk refers to the
loss at the kth stage and λk refers to loss weight of the kth

stage. Specifically, N = 4 and λ1 = ... = λN = 1 in our
implementation.

5. Experiments

In this section, we first introduce datasets, metrics, and
experiment settings in Sec. 5.1, and then present the bench-
mark performance in Sec. 5.2. Additionally, we perform ab-
lation studies to demonstrate the effectiveness of each com-
ponent and the efficiency of our proposed feature aggrega-
tion approach in Sec. 5.3.

5.1. Settings

DTU dataset. DTU is an indoor dataset collected under
well-controlled laboratory conditions with a fixed camera
trajectory. The DTU dataset contains 128 different scenes
with 49 or 64 views under 7 different illumination condi-
tions. We adopt the same data partition as MVSNet [35]

for a fair comparison. We take 5 images and follow the dy-
namic checking strategy [33] for depth filtering and fusion.
Accuracy and completeness are used as the evaluation met-
rics. In addition, an “overall” metric which averages the
accuracy and completeness is reported.
Tanks and Temples benchmark. “Tanks and Temples”
is a public benchmark consisting of 14 outdoor realistic
scenes, including an intermediate subset of 8 scenes and an
advanced subset of 6 scenes. We take 11 images and fol-
low the dynamic checking strategy [33] for depth filtering
and fusion. Note that the ground truth for the Tanks and
Temples benchmark is hidden, all results are evaluated on
an official website. We use F-score as the evaluation met-
ric, which combines both precision and recall. Refer to the
Supplementary Materials for more details of depth fusion.

Following common practices [15, 9, 25, 31], before eval-
uating on Tanks and Temples benchmark, we finetune our
model on the BlendedMVS dataset [37] for the adaptation
to the real-world scenes. We use the original image resolu-
tion 576× 768 and the number of images equals 7.

5.2. Benchmark Performance

Evaluation on DTU. We report standard metrics by using
the official evaluation script. The quantitative results of the
DTU evaluation set are shown in Table 2. Compared with
other state-of-the-art methods, our method can reconstruct
denser point clouds, which leads to advantageous complete-
ness. With improved completeness, our method retains
comparable accuracy and obtains the best overall metric.
Fig. 5 shows qualitative results on the DTU evaluation set.
Our method can reconstruct more detailed point clouds in
challenging areas, such as weakly textured surfaces.
Evaluation on Tanks and Temples. To verify the general-
ization ability of our method, we evaluate our method on the
Tanks and Temples benchmark. The quantitative results of
intermediate and advanced sets are shown in Table 1. Our
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Method Intermediate Advanced
Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.

COLMAP [27] 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
Point-MVSNet [5] 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06 - - - - - - -
R-MVSNet [36] 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25 29.55 19.49 31.45 29.99 42.31 22.94 31.10
PatchmatchNet [30] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
P-MVSNet [21] 55.62 70.04 44.64 40.22 65.20 55.08 55.17 60.37 54.29 - - - - - - -
CasMVSNet [15] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
MVSTER [31] 60.92 80.21 63.51 52.30 61.38 61.47 58.16 58.98 51.38 37.53 26.68 42.14 35.65 49.37 32.16 39.19
GBi-Net [24] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89 37.32 29.77 42.12 36.30 47.69 31.11 36.93
AA-RMVSNet [32] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 55.50 33.53 20.96 40.15 32.05 46.01 29.28 32.71
EPP-MVSNet [23] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75
TransMVSNet [9] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62
UniMVSNet [25] 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53 38.96 28.33 44.36 39.74 52.89 33.80 34.63

ET-MVSNet (Ours) 65.49 81.65 68.79 59.46 65.72 64.22 64.03 61.23 58.79 40.41 28.86 45.18 38.66 51.10 35.39 43.23

Table 1. Quantitative results on Tanks and Temples benchmark. The metric is F-score and “Mean” refers to the average F-score of all
scenes (higher is better). The best and the second-best results are in bold and underlined, respectively.

Method ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
Gipuma [14] 0.283 0.873 0.578
COLMAP [27] 0.400 0.664 0.532
SurfaceNet [17] 0.450 1.040 0.745
P-MVSNet [21] 0.406 0.434 0.420
R-MVSNet [36] 0.383 0.452 0.417
Point-MVSNet [5] 0.342 0.411 0.376
AA-RMVSNet [32] 0.376 0.339 0.357
EPP-MVSNet [23] 0.413 0.296 0.355
PatchmatchNet [30] 0.427 0.277 0.352
CasMVSNet [15] 0.325 0.385 0.355
MVSTER [31] 0.350 0.276 0.313
UniMVSNet [25] 0.352 0.278 0.315
TransMVSNet [9] 0.321 0.289 0.305
GBiNet [24] 0.327 0.268 0.298
ET-MVSNet (Ours) 0.329 0.253 0.291

Table 2. Quantitative point cloud results on DTU evaluation
set. (lower is better). The best and the second-best results are in
bold and underlined, respectively.

method outperforms the other MVS approaches on both the
intermediate and the advanced sets, which demonstrates the
strong generalization ability of our method. Refer to Sup-
plementary Materials for qualitative results.

5.3. Ablation Study

We conduct a series of ablation studies to analyze the ef-
fectiveness and efficiency of the proposed module, includ-
ing different components in the Epipolar Transformer (ET)
and different feature aggregation operators. All the ablation
is conducted based on the MVSTER[31]. We conduct ex-
periments on the DTU dataset with metrics in Table 2 and an
additional depth error. The depth error refers to the average
absolute values of the differences between predicted depths
and ground-truth depths, whose resolution is 512× 640.

Settings ACC.↓ Comp.↓ Overall↓ Depth Error↓
IEA CEA LA

0.351 0.284 0.318 6.355
✓ ✓ 0.331 0.263 0.297 5.843
✓ ✓ 0.327 0.261 0.294 6.021

✓ ✓ 0.326 0.262 0.294 5.982
✓ ✓ ✓ 0.329 0.253 0.291 5.754

Table 3. Ablations on the DTU evaluation set.

P2L L2L
192x256 0.15 0.11
320x384 0.29 0.15
384x576 0.54 0.19
512x704 0.98 0.25
640x832 1.61 0.33
704x960 2.07 0.36
832x1152 3.06 0.46

Figure 6. Different information interaction approaches for im-
ages of different resolutions. “P2L” refers to the interaction
between a point and the corresponding epipolar line, and “L2L”
refers to the interaction between epipolar pairs.

Benefits of ET As shown in Table 3, we ablate different
components in the proposed ET. First, comparing row 1
with row 2, including the ICE and CEA to mining non-local
context along the epipolar line decreases the depth error by
8%, leading to a +6% improvement in the quality (Overall)
of 3-D reconstruction. Comparing row 2 with row 5, adding
the LA to address the discontinuities on feature representa-
tion further yields a +7% improvement in 3-D reconstruc-
tion accuracy. Comparing row 3 and row 4 with row 5, only
using IEA or CEA for intra-line and inter-line augmenta-
tion will slightly decrease the overall metrics, but can still
obtain better performance than no non-local augmentation.
The combination of ICE, CEA, and LA achieves the lowest
depth error and the best 3-D reconstruction results.
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Settings Overall ↓ Depth Error ↓ MACs(G) ↓ Time(s) ↓
Point-to-Line 0.290 5.774 25.66 3.06
Line-to-Line 0.291 5.754 0.586 0.46

Table 4. Comparison of line-to-line and point-to-line algo-
rithms. “MAC” refers to the multiply–accumulate operations for
ET.

Method Overall(mm) ↓ Depth Error(mm) ↓ Param(M) ↓
ET 0.291 5.754 1.09
FMT 0.303 6.064 1.42
DCN 0.309 6.161 1.20
ASPP 0.320 7.227 1.26

Table 5. Comparison of different feature enhancement meth-
ods.

Epipolar line search algorithm. Here we discuss the effi-
ciency of different implementations for the line search algo-
rithm. As illustrated in Sec. 4.1, we pre-calculate the epipo-
lar lines for each pixel, and group pixels with approximate
epipolar lines into the same cluster. We define this imple-
mentation as line-to-line, as the outputs are pairs of lines.
A simple alternative can be a point-to-line implementation:
calculate the line parameters for each pixel in the source
view individually.

We compare two different implementations in Table 4.
With comparable performance, point-to-line increases the
computation overhead (MACs) by 50 times and takes six
times longer for inference. Our line-to-line searching strat-
egy with pre-clustering can help parallelize the attention in
IEA and CEA, leading to improved efficiency. We report
the inference time of different resolutions in Fig. 6. As the
resolution scales up, the advantages of the line-to-line im-
plementation will become more obvious.
Different feature aggregation methods As shown in Ta-
ble 5, we compare four feature aggregation methods: the
proposed Epipolar Transformer (ET), Feature Matching
Transformer(FMT) [9], Deformable Convolutional Net-
works (DCN) [8], and Atrous Spatial Pyramid Pooling
(ASPP) [4]. Our Epipolar Transformer outperforms others
in terms of both depth and construction metrics with the
least parameters. This suggests that, based on the epipo-
lar geometry as prior, the non-local feature aggregation on
the epipolar line can be more effective and efficient for
MVS, compared with other general-use feature aggrega-
tion paradigms. We further visualize the attention map in
Fig. 7. The feature matching transformer (FMT) in Trans-
MVSNet [9] generates attention on some irrelevant back-
grounds and the points with similar textures, which can in-
terfere with the representation. In contrast, by constraining
the attention on the line, our ET can concentrate on the cor-
responding points.
Results on other approaches. Our proposed Epipolar
Transformer (ET) can serve as a plug-and-play module in-
tegrated into common learning-based MVS frameworks.

FMT Attention Map

Query

Line-to-Line Attention MapSrc. view

highlighted point highlighted point

Figure 7. Visualization of the attention map. The attention
map of our line-to-line Epipolar Transformer is between two corre-
sponding epipolar lines and that of Feature Matching Transformer
(FMT) [9] is between a pixel and the other image. Given a query
point on an epipolar line of the source image, ET focuses on the
region of its corresponding epipolar line while FMT considers the
whole reference image. The red box points to the area with the
highest attention score for the attention maps of our line-to-line
ET and FMT, respectively.

Method DTU Overall ↓ Int. Mean↑ Adv. Mean ↑
CasMVSNet [15] 0.355 56.84 31.12
CasMVSNet+ET 0.301 61.62 35.65

Table 6. Compatibility experiments on CasMVSNet. “+ ET”
indicates embedding our ET into the coarsest stage of its feature
encoding structure.

Here, we apply ET to another representative baseline Cas-
MVSNet [15]. Based on the original setting and implemen-
tation, ET is inserted into the FPN with the lowest resolu-
tion. As shown in Table 6, CasMVSNet+ET improves the
overall performance by 15% compared with the original im-
plementation on the DTU dataset. On the tanks and temples
benchmark, CasMVSNet+ET achieves 8% and 15% rela-
tive improvements on the intermediate and advanced sets.
The significant performance improvement across multiple
datasets demonstrates the flexibility of our method.

6. Conclusion
In this paper, we introduce a non-local feature aggrega-

tion strategy based on epipolar constraints. Specifically, we
first propose an algorithm for searching epipolar pairs in
two calibrated images. We then design an Intra-Epipolar
Augmentation (IEA) module and a Cross-Epipolar Aug-
mentation (CEA) module to mine non-local context within
and across epipolar lines. We pack these modules into a
Transformer model termed Epipolar Transformer (ET) and
integrate the ET into a baseline network to construct the ET-
MVSNet. Evaluations and ablations verify the effectiveness
of the proposed modules. In addition, we show that ET can
also serve as a plug-and-play module integrated into other
MVS methods.
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