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Figure 1: Our method initially trains one network to output 3D objects consistent with various text prompts. After, when
we receive an unseen prompt, we produce an accurate object in < 1 second, with 1 GPU. Existing methods re-train the
entire network for every prompt, requiring a long delay for the optimization to complete. Further, we can interpolate between
prompts for user-guided asset generation (Fig. 3). We include a project webpage with an overview and videos.

Abstract
Text-to-3D modelling has seen exciting progress by com-

bining generative text-to-image models with image-to-3D
methods like Neural Radiance Fields. DreamFusion re-
cently achieved high-quality results but requires a lengthy,
per-prompt optimization to create 3D objects. To address
this, we amortize optimization over text prompts by training
on many prompts simultaneously with a unified model, in-
stead of separately. With this, we share computation across
a prompt set, training in less time than per-prompt optimiza-
tion. Our framework – Amortized Text-to-3D (ATT3D) –
enables knowledge sharing between prompts to generalize
to unseen setups and smooth interpolations between text for
novel assets and simple animations.

1. Introduction
3D content creation is important because it allows for

more immersive and engaging experiences in industries
such as entertainment, education, and marketing. However,
3D design is challenging due to technical complexity of
the 3D modeling software, and the artistic skills required
to create high-quality models and animations. Text-to-3D
(TT3D) generative tools have the potential to democratize
3D content creation by relieving these limitations. To make
this technology successful, we desire tools that provide fast
responses to users while being inexpensive for the operator.

Recent TT3D methods [1, 2] allow users to generate
high-quality 3D models from text-prompts but use a lengthy
(⇠15 minute to >1 hour [1, 2]) per-prompt optimization.
Having users wait between each iteration of prompt engi-
neering results in a sporadic and time-consuming design
process. Further, generation for a new prompt requires mul-
tiple GPUs and uses large text-to-image models [3–5], cre-
ating a prohibitive cost for the pipeline operator.

We split the TT3D process into two stages. First, we op-
timize one model offline to generate 3D objects for many
different text prompts simultaneously. This amortizes opti-
mization over the prompts, by sharing work between similar
instances. The second, user-facing stage uses our amortized
model in a simple feed-forward pass to quickly generate an
object given text, with no further optimization required.

Our method, Amortized text-to-3D (ATT3D), produces a
model which can generate an accurate 3D object in < 1 sec-
ond, with only 1 consumer-grade GPU. This TT3D pipeline
can be deployed more cheaply, with a real-time user ex-
perience. Our offline stage trains the ATT3D model sig-
nificantly faster than optimizing prompts individually while
retaining or even surpassing quality, by leveraging compo-
sitionality in the parts underlying each 3D object. We also
gain a new user-interaction ability to interpolate between
prompts for novel asset generation and animations.
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ATT3D Per-prompt Training

Figure 2: We show results on a compositional prompt set. Each row has a different activity, while each column has a theme,
which we combine into the prompt “a pig {activity} {theme}.” while we evaluate generalization on a held-out set
of unseen testing prompts in red on the diagonal. Left: Our method. Interestingly, the amortized objects have a unified
orientation. Right: The per-prompt training baseline [1], with a random initialization for unseen prompts to align compute
budgets. Takeaway: Our model performs comparably to per-prompt training on the seen prompts, with a far smaller compute
budget (Fig. 6). Importantly, we perform strongly on unseen prompts with no extra training, unlike per-prompt training.

“... dress made of fruit ...” “... dress made of garbage bags...”

Rendered frames from ATT3D with text embedding (1� ↵)c1 + ↵c2 for ↵ 2 [0, 1]

“snowy rock”

“jagged rock” “mossy rock”
“... cottage with a thatched roof ” “... house in Tudor Style”

“... red convertible” “... destroyed car”

“...in the spring” “...in the summer” “...in the fall” “...in the winter”
Figure 3: We show renders of our model’s output on interpolated text embeddings (1�↵)c1+↵c2. We generate a continuum
of landscape, clothing, building, and vehicle assets, and use chains of prompts for animations, like seasonality in a tree.
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1.1. Contributions
We present a method to synthesize 3D objects from text

prompts immediately. By using amortized optimization we
can:

• Generalize to new prompts – Fig. 2.
• Interpolate between prompts – Fig. 3.
• Amortize over settings other than text prompts –

Sec. 3.2.2.
• Reduce overall training time – Fig. 6.

2. Background
This section contains concepts and prior work relevant to

our method, with notation in App. Table 1.

2.1. NeRFs for Image-to-3D
NeRFs [6] represent 3D scenes via a radiance field pa-

rameterized by a neural network. We denote 3D coordi-
nates with x = [x, y, z] 2 X and the radiance values with
r = [�, r, g, b] 2 R. NeRFs are trained to output radi-
ance fields to render frames similar to multi-view images
with camera information. Simple NeRFs map locations x
to radiances r via an MLP-parameterized function. Recent
NeRFs use spatial grids storing parameters queried per lo-
cation [7–9], integrating spatial inductive biases. We view
this as a point-encoder function �w:X !� with parameters
w encoding a location x before the final MLP ⌫ :�!R.

r = ⌫ (�w (x)) (1)

2.2. Text-to-Image Generation
The wide availability of captioned image datasets has

enabled the development of powerful text-to-image gener-
ative models. We use a DDM with comparable architec-
ture to recent large-scale methods [3–5]. We train for score-
matching, where (roughly) input images have noise added
to them [10, 11] that the DDM predicts. Critically, these
models can be conditioned on text to generate matching im-
ages via classifier-free guidance[12]. We use pre-trained
T5-XXL [13] and CLIP [14] encoders to generate text em-
beddings, which the DDM conditions on via cross-attention
with latent image features. Crucially, we reuse the text to-
ken embeddings – denoted c – for modulating our NeRF.

2.3. Text-to-3D (TT3D) Generation
Prior works rely on per-prompt optimization to generate

3D scenes. Recent TT3D methods [1, 15] use text-to-image
generative models to train NeRFs. To do so, they render
a view and add noise. The DDM, conditioned on a text
prompt, approximates ✏ with ✏̂, using the difference ✏̂�✏ to
update NeRF parameters. We outline this method in Alg. 1
and Fig. 4 and refer to DreamFusion Sec. 3 for more details.

2.4. Amortized Optimization
Amortized optimization methods use learning to predict

solutions when we repeatedly solve similar instances of the
same problem [16]. Current TT3D independently optimizes
prompts, whereas, in Sec. 3, we use amortized methods.

A typical amortization strategy is to find a problem con-
text – denoted z – to change our optimization, with some
strategies specialized for NeRFs [17]. For example, con-
catenating the context to the NeRF’s MLP: r(x, z) =
⌫(�(x), z) Or, having a mapping network m outputting
modulations to the weights or hidden units:

r (x, z) = ⌫ (�m(z) (x)) (2)

But, designing useful contexts, z, can be non-trivial.

3. Our Method: Amortized Text-to-3D
Our method has an initial training stage using amortized

optimization, after which we perform cheap inference on
new prompts. We first describe the ATT3D architecture and
its use during inference, then the training procedure.

3.1. The Amortized Model used at Inference
At inference, our model consists of a mapping network

m, a NeRF ⌫, and a spatial grid of features �w with pa-
rameters w (Fig. 4). The mapping network takes in an
(encoded) text prompt c and produces feature grid modu-
lations: �m(c). Our final NeRF module ⌫ is a small MLP
acting on encoded points �m(c)(x) – Eq. 1 – representing
a 3D object for the text prompt with the modulated feature
grid. Full details are in App. Sec. B.1 and summarized here.
Architectural details: We followed Instant NGP [7] for
our NeRF, notably using multi-resolution voxel/hash grids
for our point-encoder �. We use hypernetwork modula-
tions for implementation and computational simplicity, with
alternatives of concatenation and attention considered in
App. B.1.3. Hypernetwork approaches output the point-
encoder parameters w from a text embedding c:

w = Hypernetwork(c) (3)

We simply output via a vector v from the text embeddings,
which is used to output the parameters via linear maps.

v = SiLU(linearspec.norm
w/ bias (flatten(c))) (4)

w = reshape(linearspec.norm
no bias (v)) (5)

This w parameterizes the point-encoder �w, which is used
to evaluate radiances per-point as per Eq. 1. This simple ap-
proach solved our prompt sets, so we used it in all results.
Using more sophisticated hypernetworks performed com-
parably but was slower. However, this may be necessary for
scaling to more complicated sets of prompts.

17948



NeRF
network 

mapping
network

text encoder (CLIP/T5)text encoder (CLIP/T5)

Trainingtext prompts
“A bunny sitting
on some pancakes”

spatial
features

embeddings

interpolated
lookup

position

volume
renderings

Inference

rendered
views

spatial
features

add
noise

text-conditioned
denoising diffusion model

DDM

Δ noise
update

feature-encoded
position

position

NeRF
network 

mapping
network

text encoder (CLIP/T5)text encoder (CLIP/T5)

new text prompt
“A frog wearing
a red sweater.”

spatial
features

embedding

interpolated
lookup

positionspatial
features feature-encoded

position

position

3D object

Figure 4: We show a schematic of our text-to-3D pipeline with changes from DreamFusion’s pipeline [1] shown in red and
pseudocode in Alg. 1. The text encoder (in green) provides its – potentially cached – text embedding c to the text-to-image
DDM and now also to the mapping network m (in red). We use a spatial point-encoder �m(c) (in blue) for our position x,
whose parameters are modulations from the mapping network m(c). The final NeRF MLP ⌫ outputs a radiance r given the
point encoding: r = ⌫(�m(c)(x)), which we render into views. Left: At training time, the rendered views are input to the
DDM to provide a training update. The NeRF network ⌫, mapping network m, and (effectively) the spatial point encoding
�m(c) are optimized. Right: At inference time, we use the pipeline up to the NeRF for representing the 3D object.
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Figure 5: Here we qualitatively assess our method rela-
tive to the baseline per-prompt training – i.e., DreamFu-
sion’s method. A public DreamFusion implementation is
not available. Takeaway: Our re-implementation achieves
similar quality to the original. Also, our amortized method
performs comparably to per-prompt training.

Designing larger prompt sets was challenging because
the per-prompt baselines could not effectively handle open-
domain text prompts. We partially overcame this limitation
by creating compositional prompt sets using prompt com-
ponents that the underlying model effectively handled.

3.2. Amortized Text-to-3D Training
Alg. 1 overviews our training procedure. In each opti-

mization step, we sample several prompts and produce their
– potentially cached – text embeddings z, which we use to
compute the modulations m(c). We also sample camera
poses and rendering conditions. These are combined with
the NeRF module to render our images. We then use the
Score Distillation Sampling loss [1] to update the NeRF.

As in prior work, we augment text prompts depending on
camera position – “. . . , front/side/rear view”. We provide
the text embeddings (without augmentation) to the mapping
network to modulate the NeRF.

3.2.1 Stabilizing Optimization

The NeRF’s loss is specified by a denoising diffusion model
(DDM) and thus changes during training akin to bilevel se-
tups like GANs [18–20] and actor-critic models [21]. We
use techniques from nested optimization to stabilize train-
ing motivated by observing similar failure modes. Specifi-
cally, we required spectral normalization [19] – crucial for
large-scale GANs [20] – to mitigate numerical instability.

Removing optimization momentum helped minimize os-
cillations from complex dynamics as in nested optimiza-
tion [22, 23]. Unlike DreamFusion, we did not benefit from
Distributed Shampoo [24] and, instead, use Adam [25].
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3.2.2 Amortizing Over Other Settings

So far, we described amortizing optimization over many
prompts. More generally, we can amortize over other vari-
ables like the choice of guidance weight, regularizers, data
augmentation, or other aspects of the loss function. We use
this to explore techniques for allowing semantically mean-
ingful prompt interpolations, which is a valuable property
of generative models like GANs [18] and VAEs [26].

There are various prompt interpolation strategies we can
amortize over, like, between text embeddings, guidance
weights, or loss functions; see App. Fig. 18 for specifics.
To sample an interpolated setup, we sample prompt (em-
bedding) pairs c1, c2 and an interpolant weight ↵ 2 [0, 1].
We must give this information to our mapping network -
ex., by making it an input m(c1, c2,↵). Instead, we input
interpolated embeddings, allowing an unmodified architec-
ture and incorporating prompt permutation invariance:1

m ((1� ↵) c1 + ↵c2) (6)

In addition to the text prompts distribution, we must
choose the interpolant weights ↵’s distribution. For ex-
ample, we could sample uniform ↵ 2 [0, 1], or a binary
↵ 2 {0, 1} – i.e., training without interpolants – which are
both special cases of a Dirichlet distribution. The Dirichlet
concentration coefficient is another user choice to change
results qualitatively – see App. Fig. 19. We show exam-
ples of various loss interpolations in Figs. 3 and 20. The
interpolation setup is further details in App. Sec. B.1.14.

3.3. Why We Amortize

Reduce training cost (Fig. 6): We train on text prompts for
a fraction of the per-prompt cost.
Generalize to unseen prompts (Fig. 2, 8): We seek strong
performance when evaluating our model on unseen prompts
during the amortized training without extra optimization.
Prompt interpolations (Fig. 3): Unlike current TT3D, we
can interpolate between prompts, allowing: (a) generating a
continuum of novel assets, or (b) creating 3D animations.

4. Results and Discussion

Here, we investigate our method’s potential benefits. We
refer to the baseline as “per-prompt optimization”, which
follows existing works using separate optimization for each
prompt. The specific NeRF rendering and SDS loss im-
plementation are equivalent between the baseline and our
method – see Fig. 5. App. Sec. C contains additional exper-
iments, ablations, and visualizations.

1By invariance we actually mean m(c1,c2,↵) = m(c2,c1,1� ↵).

Algorithm 1 ATT3D Pseudocode for each update
Changes from DreamFusion Sec. 3 shown in red

1: for each loss term in batch do
2: sample a text and it’s embedding c
3: compute the modulation m0 = m(c)
4: sample camera position
5: add front/side/back to text, given camera
6: sample textureless/shadeless/full render
7: perform the render:
8: create a ray for each pixel in the frame
9: at each ray, sample multiple points x

10: at each point, compute encoding �0=�m0(x)
11: at each point, compute the radiance ⌫(�0)
12: composite radiance into a frame
13: add noise to frame
14: compute denoised frame with the DDM via ✏̂
15: compute gradient using ✏̂� ✏ as per SDS

4.1. How We Evaluate ATT3D
We first describe the datasets we use, then our metrics

for quality and cost.

4.1.1 Our Text Prompt Datasets

DreamFusion (DF): The DF27 dataset consists of the 27
prompts from DreamFusion’s main paper, while DF411 has
411 prompts from the project page. We explore memorizing
these datasets but find them unsuitable for generalization.
Compositional: To test generalization, we design a compo-
sitional prompt set by composing fragments with the tem-
plate “a {animal} {activity} {theme}” and hold out
a subset of “unseen” prompts. Our model must general-
ize to unseen compositions that require nontrivial changes
to geometry. Using this template, we created a small pig-
prompts and a larger animal-prompts dataset detailed in
App. Sec. B.1.12 and shown in Figs. 2 and 8. We hold out
8 out of the 64 pig prompts, as shown in Fig. 2. For the ani-
mals, the held-out prompts are sampled homogeneously and
we investigate holding out larger fractions of the prompts.

4.1.2 Our Evaluation Metrics

Cost: We measure the computational cost of training per-
prompt models versus our amortized approach. Wall-clock
time and number of iterations are insufficient because we
train with varying compute setups and numbers of GPUs –
see App. Sec. B.2. To account for this difference, we mea-
sure the number of rendered frames used for training (nor-
malized by the number of prompts). Specifically, this is the
number of optimization iterations times batch size divided
by the total number of prompts in the dataset.
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Figure 6: We display the quality against compute budget for a split of seen & unseen (dashed) prompts with our method (in
blue and green) & existing work’s per-prompt optimization baseline (in red). Our method is only trained on the seen split
of the prompts. At a given training iteration, the amortized model is evaluated zero-shot on unseen prompts. Takeaway:
For any compute budget, we achieve a higher quality on both the seen and unseen prompts. Our benefits grow for larger,
compositional prompt sets. Left: The 27 prompts from DreamFusion (Fig. 11). Middle: The 64 compositional pig prompts
(Fig. 2). Per-prompt optimization cannot perform zero-shot generation for unseen prompts, so we report the performance of a
random initialization baseline. Right: The 2400 compositional animal prompts (Fig. 8), with varying prompt proportions used
in training. The generalization gap is small when training on 50% of the prompts. Notably, the cheap testing performance is
better than the expensive per-prompt method with only 12.5% of the prompts.

Quality: CLIP R-(prec.)ision is a text-to-3D correspon-
dence metric introduced in Dream Fields [27], defined as
the CLIP model’s accuracy at classifying the correct text
input of a rendered image from amongst a set of distrac-
tor prompts (i.e., the query set). CLIP R-(prob.)ability is
the probability assigned to the correct prompt instead of the
binary accuracy, preserving information about confidence,
and reducing noise. We found that R- metrics track each
other (App. Fig. 12), so we focus on R-prob. We evaluate
R-prob. averaged over the input prompt dataset and four
distinct rendered views as in DreamFusion [1], using the
entire dataset as our query set. The queries in DF27 are
highly dissimilar, so we make the metric harder by adding
the DF411 prompts to the query set.

4.2. Can We Reduce Training Cost?

Before evaluating generalization, we see if our method
can optimize a diverse prompt collection faster than opti-
mizing individually. Fig. 6 gives the R-probability against
compute budget for our method & per-prompt optimization,
showing we achieved higher quality for any budget. App.
Figs. 11 and 14, qualitatively show we accurately memo-
rize all prompts in DreamFusion’s main paper and extended
prompt set for a reduced cost – perhaps from component re-
use as in App. Fig. 15. So, we have a powerful optimization
method that quickly memorizes training data.

But does the performance generalize to unseen prompts?
Current TT3D methods optimize 1 prompt, so any gener-
alization is a valuable contribution. App. Fig. 16 shows
unseen composed and interpolated prompts, with promising
results, which we improve in Secs. 4.3 and 4.4 respectively.

4.3. Can We Generalize to Unseen Prompts?

Next, we investigate generalizing to unseen prompts
with no extra optimization. We used compositional prompt
datasets to evaluate (compositional) generalization in the
smaller pig and larger animal prompt datasets. Fig. 6 shows
R-probability against compute budget on both seen & un-
seen prompts for our method & per-prompt optimization
showing that we achieved higher quality for any compute
budget on both prompt sets. Our generalization is especially
evident in the larger prompt set, where we held out a signif-
icant fraction of the training prompts. With 50% of prompts
withheld, we have a minimal generalization gap. With only
12.5% (300) prompts seen during training, generalization to
unseen prompts was better than per-prompt optimization on
seen prompts with only 1/4 the per-prompt compute budget.

To understand the superior performance, we visually
compare a subset of pig prompts with the “holding a blue
balloon” activity in Fig. 7. ATT3D produced more con-
sistent results than per-prompt optimization, potentially ex-
plaining our higher R-probability. Visualizations for the pig
and animal experiments are in Figs. 2 and 8, respectively.
This confirms we can achieve strong generalization perfor-
mance with a sufficient prompt set. Further, quality can be
improved with fine-tuning strategies (App. Fig. 17).

4.4. Can We Make Useful Interpolations?

Next, we investigate our method’s ability to create ob-
jects as we interpolate between text prompts with no addi-
tional test-time optimization. In Fig. 3, we show rendered
outputs as we interpolate between different prompts. The
output remains realistic with smooth transitions.
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Figure 7: We compare amortized and per-prompt optimization on the prompts of the form “...holding a blue balloon.”
Amortization discovers a canonical orientation and always makes the balloon blue, while per-prompt training may only make
the background blue or fail altogether, potentially explaining performance improvements in Fig. 6.

For Fig. 3, top right, we did not use loss amortization and
generalize to interpolants while only training on the 3 rock
prompts. But, some prompts gave suboptimal results with-
out interpolant training (App. Fig. 16) which we improved
by interpolant amortization (Sec. 3.2.2). We evaluated sev-
eral prompt interpolation approaches. App. Fig. 18 com-
pares 3 interpolant amortization types: loss weightings, in-
terpolated embeddings, and guidance weightings, showing
various ways to control results. App. Fig. 19 compares dif-
ferent interpolant sampling strategies during training, pro-
viding qualitatively different ways to generate assets.

5. Related Work
We cover the various fields our method combines: (a)

text-to-image generation, then (b) image-to-3D models,
which lead to (c) text-to-3D models, which we augment
with (d) amortized optimization.
Text-to-image Generation: (A)TT3D methods [1, 2, 15]
use large-scale text-conditional DDMs [3, 4, 28–30], which
train using classifier-free guidance to sample images match-
ing text prompts [12]. While these models generate diverse
and high-fidelity images for many prompts, they cannot pro-
vide view-consistent renderings of a single object and are
thus incapable of making 3D assets directly.
Image-to-3D Models: Beyond using 3D assets to train
3D generative models, prior work has also used image
datasets. Most of these methods use NeRFs [6, 17, 31–
34] as a differentiable renderer optimized to produce im-
age datasets. Differentiable mesh rendering is an alterna-
tive [35–38]. Chan et al. [9] are closely related in this cate-
gory, using a StyleGAN generator modulated with a learned
latent code to produce a triplanar grid that is spatially inter-
polated and fed through a NeRF producing a static image
dataset. We also modulate spatially oriented feature grids,
without relying on memory-intensive pre-trained generator
backbones. These techniques may prove valuable in future
work scaling to ultra-large prompt sets.

Text-to-3D Generation: Recent advances include CLIP-
forge [39], CLIP-mesh [40], Latent-NeRF [41], Dream
Field [27], Score-Jacobian-Chaining [15], & DreamFu-
sion [1]. In CLIP-forge [39], the model is trained for shapes
conditioned on CLIP text embeddings from rendered im-
ages. During inference, the embedding is provided for
the generative model to synthesize new shapes based on
the text. CLIP-mesh [40] and Dream Field [27] optimized
the underlying 3D representation with the CLIP-based loss.
Magic3D adds a finetuning phase with a textured-mesh
model [42], allowing high resolutions. Future advances
may arise by combining with techniques from uncondi-
tional 3D generation [43–45]. Notable open-source contri-
butions are Stable-Dreamfusion [46] and threestudio [47].
Other concurrent works include Zero-1-to-3 [48], Fanta-
sia3D [49], Dream3D [50], DreamAvatar [51], and Prolific-
Dreamer [52]. However, we differ from all of these text-to-
3D works, because we amortize over the text prompts.

Amortized Optimization: Amortized optimization [16]
is a tool of blossoming importance in learning to opti-
mize [53] and machine learning, with applications to meta-
learning [54], hyperparameter optimization [55, 56], and
generative modeling [26, 57–59]. Hypernetworks [60] are a
popular tool for amortization [55, 56, 61, 62] and have also
been used to modulate NeRFs [17, 63, 64], inspiring our
strategy. Our method differs from prior works by modulat-
ing spatially oriented parameters, and our objective is from
a (dynamic) DDM instead of a (static) dataset.

Text-to-3D Animation: Text-to-4D [65] is an approach
for directly making 3D animations from text, instead of our
interpolation strategy. This is done by generalizing TT3D
to use a text-to-video model [28, 66, 67], instead of a text-
to-image model. However, unlike us, this requires text-to-
video, which can require video data.
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Testing prompt for Amortized 50% split, at 4800
Testing prompt for Amortized 12.5% split, at 4800

Per-prompt at 4800

Figure 8: We show quantitative results for the 2400 animal prompts in Fig. 6, where we achieve a higher quality for any
compute budget on seen & unseen prompts. Notably, when training on only 50% or 12.5% of the prompts, the unseen
prompts – which cost no optimization – perform stronger than the per-prompt method, which must optimize on the data.
Takeaway: By training a single model on many text prompts we generalize to unseen prompts without extra optimization.

Figure 9: Results for amortized training on DreamFusion’s
extended set of 411 text prompts, DF411. See Fig. 14 for
the full set. Takeaway: We scale to diverse prompt sets
>10⇥ larger than DF27 (Fig. 11) with minor quality drop.

6. Conclusion
We presented ATT3D, a method for amortized optimiza-

tion of text-to-3D (TT3D) models. We use a mapping net-
work from text to NERFs, enabling a single model to rep-
resent 3D objects of many different prompts. We experi-
mentally validate our method on existing and new compo-
sitional prompt sets. We are faster at training than current
TT3D methods by sharing the optimization cost across a
prompt set. Once trained, our model generalizes by directly
outputting objects for prompts unseen during training in a
single forward pass. Furthermore, by amortizing over inter-
polation weights, we quickly generate a continuum of inter-
polations between prompts, enhancing user control.

Although ATT3D only represents a small step towards
general and fast text-to-3D generation, we believe that the
ideas presented are a promising avenue toward this future.

Limitations: Our method builds on the existing text-to-
3D optimization paradigm, so we share several limitations
with these works: More powerful text-to-image DDMs may
be required for higher quality and robustness in results. The
objective has high variance, and the system can be sensi-
tive to prompt engineering. We also suffer from a lack of
diversity, as in prior work. We found that similar prompts
can collapse to the same scene when amortizing. Finally,
larger object-centric prompt sets are required to further test
the scaling of amortized training.

Ethics Statement: Text-to-image models carry ethical
concerns for synthesizing images, which text-to-3D mod-
els like this share. For example, we may inherit any biases
in our underlying text-to-image model. These models could
displace creative jobs or enable the growth and accessibility
of 3D asset generation. Alternatively, 3D synthesis models
could be used to generate misinformation by bad actors.

Reproducibility Statement: Our instant-NGP NeRF
backbone is publicly available through the “instant-ngp”
repository [7]. While our diffusion model is not publicly
available (as in DreamFusion [1]), other available models
may be used to produce similar results. To aid reproducibil-
ity, we include a method schematic in Fig. 4 and pseu-
docode in Alg. 1. Our evaluation setup is in Sec. 4.1 along
with hyperparameters and other details in App. Sec. B.
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