
ATT3D: Amortized Text-to-3D Object Synthesis

Jonathan Lorraine Kevin Xie Xiaohui Zeng Chen-Hsuan Lin Towaki Takikawa
Nicholas Sharp Tsung-Yi Lin Ming-Yu Liu Sanja Fidler James Lucas

NVIDIA Corporation
Existing Methods ATT3D: Amortized Text-to-3D

“A monkey sitting
in a chair wearing
a suit .. party hat”

“A pig riding a 
motorbike wearing a
backpack .. top hat”

...etc...

NeRF

“A monkey sitting
in a chair wearing
a suit .. party hat” 

“A pig riding a 
motorbike wearing a
backpack .. top hat”

...etc...

1hr per prompt 1sec per prompt

NeRF

text
NeRF

mapping
network

trained offline... ...

expensive per-prompt
optimization

Existing Methods ATT3D: Amortized Text-to-3D

Requires 1 hour Requires < 1 sec
Figure 1: Our method initially trains one network to output 3D objects consistent with various text prompts. After, when
we receive an unseen prompt, we produce an accurate object in < 1 second, with 1 GPU. Existing methods re-train the
entire network for every prompt, requiring a long delay for the optimization to complete. Further, we can interpolate between
prompts for user-guided asset generation (Fig. 3). We include a project webpage with an overview and videos.

Abstract
Text-to-3D modelling has seen exciting progress by com-

bining generative text-to-image models with image-to-3D
methods like Neural Radiance Fields. DreamFusion re-
cently achieved high-quality results but requires a lengthy,
per-prompt optimization to create 3D objects. To address
this, we amortize optimization over text prompts by training
on many prompts simultaneously with a unified model, in-
stead of separately. With this, we share computation across
a prompt set, training in less time than per-prompt optimiza-
tion. Our framework – Amortized Text-to-3D (ATT3D) –
enables knowledge sharing between prompts to generalize
to unseen setups and smooth interpolations between text for
novel assets and simple animations.

1. Introduction
3D content creation is important because it allows for

more immersive and engaging experiences in industries
such as entertainment, education, and marketing. However,
3D design is challenging due to technical complexity of
the 3D modeling software, and the artistic skills required
to create high-quality models and animations. Text-to-3D
(TT3D) generative tools have the potential to democratize
3D content creation by relieving these limitations. To make
this technology successful, we desire tools that provide fast
responses to users while being inexpensive for the operator.

Recent TT3D methods [1, 2] allow users to generate
high-quality 3D models from text-prompts but use a lengthy
(⇠15 minute to >1 hour [1, 2]) per-prompt optimization.
Having users wait between each iteration of prompt engi-
neering results in a sporadic and time-consuming design
process. Further, generation for a new prompt requires mul-
tiple GPUs and uses large text-to-image models [3–5], cre-
ating a prohibitive cost for the pipeline operator.

We split the TT3D process into two stages. First, we op-
timize one model offline to generate 3D objects for many
different text prompts simultaneously. This amortizes opti-
mization over the prompts, by sharing work between similar
instances. The second, user-facing stage uses our amortized
model in a simple feed-forward pass to quickly generate an
object given text, with no further optimization required.

Our method, Amortized text-to-3D (ATT3D), produces a
model which can generate an accurate 3D object in < 1 sec-
ond, with only 1 consumer-grade GPU. This TT3D pipeline
can be deployed more cheaply, with a real-time user ex-
perience. Our offline stage trains the ATT3D model sig-
nificantly faster than optimizing prompts individually while
retaining or even surpassing quality, by leveraging compo-
sitionality in the parts underlying each 3D object. We also
gain a new user-interaction ability to interpolate between
prompts for novel asset generation and animations.

1

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17946

https://research.nvidia.com/labs/toronto-ai/ATT3D/


ATT3D Per-prompt Training

Figure 2: We show results on a compositional prompt set. Each row has a different activity, while each column has a theme,
which we combine into the prompt “a pig {activity} {theme}.” while we evaluate generalization on a held-out set
of unseen testing prompts in red on the diagonal. Left: Our method. Interestingly, the amortized objects have a unified
orientation. Right: The per-prompt training baseline [1], with a random initialization for unseen prompts to align compute
budgets. Takeaway: Our model performs comparably to per-prompt training on the seen prompts, with a far smaller compute
budget (Fig. 6). Importantly, we perform strongly on unseen prompts with no extra training, unlike per-prompt training.

“... dress made of fruit ...” “... dress made of garbage bags...”

Rendered frames from ATT3D with text embedding (1� ↵)c1 + ↵c2 for ↵ 2 [0, 1]

“snowy rock”

“jagged rock” “mossy rock”
“... cottage with a thatched roof ” “... house in Tudor Style”

“... red convertible” “... destroyed car”

“...in the spring” “...in the summer” “...in the fall” “...in the winter”
Figure 3: We show renders of our model’s output on interpolated text embeddings (1�↵)c1+↵c2. We generate a continuum
of landscape, clothing, building, and vehicle assets, and use chains of prompts for animations, like seasonality in a tree.

17947



1.1. Contributions
We present a method to synthesize 3D objects from text

prompts immediately. By using amortized optimization we
can:

• Generalize to new prompts – Fig. 2.
• Interpolate between prompts – Fig. 3.
• Amortize over settings other than text prompts –

Sec. 3.2.2.
• Reduce overall training time – Fig. 6.

2. Background
This section contains concepts and prior work relevant to

our method, with notation in App. Table 1.

2.1. NeRFs for Image-to-3D
NeRFs [6] represent 3D scenes via a radiance field pa-

rameterized by a neural network. We denote 3D coordi-
nates with x = [x, y, z] 2 X and the radiance values with
r = [�, r, g, b] 2 R. NeRFs are trained to output radi-
ance fields to render frames similar to multi-view images
with camera information. Simple NeRFs map locations x
to radiances r via an MLP-parameterized function. Recent
NeRFs use spatial grids storing parameters queried per lo-
cation [7–9], integrating spatial inductive biases. We view
this as a point-encoder function �w:X !� with parameters
w encoding a location x before the final MLP ⌫ :�!R.

r = ⌫ (�w (x)) (1)

2.2. Text-to-Image Generation
The wide availability of captioned image datasets has

enabled the development of powerful text-to-image gener-
ative models. We use a DDM with comparable architec-
ture to recent large-scale methods [3–5]. We train for score-
matching, where (roughly) input images have noise added
to them [10, 11] that the DDM predicts. Critically, these
models can be conditioned on text to generate matching im-
ages via classifier-free guidance[12]. We use pre-trained
T5-XXL [13] and CLIP [14] encoders to generate text em-
beddings, which the DDM conditions on via cross-attention
with latent image features. Crucially, we reuse the text to-
ken embeddings – denoted c – for modulating our NeRF.

2.3. Text-to-3D (TT3D) Generation
Prior works rely on per-prompt optimization to generate

3D scenes. Recent TT3D methods [1, 15] use text-to-image
generative models to train NeRFs. To do so, they render
a view and add noise. The DDM, conditioned on a text
prompt, approximates ✏ with ✏̂, using the difference ✏̂�✏ to
update NeRF parameters. We outline this method in Alg. 1
and Fig. 4 and refer to DreamFusion Sec. 3 for more details.

2.4. Amortized Optimization
Amortized optimization methods use learning to predict

solutions when we repeatedly solve similar instances of the
same problem [16]. Current TT3D independently optimizes
prompts, whereas, in Sec. 3, we use amortized methods.

A typical amortization strategy is to find a problem con-
text – denoted z – to change our optimization, with some
strategies specialized for NeRFs [17]. For example, con-
catenating the context to the NeRF’s MLP: r(x, z) =
⌫(�(x), z) Or, having a mapping network m outputting
modulations to the weights or hidden units:

r (x, z) = ⌫ (�m(z) (x)) (2)

But, designing useful contexts, z, can be non-trivial.

3. Our Method: Amortized Text-to-3D
Our method has an initial training stage using amortized

optimization, after which we perform cheap inference on
new prompts. We first describe the ATT3D architecture and
its use during inference, then the training procedure.

3.1. The Amortized Model used at Inference
At inference, our model consists of a mapping network

m, a NeRF ⌫, and a spatial grid of features �w with pa-
rameters w (Fig. 4). The mapping network takes in an
(encoded) text prompt c and produces feature grid modu-
lations: �m(c). Our final NeRF module ⌫ is a small MLP
acting on encoded points �m(c)(x) – Eq. 1 – representing
a 3D object for the text prompt with the modulated feature
grid. Full details are in App. Sec. B.1 and summarized here.
Architectural details: We followed Instant NGP [7] for
our NeRF, notably using multi-resolution voxel/hash grids
for our point-encoder �. We use hypernetwork modula-
tions for implementation and computational simplicity, with
alternatives of concatenation and attention considered in
App. B.1.3. Hypernetwork approaches output the point-
encoder parameters w from a text embedding c:

w = Hypernetwork(c) (3)

We simply output via a vector v from the text embeddings,
which is used to output the parameters via linear maps.

v = SiLU(linearspec.norm
w/ bias (flatten(c))) (4)

w = reshape(linearspec.norm
no bias (v)) (5)

This w parameterizes the point-encoder �w, which is used
to evaluate radiances per-point as per Eq. 1. This simple ap-
proach solved our prompt sets, so we used it in all results.
Using more sophisticated hypernetworks performed com-
parably but was slower. However, this may be necessary for
scaling to more complicated sets of prompts.

17948



NeRF
network 

mapping
network

text encoder (CLIP/T5)text encoder (CLIP/T5)

Trainingtext prompts
“A bunny sitting
on some pancakes”

spatial
features

embeddings

interpolated
lookup

position

volume
renderings

Inference

rendered
views

spatial
features

add
noise

text-conditioned
denoising diffusion model

DDM

Δ noise
update

feature-encoded
position

position

NeRF
network 

mapping
network

text encoder (CLIP/T5)text encoder (CLIP/T5)

new text prompt
“A frog wearing
a red sweater.”

spatial
features

embedding

interpolated
lookup

positionspatial
features feature-encoded

position

position

3D object

Figure 4: We show a schematic of our text-to-3D pipeline with changes from DreamFusion’s pipeline [1] shown in red and
pseudocode in Alg. 1. The text encoder (in green) provides its – potentially cached – text embedding c to the text-to-image
DDM and now also to the mapping network m (in red). We use a spatial point-encoder �m(c) (in blue) for our position x,
whose parameters are modulations from the mapping network m(c). The final NeRF MLP ⌫ outputs a radiance r given the
point encoding: r = ⌫(�m(c)(x)), which we render into views. Left: At training time, the rendered views are input to the
DDM to provide a training update. The NeRF network ⌫, mapping network m, and (effectively) the spatial point encoding
�m(c) are optimized. Right: At inference time, we use the pipeline up to the NeRF for representing the 3D object.

D
re

am
Fu

si
on

D
re

am
Fu

si
on

re
im

pl
.

Pe
r-

pr
om

pt
Tr

ai
ni

ng
=

O
ur

M
et

ho
d,

AT
T3

D
A

m
or

tiz
ed

Tr
ai

ni
ng

matte painting of a
castle made of cheesecake

surrounded by a moat
made of ice cream

a vase with
pink flowers

a hamburger

Figure 5: Here we qualitatively assess our method rela-
tive to the baseline per-prompt training – i.e., DreamFu-
sion’s method. A public DreamFusion implementation is
not available. Takeaway: Our re-implementation achieves
similar quality to the original. Also, our amortized method
performs comparably to per-prompt training.

Designing larger prompt sets was challenging because
the per-prompt baselines could not effectively handle open-
domain text prompts. We partially overcame this limitation
by creating compositional prompt sets using prompt com-
ponents that the underlying model effectively handled.

3.2. Amortized Text-to-3D Training
Alg. 1 overviews our training procedure. In each opti-

mization step, we sample several prompts and produce their
– potentially cached – text embeddings z, which we use to
compute the modulations m(c). We also sample camera
poses and rendering conditions. These are combined with
the NeRF module to render our images. We then use the
Score Distillation Sampling loss [1] to update the NeRF.

As in prior work, we augment text prompts depending on
camera position – “. . . , front/side/rear view”. We provide
the text embeddings (without augmentation) to the mapping
network to modulate the NeRF.

3.2.1 Stabilizing Optimization

The NeRF’s loss is specified by a denoising diffusion model
(DDM) and thus changes during training akin to bilevel se-
tups like GANs [18–20] and actor-critic models [21]. We
use techniques from nested optimization to stabilize train-
ing motivated by observing similar failure modes. Specifi-
cally, we required spectral normalization [19] – crucial for
large-scale GANs [20] – to mitigate numerical instability.

Removing optimization momentum helped minimize os-
cillations from complex dynamics as in nested optimiza-
tion [22, 23]. Unlike DreamFusion, we did not benefit from
Distributed Shampoo [24] and, instead, use Adam [25].

17949



3.2.2 Amortizing Over Other Settings

So far, we described amortizing optimization over many
prompts. More generally, we can amortize over other vari-
ables like the choice of guidance weight, regularizers, data
augmentation, or other aspects of the loss function. We use
this to explore techniques for allowing semantically mean-
ingful prompt interpolations, which is a valuable property
of generative models like GANs [18] and VAEs [26].

There are various prompt interpolation strategies we can
amortize over, like, between text embeddings, guidance
weights, or loss functions; see App. Fig. 18 for specifics.
To sample an interpolated setup, we sample prompt (em-
bedding) pairs c1, c2 and an interpolant weight ↵ 2 [0, 1].
We must give this information to our mapping network -
ex., by making it an input m(c1, c2,↵). Instead, we input
interpolated embeddings, allowing an unmodified architec-
ture and incorporating prompt permutation invariance:1

m ((1� ↵) c1 + ↵c2) (6)

In addition to the text prompts distribution, we must
choose the interpolant weights ↵’s distribution. For ex-
ample, we could sample uniform ↵ 2 [0, 1], or a binary
↵ 2 {0, 1} – i.e., training without interpolants – which are
both special cases of a Dirichlet distribution. The Dirichlet
concentration coefficient is another user choice to change
results qualitatively – see App. Fig. 19. We show exam-
ples of various loss interpolations in Figs. 3 and 20. The
interpolation setup is further details in App. Sec. B.1.14.

3.3. Why We Amortize

Reduce training cost (Fig. 6): We train on text prompts for
a fraction of the per-prompt cost.
Generalize to unseen prompts (Fig. 2, 8): We seek strong
performance when evaluating our model on unseen prompts
during the amortized training without extra optimization.
Prompt interpolations (Fig. 3): Unlike current TT3D, we
can interpolate between prompts, allowing: (a) generating a
continuum of novel assets, or (b) creating 3D animations.

4. Results and Discussion

Here, we investigate our method’s potential benefits. We
refer to the baseline as “per-prompt optimization”, which
follows existing works using separate optimization for each
prompt. The specific NeRF rendering and SDS loss im-
plementation are equivalent between the baseline and our
method – see Fig. 5. App. Sec. C contains additional exper-
iments, ablations, and visualizations.

1By invariance we actually mean m(c1,c2,↵) = m(c2,c1,1� ↵).

Algorithm 1 ATT3D Pseudocode for each update
Changes from DreamFusion Sec. 3 shown in red

1: for each loss term in batch do
2: sample a text and it’s embedding c
3: compute the modulation m0 = m(c)
4: sample camera position
5: add front/side/back to text, given camera
6: sample textureless/shadeless/full render
7: perform the render:
8: create a ray for each pixel in the frame
9: at each ray, sample multiple points x

10: at each point, compute encoding �0=�m0(x)
11: at each point, compute the radiance ⌫(�0)
12: composite radiance into a frame
13: add noise to frame
14: compute denoised frame with the DDM via ✏̂
15: compute gradient using ✏̂� ✏ as per SDS

4.1. How We Evaluate ATT3D
We first describe the datasets we use, then our metrics

for quality and cost.

4.1.1 Our Text Prompt Datasets

DreamFusion (DF): The DF27 dataset consists of the 27
prompts from DreamFusion’s main paper, while DF411 has
411 prompts from the project page. We explore memorizing
these datasets but find them unsuitable for generalization.
Compositional: To test generalization, we design a compo-
sitional prompt set by composing fragments with the tem-
plate “a {animal} {activity} {theme}” and hold out
a subset of “unseen” prompts. Our model must general-
ize to unseen compositions that require nontrivial changes
to geometry. Using this template, we created a small pig-
prompts and a larger animal-prompts dataset detailed in
App. Sec. B.1.12 and shown in Figs. 2 and 8. We hold out
8 out of the 64 pig prompts, as shown in Fig. 2. For the ani-
mals, the held-out prompts are sampled homogeneously and
we investigate holding out larger fractions of the prompts.

4.1.2 Our Evaluation Metrics

Cost: We measure the computational cost of training per-
prompt models versus our amortized approach. Wall-clock
time and number of iterations are insufficient because we
train with varying compute setups and numbers of GPUs –
see App. Sec. B.2. To account for this difference, we mea-
sure the number of rendered frames used for training (nor-
malized by the number of prompts). Specifically, this is the
number of optimization iterations times batch size divided
by the total number of prompts in the dataset.

17950



A
ve

ra
ge

R
-p

ro
ba

bi
lit

y
DF27 Prompts (Small) Pig Prompts (Small + Compositional)

Compute Budget = Number of rendered frames used in training per prompt

Animal Prompts (Large + Compositional)

Figure 6: We display the quality against compute budget for a split of seen & unseen (dashed) prompts with our method (in
blue and green) & existing work’s per-prompt optimization baseline (in red). Our method is only trained on the seen split
of the prompts. At a given training iteration, the amortized model is evaluated zero-shot on unseen prompts. Takeaway:
For any compute budget, we achieve a higher quality on both the seen and unseen prompts. Our benefits grow for larger,
compositional prompt sets. Left: The 27 prompts from DreamFusion (Fig. 11). Middle: The 64 compositional pig prompts
(Fig. 2). Per-prompt optimization cannot perform zero-shot generation for unseen prompts, so we report the performance of a
random initialization baseline. Right: The 2400 compositional animal prompts (Fig. 8), with varying prompt proportions used
in training. The generalization gap is small when training on 50% of the prompts. Notably, the cheap testing performance is
better than the expensive per-prompt method with only 12.5% of the prompts.

Quality: CLIP R-(prec.)ision is a text-to-3D correspon-
dence metric introduced in Dream Fields [27], defined as
the CLIP model’s accuracy at classifying the correct text
input of a rendered image from amongst a set of distrac-
tor prompts (i.e., the query set). CLIP R-(prob.)ability is
the probability assigned to the correct prompt instead of the
binary accuracy, preserving information about confidence,
and reducing noise. We found that R- metrics track each
other (App. Fig. 12), so we focus on R-prob. We evaluate
R-prob. averaged over the input prompt dataset and four
distinct rendered views as in DreamFusion [1], using the
entire dataset as our query set. The queries in DF27 are
highly dissimilar, so we make the metric harder by adding
the DF411 prompts to the query set.

4.2. Can We Reduce Training Cost?

Before evaluating generalization, we see if our method
can optimize a diverse prompt collection faster than opti-
mizing individually. Fig. 6 gives the R-probability against
compute budget for our method & per-prompt optimization,
showing we achieved higher quality for any budget. App.
Figs. 11 and 14, qualitatively show we accurately memo-
rize all prompts in DreamFusion’s main paper and extended
prompt set for a reduced cost – perhaps from component re-
use as in App. Fig. 15. So, we have a powerful optimization
method that quickly memorizes training data.

But does the performance generalize to unseen prompts?
Current TT3D methods optimize 1 prompt, so any gener-
alization is a valuable contribution. App. Fig. 16 shows
unseen composed and interpolated prompts, with promising
results, which we improve in Secs. 4.3 and 4.4 respectively.

4.3. Can We Generalize to Unseen Prompts?

Next, we investigate generalizing to unseen prompts
with no extra optimization. We used compositional prompt
datasets to evaluate (compositional) generalization in the
smaller pig and larger animal prompt datasets. Fig. 6 shows
R-probability against compute budget on both seen & un-
seen prompts for our method & per-prompt optimization
showing that we achieved higher quality for any compute
budget on both prompt sets. Our generalization is especially
evident in the larger prompt set, where we held out a signif-
icant fraction of the training prompts. With 50% of prompts
withheld, we have a minimal generalization gap. With only
12.5% (300) prompts seen during training, generalization to
unseen prompts was better than per-prompt optimization on
seen prompts with only 1/4 the per-prompt compute budget.

To understand the superior performance, we visually
compare a subset of pig prompts with the “holding a blue
balloon” activity in Fig. 7. ATT3D produced more con-
sistent results than per-prompt optimization, potentially ex-
plaining our higher R-probability. Visualizations for the pig
and animal experiments are in Figs. 2 and 8, respectively.
This confirms we can achieve strong generalization perfor-
mance with a sufficient prompt set. Further, quality can be
improved with fine-tuning strategies (App. Fig. 17).

4.4. Can We Make Useful Interpolations?

Next, we investigate our method’s ability to create ob-
jects as we interpolate between text prompts with no addi-
tional test-time optimization. In Fig. 3, we show rendered
outputs as we interpolate between different prompts. The
output remains realistic with smooth transitions.

17951



Amortized Training
“.

..h
ol

di
ng

a
bl

ue
ba

llo
on

”

Per-prompt optimization
Figure 7: We compare amortized and per-prompt optimization on the prompts of the form “...holding a blue balloon.”
Amortization discovers a canonical orientation and always makes the balloon blue, while per-prompt training may only make
the background blue or fail altogether, potentially explaining performance improvements in Fig. 6.

For Fig. 3, top right, we did not use loss amortization and
generalize to interpolants while only training on the 3 rock
prompts. But, some prompts gave suboptimal results with-
out interpolant training (App. Fig. 16) which we improved
by interpolant amortization (Sec. 3.2.2). We evaluated sev-
eral prompt interpolation approaches. App. Fig. 18 com-
pares 3 interpolant amortization types: loss weightings, in-
terpolated embeddings, and guidance weightings, showing
various ways to control results. App. Fig. 19 compares dif-
ferent interpolant sampling strategies during training, pro-
viding qualitatively different ways to generate assets.

5. Related Work
We cover the various fields our method combines: (a)

text-to-image generation, then (b) image-to-3D models,
which lead to (c) text-to-3D models, which we augment
with (d) amortized optimization.
Text-to-image Generation: (A)TT3D methods [1, 2, 15]
use large-scale text-conditional DDMs [3, 4, 28–30], which
train using classifier-free guidance to sample images match-
ing text prompts [12]. While these models generate diverse
and high-fidelity images for many prompts, they cannot pro-
vide view-consistent renderings of a single object and are
thus incapable of making 3D assets directly.
Image-to-3D Models: Beyond using 3D assets to train
3D generative models, prior work has also used image
datasets. Most of these methods use NeRFs [6, 17, 31–
34] as a differentiable renderer optimized to produce im-
age datasets. Differentiable mesh rendering is an alterna-
tive [35–38]. Chan et al. [9] are closely related in this cate-
gory, using a StyleGAN generator modulated with a learned
latent code to produce a triplanar grid that is spatially inter-
polated and fed through a NeRF producing a static image
dataset. We also modulate spatially oriented feature grids,
without relying on memory-intensive pre-trained generator
backbones. These techniques may prove valuable in future
work scaling to ultra-large prompt sets.

Text-to-3D Generation: Recent advances include CLIP-
forge [39], CLIP-mesh [40], Latent-NeRF [41], Dream
Field [27], Score-Jacobian-Chaining [15], & DreamFu-
sion [1]. In CLIP-forge [39], the model is trained for shapes
conditioned on CLIP text embeddings from rendered im-
ages. During inference, the embedding is provided for
the generative model to synthesize new shapes based on
the text. CLIP-mesh [40] and Dream Field [27] optimized
the underlying 3D representation with the CLIP-based loss.
Magic3D adds a finetuning phase with a textured-mesh
model [42], allowing high resolutions. Future advances
may arise by combining with techniques from uncondi-
tional 3D generation [43–45]. Notable open-source contri-
butions are Stable-Dreamfusion [46] and threestudio [47].
Other concurrent works include Zero-1-to-3 [48], Fanta-
sia3D [49], Dream3D [50], DreamAvatar [51], and Prolific-
Dreamer [52]. However, we differ from all of these text-to-
3D works, because we amortize over the text prompts.

Amortized Optimization: Amortized optimization [16]
is a tool of blossoming importance in learning to opti-
mize [53] and machine learning, with applications to meta-
learning [54], hyperparameter optimization [55, 56], and
generative modeling [26, 57–59]. Hypernetworks [60] are a
popular tool for amortization [55, 56, 61, 62] and have also
been used to modulate NeRFs [17, 63, 64], inspiring our
strategy. Our method differs from prior works by modulat-
ing spatially oriented parameters, and our objective is from
a (dynamic) DDM instead of a (static) dataset.

Text-to-3D Animation: Text-to-4D [65] is an approach
for directly making 3D animations from text, instead of our
interpolation strategy. This is done by generalizing TT3D
to use a text-to-video model [28, 66, 67], instead of a text-
to-image model. However, unlike us, this requires text-to-
video, which can require video data.

17952



Testing prompt for Amortized 50% split, at 4800
Testing prompt for Amortized 12.5% split, at 4800

Per-prompt at 4800

Figure 8: We show quantitative results for the 2400 animal prompts in Fig. 6, where we achieve a higher quality for any
compute budget on seen & unseen prompts. Notably, when training on only 50% or 12.5% of the prompts, the unseen
prompts – which cost no optimization – perform stronger than the per-prompt method, which must optimize on the data.
Takeaway: By training a single model on many text prompts we generalize to unseen prompts without extra optimization.

Figure 9: Results for amortized training on DreamFusion’s
extended set of 411 text prompts, DF411. See Fig. 14 for
the full set. Takeaway: We scale to diverse prompt sets
>10⇥ larger than DF27 (Fig. 11) with minor quality drop.

6. Conclusion
We presented ATT3D, a method for amortized optimiza-

tion of text-to-3D (TT3D) models. We use a mapping net-
work from text to NERFs, enabling a single model to rep-
resent 3D objects of many different prompts. We experi-
mentally validate our method on existing and new compo-
sitional prompt sets. We are faster at training than current
TT3D methods by sharing the optimization cost across a
prompt set. Once trained, our model generalizes by directly
outputting objects for prompts unseen during training in a
single forward pass. Furthermore, by amortizing over inter-
polation weights, we quickly generate a continuum of inter-
polations between prompts, enhancing user control.

Although ATT3D only represents a small step towards
general and fast text-to-3D generation, we believe that the
ideas presented are a promising avenue toward this future.

Limitations: Our method builds on the existing text-to-
3D optimization paradigm, so we share several limitations
with these works: More powerful text-to-image DDMs may
be required for higher quality and robustness in results. The
objective has high variance, and the system can be sensi-
tive to prompt engineering. We also suffer from a lack of
diversity, as in prior work. We found that similar prompts
can collapse to the same scene when amortizing. Finally,
larger object-centric prompt sets are required to further test
the scaling of amortized training.

Ethics Statement: Text-to-image models carry ethical
concerns for synthesizing images, which text-to-3D mod-
els like this share. For example, we may inherit any biases
in our underlying text-to-image model. These models could
displace creative jobs or enable the growth and accessibility
of 3D asset generation. Alternatively, 3D synthesis models
could be used to generate misinformation by bad actors.

Reproducibility Statement: Our instant-NGP NeRF
backbone is publicly available through the “instant-ngp”
repository [7]. While our diffusion model is not publicly
available (as in DreamFusion [1]), other available models
may be used to produce similar results. To aid reproducibil-
ity, we include a method schematic in Fig. 4 and pseu-
docode in Alg. 1. Our evaluation setup is in Sec. 4.1 along
with hyperparameters and other details in App. Sec. B.

17953



Acknowledgements
We thank Weiwei Sun, Matan Atzmon, and Or Perel for
helpful feedback. The Python community [68, 69] made
underlying tools, including PyTorch [70] & Matplotlib [71].

Disclosure of Funding
NVIDIA funded this work. Jonathan Lorraine, Kevin Xie,
Xiaohui Zeng, and Towaki Takikawa had funding from stu-
dent scholarships at the University of Toronto and the Vec-
tor Institute, which are not in direct support of this work.

References
[1] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben

Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv:2209.14988, 2022. 1, 2, 3, 4, 6, 7, 8, 12, 13, 14, 16

[2] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. arXiv:2211.10440, 2022. 1, 7,
12, 14, 19, 20

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-
image diffusion models with an ensemble of expert denois-
ers. arXiv:2211.01324, 2022. 1, 3, 7

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022. 7

[5] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-
image diffusion models with deep language understanding.
arXiv:2205.11487, 2022. 1, 3

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 2021. 3, 7, 12

[7] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. arXiv:2201.05989, 2022. 3, 8,
12

[8] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas
Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler.
Variable bitrate neural fields. In ACM SIGGRAPH 2022 Con-
ference Proceedings, 2022.

[9] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-
cient geometry-aware 3d generative adversarial networks.

In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 3, 7

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 2020. 3

[11] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv:2011.13456, 2020. 3

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv:2207.12598, 2022. 3, 7

[13] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. JMLR, 2020. 3

[14] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. 2021. 3

[15] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A
Yeh, and Greg Shakhnarovich. Score jacobian chaining:
Lifting pretrained 2d diffusion models for 3d generation.
arXiv:2212.00774, 2022. 3, 7

[16] Brandon Amos. Tutorial on amortized optimiza-
tion for learning to optimize over continuous domains.
arXiv:2202.00665, 2022. 3, 7

[17] Daniel Rebain, Mark J Matthews, Kwang Moo Yi, Gopal
Sharma, Dmitry Lagun, and Andrea Tagliasacchi. At-
tention beats concatenation for conditioning neural fields.
arXiv:2209.10684, 2022. 3, 7, 12

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 2020. 4, 5

[19] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv:1802.05957, 2018. 4

[20] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv:1809.11096, 2018. 4

[21] David Pfau and Oriol Vinyals. Connecting generative adver-
sarial networks and actor-critic methods. arXiv:1610.01945,
2016. 4

[22] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad
Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momentum for im-
proved game dynamics. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, 2019. 4

17954



[23] Jonathan P Lorraine, David Acuna, Paul Vicol, and David
Duvenaud. Complex momentum for optimization in games.
In International Conference on Artificial Intelligence and
Statistics, pages 7742–7765. PMLR, 2022. 4

[24] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and
Yoram Singer. Scalable second order optimization for deep
learning. arXiv:2002.09018, 2020. 4

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 4

[26] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv:1312.6114, 2013. 5, 7, 12

[27] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object gen-
eration with dream fields. In CVF Conference on Computer
Vision and Pattern Recognition Proceedings, 2022. 6, 7

[28] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv:2210.02303, 2022. 7

[29] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv:2204.06125, 2022.

[30] Alex Shonenkov, Misha Konstantinov, Daria Bakshandaeva,
Christoph Schuhmann, Ksenia Ivanova, and Nadiia Klokova.
If by deepfloyd lab at stabilityai, 2023. github.com/
deep-floyd/IF. 7

[31] Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry La-
gun, and Andrea Tagliasacchi. Lolnerf: Learn from one look.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 7

[32] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit gener-
ative adversarial networks for 3d-aware image synthesis.
In IEEE/CVF conference on computer vision and pattern
recognition, 2021.

[33] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and
Andrea Vedaldi. Realfusion: 360deg reconstruction of any
object from a single image. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023.

[34] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran
Yi, Lizhuang Ma, and Dong Chen. Make-it-3d: High-
fidelity 3d creation from a single image with diffusion prior.
arXiv:2303.14184, 2023. 7

[35] Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aurelien
Lucchi. Learning generative models of textured 3d meshes
from real-world images. In IEEE/CVF International Confer-
ence on Computer Vision, 2021. 7

[36] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. arXiv:2209.11163, 2022.

[37] Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-
Francine Moens, and Aurelien Lucchi. Convolutional gener-
ation of textured 3d meshes. Advances in Neural Information
Processing Systems, 2020.

[38] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in Neural Information Process-
ing Systems, 32, 2019. 7

[39] Aditya Sanghi, Hang Chu, Joseph Lambourne, Ye Wang,
Chin-Yi Cheng, and Marco Fumero. Clip-forge: Towards
zero-shot text-to-shape generation. arXiv:2110.02624, 2021.
7

[40] Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu
Popa. Clip-mesh: Generating textured meshes from text
using pretrained image-text models. ACM Transactions on
Graphics (TOG), Proc. SIGGRAPH Asia, 2022. 7

[41] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation of
3d shapes and textures. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023. 7

[42] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-
tation for high-resolution 3d shape synthesis. Advances in
Neural Information Processing Systems, 2021. 7

[43] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al.
Gaudi: A neural architect for immersive 3d scene genera-
tion. arXiv:2207.13751, 2022. 7

[44] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

[45] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In IEEE/CVF
International Conference on Computer Vision, 2021. 7

[46] Jiaxiang Tang. Stable-dreamfusion: Text-to-3d with
stable-diffusion, 2022. github.com/ashawkey/
stable-dreamfusion. 7

[47] Yuan-Chen Guo, Ying-Tian Liu, Chen Wang, Zi-Xin Zou,
Guan Luo, Chia-Hao Chen, Yan-Pei Cao, and Song-Hai
Zhang. threestudio: A unified framework for 3d content
generation. github.com/threestudio-project/
threestudio, 2023. 7

17955

github.com/deep-floyd/IF
github.com/deep-floyd/IF
github.com/ashawkey/stable-dreamfusion
github.com/ashawkey/stable-dreamfusion
github.com/threestudio-project/threestudio
github.com/threestudio-project/threestudio


[48] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. arXiv:2303.11328, 2023.
7

[49] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. arXiv:2303.13873, 2023.
7

[50] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying
Shan, Xiaohu Qie, and Shenghua Gao. Dream3d: Zero-shot
text-to-3d synthesis using 3d shape prior and text-to-image
diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023. 7

[51] Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and
Kwan-Yee K Wong. Dreamavatar: Text-and-shape
guided 3d human avatar generation via diffusion models.
arXiv:2304.00916, 2023. 7

[52] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. arXiv:2305.16213, 2023. 7

[53] Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard
Heaton, Jialin Liu, Zhangyang Wang, and Wotao Yin.
Learning to optimize: A primer and a benchmark.
arXiv:2103.12828, 2021. 7

[54] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and
Amos Storkey. Meta-learning in neural networks: A survey.
IEEE transactions on pattern analysis and machine intelli-
gence, 2021. 7

[55] Jonathan Lorraine and David Duvenaud. Stochas-
tic hyperparameter optimization through hypernetworks.
arXiv:1802.09419, 2018. 7

[56] Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Du-
venaud, and Roger Grosse. Self-tuning networks: Bilevel op-
timization of hyperparameters using structured best-response
functions. In International Conference on Learning Repre-
sentations, 2018. 7

[57] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, 2014. 7

[58] Chris Cremer, Xuechen Li, and David Duvenaud. Inference
suboptimality in variational autoencoders. In International
Conference on Machine Learning, 2018.

[59] Mike Wu, Kristy Choi, Noah Goodman, and Stefano Ermon.
Meta-amortized variational inference and learning. In AAAI
Conference on Artificial Intelligence, 2020. 7

[60] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv:1609.09106, 2016. 7

[61] Chris Zhang, Mengye Ren, and Raquel Urtasun.
Graph hypernetworks for neural architecture search.
arXiv:1810.05749, 2018. 7

[62] Boris Knyazev, Michal Drozdzal, Graham W Taylor, and
Adriana Romero Soriano. Parameter prediction for unseen
deep architectures. Advances in Neural Information Process-
ing Systems, 2021. 7

[63] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. Advances in Neural Information
Processing Systems, 2020. 7

[64] Emilien Dupont, Hyunjik Kim, SM Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From
data to functa: Your data point is a function and you can
treat it like one. In ICML, 2022. 7

[65] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual,
Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea
Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dy-
namic scene generation. arXiv:2301.11280, 2023. 7

[66] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv:2209.14792, 2022. 7

[67] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023. 7

[68] Guido Van Rossum and Fred L Drake Jr. Python reference
manual. Centrum voor Wiskunde en Informatica Amster-
dam, 1995. 9

[69] Travis E Oliphant. Python for scientific computing. Com-
puting in Science & Engineering, 2007. 9

[70] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. Openreview, 2017. 9, 15

[71] John D Hunter. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, 2007. 9

[72] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv:1606.08415, 2016. 12

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 2017. 13

[74] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: struc-
tured view-dependent appearance for neural radiance fields.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 13

17956


	. Introduction
	. Contributions

	. Background
	. NeRFs for Image-to-3D
	. Text-to-Image Generation
	. Text-to-3D (TT3D) Generation
	. Amortized Optimization

	. Our Method: Amortized Text-to-3D
	. The Amortized Model used at Inference
	. Amortized Text-to-3D Training
	Stabilizing Optimization
	Amortizing Over Other Settings

	. Why We Amortize

	. Results and Discussion
	. How We Evaluate ATT3D
	Our Text Prompt Datasets
	Our Evaluation Metrics

	. Can We Reduce Training Cost?
	. Can We Generalize to Unseen Prompts?
	. Can We Make Useful Interpolations?

	. Related Work
	. Conclusion
	. -0.001Glossary
	. Experimental Setup
	. Implementation Details
	Point-encoder bold0mu mumu subsubappendix
	Final NeRF MLP bold0mu mumu subsubappendix
	Mapping Network bold0mu mumu mmsubsubappendixmmmm
	Environment Mapping Network
	Spectral Normalization
	Sampling Text Prompts
	Sampling Rendering Conditions
	Score Distillation Sampling
	The Objective
	The Optimization
	Memorization Experiments
	Generalization Experiments
	Finetuning Experiments
	Interpolation Experiments

	. Compute Requirements
	Per-prompt Optimization
	Amortized Training
	Inference


	. Results
	. Additional Experiments & Visualizations


