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Abstract

Hierarchical clustering is a natural approach to discover
ontologies from data. Yet, existing approaches are ham-
pered by their inability to scale to large datasets and the dis-
crete encoding of the hierarchy. We introduce scalable Hy-
perbolic Hierarchical Clustering (sHHC) which overcomes
these limitations by learning continuous hierarchies in hy-
perbolic space. Our hierarchical clustering is of high qual-
ity and can be obtained in a fraction of the runtime.

Additionally, we demonstrate the strength of sHHC on
a downstream cross-modal self-supervision task. By us-
ing the discovered hierarchies from sound and vision to
construct continuous hierarchical pseudo-labels we can ef-
ficiently optimize a network for activity recognition and
obtain competitive performance compared to recent self-
supervised learning models. Our findings demonstrate the
strength of Hyperbolic Hierarchical Clustering and its po-
tential for Self-Supervised Learning.

1. Introduction
Concept hierarchies have been introduced for a variety

of tasks including recognition [20, 7], retrieval [6], seg-
mentation [30], fine-grained classification [15]. In many
datasets, the hierarchy is manually defined [8] in terms of
vision [11] or auditory [14] taxonomy. Those hierarchy
definitions are subjective and may not suit domain-specific
tasks. For example, vision hierarchy does not suit sound
tasks and vice versa. In contrast to the abundance of appli-
cations of pre-defined hierarchies, models discovering hier-
archy from data [39, 31] are scarce and outdated. In this
paper, we strive for discovering the audio-visual hierarchy
from video data in a self-supervised manner.

By learning the concept hierarchy we can, for ex-
ample, use it as a pseudo-labeling scheme for training.
Previous works on clustering-based self-supervised learn-
ing [9, 3, 42, 35, 27] have shown the benefits of assign-
ing pseudo-labels to guide training. Continuous pseudo-
labeling [25, 44, 10], in particular, draws attention as it
can further improve self-supervision. Despite the appeal of
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Figure 1. Example clustering result. Our model subdivides “play-
ing guitar” for the visual modality into sub-categories playing
guitar in concert/at home and for the audio modality into play-
ing classical/electronic guitar. (Left) The plain clustering in Eu-
clidean space Rn with randomly distributed clusters, no subordi-
nate relationship between sub-categories, and no corresponding
super-category. (Right) The proposed hierarchical clustering in
hyperbolic space Dn, similar clusters are grouped in the same fan-
shaped zone, enabling us to subdivide sub-categories and aggre-
gate super-categories.

continuous labels, hierarchical clustering models are nat-
urally discrete [18], limiting their power to enhance self-
supervision. Existing approaches for encoding discrete hi-
erarchy into a continuous form have led to a noticeable in-
formation loss [38].

However, hyperbolic geometry [37] allows lossless em-
bedding of hierarchical trees [34, 21] into hyperbolic space
Dn. Previous work explored how hyperbolic geometry
helps hierarchical clustering [33, 12]. Unfortunately, the
application of these techniques to self-supervised learning
has been limited by the computational complexity, they can
hardly scale to datasets with >∼20K data points. We solve
this problem by breaking the hyperbolic clustering down
into a two-stage process. The first stage, elaborated in Sec-
tion 3.1, aims to generateK evenly distributed clusters. The
second stage, described in Section 3.2 then aims to build a
hierarchy from K clusters. This two-stage process enables
us to efficiently train on large-scale video datasets, thereby
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enabling self-supervised learning with hierarchical pseudo-
labels.

Our contributions are threefold: Firstly, we discover au-
dio hierarchies and video hierarchies from data completely
unsupervised. Secondly, we reduce the computational com-
plexity of hyperbolic hierarchical clustering to scale, while
maintaining the hierarchy quality. Thirdly, our model not
only outperforms plain clustering-based competitors but
also achieves faster convergence in a self-supervised set-
ting.

2. Related Work

2.1. Cross-modal Self-supervision

Cross-modal learning aims to learn from the interaction
between multiple modalities such as text, visual, audio, and
more. In this paper, we focus on audio-visual cross-modal
learning as they are naturally contained within videos.

There are two broad categories of cross-modal self-
supervision methods for audio-visual data. 1) Constructing
self-supervised tasks based on audio-video correspondence,
and 2) Generating pseudo labels to (pre-)train the network.
Our work falls in the second category, where we expand the
notion of pseudo-labels to incorporate hierarchy.
Audio-video correspondence. Audio-visual synchroniza-
tion is the most commonly seen audio-visual correspon-
dence. For example, L3 [4] constructs a binary classi-
fication task to learn whether the frame and audio come
from the same clip, and the self-supervised task of [28]
requires the correct classification of difficult samples and
extremely difficult samples on the basis of consistent au-
dio and video. Hu et al. [23] takes audio and video consis-
tency as a self-supervised task, enabling localization based
on audio and video activations on feature maps. Hassan et
al. [2] proposed a Video-Audio-Text Transformer (VATT)
that projects audio-video modalities into a common space
to force their audio-visual correspondence. Although we
are not training with audio-visual correspondence, we still
use L3 [4] pre-trained weights to initialize our model.
Pseudo-label Guided Training. Our research falls into the
category of Pseudo-labeling methods [3, 5, 24, 1, 13, 41],
which generate pseudo-labels in an unsupervised manner
and subsequently guides training based on these labels.
Pseudo-labeling is commonly used in self-supervised learn-
ing for audio-visual data. Alwassel et al. [3] uses both
visual and audio clustering as pseudo-labels to supervise
the other modality, thereby introducing cross-modal infor-
mation for downstream tasks. Asano et al. [5] exploits
the pseudo-labels from both sound and vision for self-
supervision. Francisco et al. [41] proposed multi-modal
vision teachers, each pre-trained modality-specific teacher
predicts bounding boxes that are then used as pseudo-labels
for training the audio-student network. Triantafyllos et

al. [1] generate pseudo bounding boxes with pseudo labels
to achieve object detection and sound-source localization.
Chen et al. [13] fuses clustering results from each modal-
ity to get a multi-modal pseudo label for guiding training,
achieving zero-shot video retrieval and localization.

This paper is related to SeLaVi [5] as they also per-
form clustering-based self-supervision, although based on
an equal-sized cluster assumption. Similarly, we also per-
form equal-sized subdivisions as the pre-clustering stage of
our model, but we differ as we allow a varying size and a
flexible number of clusters K by combining clusters based
on the learned hierarchy.

2.2. Hierarchical Clustering

Clustering is closely related to pseudo-label generation.
In self-supervised learning, plain clustering is frequently
used to generate the pseudo-labels while hierarchical clus-
tering remains under-utilized.
Plain clustering. Many self-supervised learning methods
[9, 25, 44, 10, 43] can be seen as a form of clustering,
where the model learns to group similar examples together.
DeepCluster [9] uses K-means clustering to define pseudo-
labels, Self Labeling [44] uses, and Sinkhorn-Knoop clus-
tering [17] is also widely used. SwAV [10] uses online clus-
tering updates and soft clustering.
Discrete Hierarchical Clustering. Despite the different
types of clustering explored for self-supervised learning, hi-
erarchical clustering [22] remains unexplored for guiding
self-supervision.
Hyperbolic Hierarchical Clustering. In many audio-
visual datasets [8, 11, 4, 14], human experts define the
hierarchy of categories, which benefits computer vision
tasks [29, 15, 30]. Given that those pre-defined hierar-
chies are subjectively defined, they either lean to the sound
side [14] or semantic side [11], it would be valuable to dis-
cover the natural hierarchy inside data, leading to hierarchi-
cal clustering (HC).

HC has been performed heuristically, without an objec-
tive evaluation and optimization metric, until a discrete ob-
jective function was proposed by Dasgupta [18]. This ob-
jective function enables gradient-based hierarchical cluster-
ing [33], by optimizing the Dasgupta Cost given to sample
embeddings in a hyperbolic space. HypHC [12] further re-
duces the requirement for pre-defined embeddings by ini-
tializing all embeddings randomly.

Our method is closely related to HypHC [12], we follow
their sampling strategy to generate triplets for adjusting em-
beddings. But we differ with HypHC in two ways; HypHC
has a complexity of O(N3) for N data points, which does
not scale, and HypHC only runs one pass without integrat-
ing representation learning.
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3. Scalable Hyperbolic Hierarchical Clustering
Given video clip v, passing it through the visual en-

coder ϕv(·) gives us the visual feature v = ϕv(v). Sim-
ilarly, for audio encoder ϕa(·) we obtain audio feature
a = ϕa(v). Performing scalable Hyperbolic Hierarchical
Clustering (sHHC) on visual features {v} and audio fea-
tures {a} yields visual hierarchy Tv and auditory hierar-
chy Ta, each in a continuous form in hyperbolic space Dn.
To reduce the computational complexity of building hierar-
chical clusters on hyperbolic space, sHHC breaks the clus-
tering process into two parts. 1) Pre-clustering, described
in Section 3.1, generates evenly distributed pre-clusters.
2) Post-clustering, described in Section 3.2, uses the pre-
clusters to construct the hierarchy. Then the nodes on the
visual hierarchy ŷv ∈ Tv and audio hierarchy ŷa ∈ Ta

act as pseudo-labels to supervise the network in a cross-
modal manner. Our training target is to predict the continu-
ous pseudo-labels in hyperbolic space Dn, i.e., we have four
heads that maps each modality to audio and vision pseudo-
labels.

hv→a(v) ≈ ŷa
ha→v(a) ≈ ŷv
hv→v(v) ≈ ŷv
ha→a(a) ≈ ŷa

, (1)

as elaborated in Section 3.3. The overall structure is shown
in Figure 2.

3.1. Sinkorn Pre-clustering

For a given classification head, its output ŷ = p(y|x)
gives the probability that sample x belongs to class
y, leading to the cross-entropy loss over dataset D =
{(xi, yi)}i=1···N :

L(D) = −
N∑
i=1

log p(yi|xi). (2)

In a clustering setting, we only have the feature set
X = {xi}i=1···N , while the label yi is not available. In-
stead, we regard the cluster assignment q(yi|xi) ∈ {0, 1} as
a surrogate of label yi (i.e., the pseudo-label). Equation (2)
is then modified to:

L(X ) = −
N∑
i=1

K∑
j=1

q (yi = j | xi) log p (yi = j | xi) (3)

To avoid model collapse it is important for the cluster
assignment q(y|xi) to be evenly distributed [9] among all
classes, leading to the constraint that the assignment of N
data points must be partitioned into K equally-sized sub-
sets.

N∑
i=1

q (y = j | xi) =
N

K
, j = 1, 2, · · · ,K. (4)

As shown by Asano et al. [44], this problem can be
solved efficiently in O(NK) using Sinkhorn fixed point it-
eration [17] to update p(yi = j | xi):

u =
1

K
⊙ 1

Pλv
(5)

v =
1

N
⊙ 1

(uTPλ)T
(6)

where ⊙ is the element-wise product, P = [pij ] is the ma-
trix format predicted posterior probability where each ele-
ment pij = p(yi = j | xi).

3.2. Hyperbolic Post-clustering

Preliminary. Hyperbolic geometry is locally isomorphic to
Euclidean space but has negative curvature in general, and
thus is able to represent tree structures with arbitrary low
distortion [38]. There are various models that satisfy the
definition of hyperbolic space, in this paper, for the con-
venience of visualization, we use the Poincaré disk model,
defined as:

Dn
c = {x ∈ Rd | c ∥x∥ ≤ 1}, (7)

where n is the dimensionality of the space and c is the cur-
vature of the hyperbolic space. Moderately set curvature
enables the tree’s low-distortion embedding. We use c = 1
in this paper, without causing ambiguity, we use D for Dn

c to
simplify the notation. The distance between any two points
x and y in Poincaré space is defined as:

dc(x,y) =
2√
c
arctanh

(√
c ∥−y ⊕c x∥

)
, (8)

where ⊕c is the Möbius addition [40] in D, i.e.:

x⊕c y =

(
1 + 2c⟨x,y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
.

(9)
Hyperbolic Clustering. Constructs a continuous hierarchy
T from data, we propose a continuous loss function and
optimize it. Similar to Chami et al. [12], which positions
embeddings into the hyperbolic space according to the sim-
ilarity of data samples, we construct T using the pre-cluster
centroids to calculate the pair-wise similarities among cen-
troids, then the similarities are used to learn the continuous
hierarchy. The learning objective is to minimize the cluster-
ing loss:

min
z1,z2,··· ,zn

∑
ijk

1Twijk − σ

 dc(0, zi∨j)
dc(0, zi∨k)
dc(0, zj∨k)

T

wijk

 ,
(10)

where wijk = [wij , wik, wjk]
T ∈ R3 is the vector of sim-

ilarities between sample (i, j), (i, k) and (j, k), zi is the
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Figure 2. Scalable Hyperbolic Hierarchical Clustering. The dataset is first passed through the audio-visual encoders to get audio features
and visual features. (Step 1). Features are divided into equal-sized subsets as optimal transport assignments. (Step 2). Subsets are then
embedded hierarchically to hyperbolic space Dn based on similarities. (Step 3). The resultant hierarchy further guides the encoder training,
the gradient passes through the network in a cross-modal manner. The Exponential Map translates data points from Rn to Dn, solving the
inconsistency between spaces.

hyperbolic embedding of i − th sample, σ is the softmax
function and zi∨j is the hyperbolic embedding of the LCA
(lowest common ancestor) of i− th sample and j− th sam-
ple.

Minimizing Equation (10) forces similar pairs to have an
LCA far from the origin and dissimilar pairs to have an LCA
near the origin. For the triplet (i, j, k) the pair (i, j) is more
similar than (i, k) and (j, k), as such the learning must force
dc(0, zi∨j) > dc(0, zi∨k) and dc(0, zi∨j) > dc(0, zj∨k) to
minimize Equation (10).
Exponential Initialization. Optimizing this objective re-
quires sampling triplets from a space that is O(N3) large,
which can hardly be traversed for a large dataset like Kinet-
ics400 [11]. Even when we reduce the sample space size
to O(K3) with pre-clustering, the sample space is still 109

large when we use K = 103 in our experiments. Hence,
good initialization of the embeddings is vital to the model
performance. Different to [12], which uses random initial-
ization for all samples, we use the exponential map E(·) to

project the audio-visual features from Rn onto the Poincaré
disk D, with respect to tangent point x:

Ex(v) = x⊕c

(
tanh

( √
c∥v∥

1− ∥x∥2

)
v√
c∥v∥

)
, (11)

so without loss of generality, we set x = 0 as the tangent
point for all the projections to D, leading to a simplified
notation:

E(v) = tanh
(√
c∥v∥

) v√
c∥v∥

, (12)

3.3. Cross-modal Hierarchical Supervision

After obtaining the visual hierarchy Tv and audio hier-
archy Ta we use them for cross-modal pseudo-label super-
vision. Similar to SwAV [10], the pseudo-labels we use
are continuous, but we shift to hyperbolic representation as
labels in hyperbolic are naturally continuous [34], and our
pseudo-labels are hierarchical.
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We use the negative distance between sample embed-
dings and the cluster embeddings as the probability for log-
its, akin to [32]:

p(y = k|x) = exp (−dc(ψ(y),E(v))∑
k′ exp (−dc(ψ(y),E(v))

, (13)

where ψ(y) ∈ Dn is the hyperbolic embedding of category
label y.
Cluster Merging Note that each leaf nodes act as one class
template during hierarchical supervision, sometimes it can
be the case that data within one cluster be forced to divide
as we deploy overclustering [25]. One advantage of hier-
archical clustering is that we are able to combine clusters
easily by shifting to the parent node.

4. Experimental Setup

4.1. Dataset

For the experiments we use two datasets, VG-
GSound [14] and KineticsSound [4], which have been used
in prior research on audio-visual learning [4, 5, 2]. We pre-
train on the VGGSound dataset and fine-tune on the Kinet-
icsSound dataset. The statistics of both datasets are shown
in Table 1.

Notably, both VGGSound and KineticsSound datasets
provide hierarchy information. VGGSound’s hierarchy di-
vides 309 categories into 16 parent categories based on au-
dio information, such as animal sounds, human sounds, nat-
ural sounds, musical instruments, and so on. KineticsSound
divides 34 categories into 5 parent categories including So-
cial Activities, Household Activities, Sports, and Entertain-
ment based on visual and semantic information. We cannot
use the pre-defined hierarchy for cross-modal learning be-
cause in both datasets the hierarchy definition only concerns
one modality and the hierarchy regarding the other modality
is missing.

Note that although VGGSound and KineticsSound
datasets have similar categories, i.e. 13 of the 34 categories
in Kinetics are also found in VGGSound (10 of these be-
ing musical instrument categories), we argue that this kind
of overlap will not leak label information, because our pre-
training is completely self-supervised.

4.2. Implementation Details

Audio-Visual Sample Alignment. For one video let nv be
the number of frames, fv the frame sample rate in terms
of (fps) frame per second, na the number of audio samples,
and fa the sample rate in terms of Hz. In such cases, we usu-
ally have nv = t× fv . However, this is not the case for the
audio signal, which means na ̸= t × fa, because the audio
signal and visual signal are encoded into different streams
that require alignment. We recover the audio-visual align-

Table 1. Dataset statistics for VGGSound and KineticsSound.
Dataset #samples split #cls hierarchy

VGGSound 199276 pretrain 309

KineticsSound 23845 train 34 �
1652 eval 34 �

ment using the PTS (Presentation Time Stamp) encoded in
the video file.
Audio Preprocessing. The audio signal comes with differ-
ent sampling rates, mainly 48000hz and 44100hz, to make
those sample rates consistent and generate fair comparison,
we re-sample the audios to 24000hz akin to the implemen-
tation of SeLaVi [5]. Similarly, we transform the raw au-
dio waveform to its Logarithmic Mel-filterbank Energy [19]
representation. i.e., from a ∈ Rt×24000 to a ∈ Rt×257×99.
Multi-head clustering. Similar to [44] and [5], we use
multiple clustering heads as it boosts performance. For fair
comparison, we set H = 10 during self-supervision.
Problem Simplification. Limited by computing resources,
we simplify the vision part to the same setting as [4], that is,
we take one frame per clip to represent the visual informa-
tion of the entire clip. In order to achieve a fair comparison,
we re-run all the baseline algorithms under this simplified
setting.
Fair comparison. To further ensure a fair comparison,
all baseline methods were trained with the same backbone,
which is the L3 [4] network. All experiments were done
with the same input and same data augmentation, and we
used the same optimization tricks, thus resulting in fair
comparison among the models.
Warm up. We pre-train the L3 [4] network and then use
these pre-trained weights to warm up the backbone. This
prevents the clustering algorithm from generating meaning-
less clusters based on purely random initialization.

5. Results
5.1. Clustering Quality

Baseline models. To show the superiority of our model we
compare it against representative clustering-based methods.
In particular, DeepCluster [9] is the most representative
clustering-based method, followed by SeLa [44] further ex-
tend the method with Sinkhorn clustering, and SeLaVi [5]
which also considers cross-modal learning on audio-visual
data.

The results of the clustering quality experiments are
shown in Table 2. Among all the competitors, we can
perform best across all clustering quality metrics, even at
a lower number of clusters. Whereas more clusters may
lead to better clustering performance, our method performs
even better when having fewer #clusters. This is surprising,
as over-clustering is generally easier, having fewer clusters
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Table 2. The clustering quality on Kinetics-Sound dataset under
different numbers of clusters. For NMI∈ [0, 1] the higher the bet-
ter, and ARI∈ [0, 1] the higher the better. The numbers are in
percentages. We also examine the setting when using fewer clus-
ters.

Model � NMI↑ ARI↑ #cluster

Deep Cluster [9] ✓ ✗ 12.5 4.3 100
✗ ✓ 11.3 4.0 100

XDC [3] ✓ ✓ 12.9 4.8 100

SeLa [44] ✓ ✗ 34.8 19.5 100
✗ ✓ 33.4 18.7 100

SeLaVi [5] ✓ ✓ 36.4 20.2 100

Ours ✓ ✗ 35.2 20.1 100
✗ ✓ 33.8 19.0 100
✓ ✓ 36.9 20.4 100

Ours ✓ ✓ 37.2 20.8 60
✓ ✓ 37.4 20.4 34

implies that the learned clusters are more informative than
those of other methods. For instance, for the 34 annotated
classes (semantic clusters) in KineticsSound, if we can learn
proper clusters then the number of learned clusters should
approach the number of annotated classes, resulting in a
good performance.

We also visualize the effect of hierarchical clusters in
terms of cluster similarity in Figure 3. We achieve the visu-
alization by re-ordering the clusters in a hierarchical-wise
way, then we notice that, when considering the hierarchical
structure among clusters, the clusters show the agglomera-
tion effect, similar clusters tend to have a higher similarity,
while in the non-hierarchical counterparts, we can hardly
discover any agglomeration and all the clusters are just ran-
domly distributed.

5.2. Hierarchy Discovery

One of the main contributions of our work is to estab-
lish the class hierarchy within the data. Based on our ex-
periments we quantitatively show that our proposed method
constructs the hierarchy well in terms of Dasgupta Cost [18]
and running speed, as shown in Table 3.
Discrete Baseline models. For classical hierarchical clus-
tering an important difference is the cluster merging tech-
nique, here we include two representative discrete alterna-
tives of agglomerative clustering [22]: Complete Link that
consider the nearest point pairs when combining clusters
and Single Link that measure the furthest point pairs when
combining clusters.
Continuous Baseline models. We also compared against
continuous hierarchical clustering techniques that are re-
cently developed. UFit [16] defines the dendrogram as an
ultra-metric, then defines a relaxation of Dasgupta Cost for

Similarity score among hierarchical clusters

Similarity score among plain clusters

Figure 3. Visualization of the similarity scores between clusters for
(Top) hierarchical clusters and (Bottom) plain clusters. The hier-
archical clusters have a well-defined structure whereas the plain
clusters appear nearly arbitrary. We construct the hierarchy in hy-
perbolic space based on the similarities between the hierarchical
clusters.

optimization to find the optimal ultra-metric. HypHC [12]
also optimize a relaxed version of Dasgupta Cost, and it op-
timizes the embeddings of the hierarchy on D, instead of the
hierarchy T itself.

We qualitatively show the hierarchy discovered in Fig-
ure 4. Based on this visualization we can observe that we
are able to discover fine-grained categories, subdividing se-
mantic categories into narrow categories based on modality-
specific information. This shows the potential of our ap-
proach to discover task-specific fine-grained hierarchies.
For instance, for the audio hierarchy we are able to dis-
cover different sub-categories given the same appearance,
e.g. electrical guitar, classical guitar, and acoustic guitar all
belong to the same class “playing guitar”. Fine-grained hi-
erarchies are beneficial as previous self-supervision meth-
ods, including DeepCluster [9] and SeLa [44], have shown
that over-segmentation benefits the training process, espe-
cially when revealing sub-categories structures that are not
manually annotated. Crucially, obtaining a similar level of
fine-grained annotation through human annotation would be
very costly and time intensive.

We are able to achieve the lowest cost among all the hi-
erarchical clustering methods. In particular, we are able to
outperform the discrete baselines because we are updating
the position of embeddings while for discrete baselines the
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Figure 4. Visualisation of discovered hierarchies within the VGGSound dataset. Based on this visualization we can observe that we
discover fine-grained hierarchies which are modality-specific. (Left) The audio hierarchy, where different guitar types are discovered for
guitar playing. (Middle) The visual hierarchy, where different scenarios for guitar playing are discovered. (Right) Human annotation,
which consists of only two levels of hierarchy, it would require significant extra expense and effort to further subdivide these into fine-
grained classes.

Table 3. The hierarchy quality of our proposed model expressed
in terms of Dasgupta Cost. The unit is multiplied by 1014, and
the running time is calculated after convergence. Methods with a
† failed to converge due to computational cost.

Hierarchical
Model

Dasgupta
Cost↓

Running
Time↓

Complete Link 8.01 ∼10min
Single Link 6.69 ∼10min
UFit [16] 7.72 ∼4h
HypHC [12]† 7.66 >4h

Ours 6.62 ∼2min

embeddings do not move anymore once the data similarity
is computed. We also beat the continuous method UFit by
a large margin. It is not surprising that HypHC outperforms
UFit, as UFit’s optimization is not directly related to Das-
gupta Cost. However, our method, which can be regarded as
an approximated version of HypHC, still outperforms both
methods at a much faster running speed.

5.3. Downstream Task

We tested the pre-trained backbone on the downstream
task of activity recognition. We tested the models on the
KineticsSound dataset in three different settings: audio
recognition, vision recognition, and multi-modal recogni-

tion. The results are illustrated in Table 4.

Table 4. The downstream activity recognition performance on the
KineticsSound dataset. We separately evaluate the performance in
a audio-only, visual-only, and audio-visual setting. Only L3 and
our method are able to operate across all three settings, with our
method showing superior performance.

� Both

Deep Cluster [9] 69.68 - -
Deep Cluster [9] - 49.92 -
SeLa [44] 71.53 - -
L3 [4] 68.76 51.13 70.95
XDC [3] - - 71.27
SelaVi [5] - - 73.51
GDT [36] - - 73.85

Ours 71.69 51.90 74.10

Baseline methods. We compare against the four baselines
that are most related to us. L3 [4] is the first paper regarding
audio-visual self-supervision, we adopted their input sim-
plification strategy. DeepCluster [9] introduced clustering-
based pseudo-label guided self-supervision. XDC [3]
uses audio-visual cross-modal pseudo-labels for self-
supervision, our method also follows this strategy. Self-
labelling [44] for uni-modality and SeLaVi [5] for audio-
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visual fusion uses Sinkhorn clustering [17].
Only two of the methods are able to perform activity

recognition across all modality settings, L3 and our method.
Notably, in all three settings, we improve over L3. Addi-
tionally, even when compared to more specialized methods
which only operate in a single setting we still outperform
them by a small margin. This demonstrates the strength and
flexibility of our approach, as we are able to operate across
all three settings, and perform well in all of them.

5.4. Evaluation Metrics

Clustering Quality. Metrics such as normalized mutual
information (NMI), adjusted rand index (ARI), and mean
purity (denoted as pmean) are commonly used to evaluate
clustering quality. NMI measures the similarity between
the clustering results and the ground truth labels, where a
value of 1 indicates a perfect match and 0 indicates no sim-
ilarity. ARI, on the other hand, measures the agreement
between two sets of clustering results, adjusted for chance
agreement, with a value of 1 indicating perfect agreement
and 0 indicating agreement no better than chance. Mean
purity is a measure of cluster quality in clustering analysis.
It measures how pure each cluster is, based on the distri-
bution of ground truth labels among the data points in each
cluster. Its value ranges from 0 to 1, with higher values in-
dicating that the clusters are purer and that most of the data
points in each cluster belong to the same ground truth la-
bel. We refer to the formal definition of these metrics in
Supplementary Materials.
Hierarchy Quality. The Dasgupta cost [18] measures the
total cost of the clustering solution, where the cost is de-
fined as the sum of the distances between each point and its
closest cluster center.

5.5. Effect of Hyperbolic space

Hyperbolic space is well-suited for hierarchies because
it can embed a tree without information loss [34], while for
Euclidean space there is a loss even in the infinite dimen-
sional case. All prior methods in Table 2 perform clustering
in Euclidean space, to verify the benefits of hyperbolic we
add ablations in Table 5 for different manifolds.
Table 5. Effect of using different manifold M (simplex ∆, Eu-
clidean R, and hyperbolic D) on Kinetics-Sound for multi-modal
setting. The * and + indicate that the method was modified to R or
D space respectively for self-supervision.

Model M Dimensionality NMI↑ ARI↑
SeLaVi [5] ∆ 100 36.4 20.2
SeLaVi* [5] R 512 36.4 20.1
SeLaVi+ [5] D 512 36.1 19.8

Ours* R 512 36.3 20.0
Ours D 50 36.9 20.4

We construct three extra baselines: SeLaVi* on Eu-
clidean space R, SelaVi+ on hyperbolic space D, and Ours*
on R. We can observe that Euclidean indeed requires higher
dimensionality and that the benefits of hyperbolic disappear
when not using hierarchy (i.e., SeLaVi+).

5.6. Ablation Study

As prior hierarchical clustering methods are limited by
their lack of scalability, we propose to overcome this is-
sue by dividing the clustering process into three steps: Pre-
clustering (3.1), Post-clustering (3.2), and SSL (3.3), where
the final clustering is only obtained after the SSL step. To
demonstrate the effectiveness of this three step process, we
perform an ablation in Table 6. For these results, SelaVi [5]
can be regarded as using only 3.1 (Pre-clustering), and Hy-
pHC [12] (equipped with hierarchy) as only using 3.2 (Post-
clustering). When using neither pre-clustering nor post-
clustering the network is a L3 initialized network. For only
post-clustering (row 2), the large number of samples in-
hibits convergence, leading to a deteriorated performance
that is even lower than L3. When only pre-clustering (row
3) the performance is good, but the model is incapable of
discovering hierarchy. Our approach allows us to obtain
good performance while also discovering hierarchy.
Table 6. Ablation results on Kinetics-Sound for multi-modal set-
ting. indicates Pre-clustering, indicates Post-clustering.

Model NMI↑ ARI↑
L3 ✗ ✗ 26.5 9.8
HypHC [12] ✗ ✓ 20.6 6.7
SeLaVi [5] ✓ ✗ 36.4 20.2

Ours ✓ ✓ 36.9 20.4

6. Conclusion
Limitations. Similar to Sinkhorn [17], Hyperbolic hier-
archical clustering usually requires high numerical preci-
sion, as the data points projected to the edge of Dn tends
to have an infinite far distance, leading to performance
loss when we use half-precision training or mixed precision
training. We suggest using double precision in the hyper-
bolic distance calculation, which only leads to a marginal
increase in memory consumption. Hierarchical hyperbolic
clustering optimization runs slower than Sinkhorn cluster-
ing and FAISS [26] Kmeans, but it is still applicable in self-
supervised context as 1) the running time is very short com-
pared to the time it takes to compute features for the train-
ing set and 2) we only have to redo the clustering after a few
epochs.

In this paper we proposed a new method for hierarchi-
cal clustering, overcoming the limitations of existing meth-
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ods related to scalability and lack of continuous represen-
tation. Our findings show that we can obtain high-quality
clusters in a fraction of the runtime, and qualitatively we
show that we are able to discover semantically coherent hi-
erarchies for multiple modalities. We evaluate the hierar-
chies on a cross-modal self-supervised task and obtain com-
petitive performance with prior methods, demonstrating the
strength of hyperbolic hierarchical representations obtained
by our proposed clustering method. We see hierarchical
pseudo-labels in continuous hyperbolic space as a natural
extension of discrete pseudo-labels and we expect that this
approach will be able to benefit a wide range of tasks.
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