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Abstract

Unsupervised anomaly detection aims to train models
with only anomaly-free images to detect and localize un-
seen anomalies. Previous reconstruction-based methods
have been limited by inaccurate reconstruction results. This
work presents a denoising model to detect and localize the
anomalies with a generative diffusion model. In particular,
we introduce random noise to overwhelm the anomalous
pixels and obtain pixel-wise precise anomaly scores from
the intermediate denoising process. We find that the KL di-
vergence of the diffusion model serves as a better anomaly
score compared with the traditional RGB space score. Fur-
thermore, we reconstruct the features from a pre-trained
deep feature extractor as our feature level score to improve
localization performance. Moreover, we propose a gradi-
ent denoising process to smoothly transform an anomalous
image into a normal one. Our denoising model outperforms
the state-of-the-art reconstruction-based anomaly detection
methods for precise anomaly localization and high-quality
normal image reconstruction on the MV1ec-AD benchmark.

1. Introduction

Anomaly detection is a critical computer vision task that
has great application values in industry and medicine. De-
spite its importance, collecting and annotating anomalous
data can be prohibitively expensive. Unsupervised anomaly
detection recently garnered significant attention. Different
from few-shot segmentation [12, 33, 32], it aims to learn
normal data distribution without access to anomalous sam-
ples and ground-truth annotations in training. At inference,
anomalies are detected and localized based on their devia-
tion from the learned distribution of normal data.

Classical reconstruction-based unsupervised anomaly
detection methods [1, 2, 5, 20] assume the autoencoder
model trained with only normal data fail to reconstruct
anomalous regions. However, this approach is not without
limitations, as some anomalies can still be reconstructed,
leading to the inferior performance of these classical meth-
ods. DRAEM [40] proposes to generate pseudo anomalies

(a) Input & G.T. (b) DRAEM (c) UniAD (d) Ours

Figure 1: Comparing reconstructed normal images (rows 1
& 3) and anomaly detection results (rows 2 & 4) produced
by different methods. Our method can produce high-quality
reconstructions without obvious artifacts (DRAEM [40])
and blurring (UniAD [36]) and locate anomalies more pre-
cisely.

to train an autoencoder to reconstruct the anomalous data
to be anomaly-free. However, it performs poorly when the
real anomalies differ significantly from the pseudo ones.
Denoising autoencoders [17] are used for medical anomaly
detection. The anomaly score is measured naively by the
difference between the input and reconstructed images in
pixel space. The reconstruction from noisy images is chal-
lenging and introduces great noise to the results, making
it unsuitable for complex industrial anomaly detection and
localization. Recently, methods [18, 22, 36, 37] propose
transformer structures for the reconstruction model to pre-
vent the autoencoder from collapsing into an identity func-
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tion. The models produce blurred results with relatively
poor anomaly localization performance compared with the
state-of-the-art.

In this work, we propose a new reconstruction-based ap-
proach for anomaly detection, achieving precise anomaly
localization and top reconstruction quality; see Fig. 1. Our
key idea is to formulate the anomaly detection task as a
noise or anomaly removal problem. First, we introduce ran-
dom noises into the input image and train an autoencoder
as a denoising model. The anomalous pixels are considered
as noises and will not be excluded from the reconstruction.
The previous reconstruction-based methods directly recon-
struct the input with noisy images, leading to large recon-
struction errors and suboptimal anomaly detection perfor-
mance. We leverage a diffusion model [15] for denoising
and reconstruction. We inspect the intermediate stages of
the diffusion model and measure the reconstruction error of
each step for accurate anomaly localization. Moreover, we
require the model to reconstruct the input features and de-
tect anomalies in both pixel and feature space.

We further propose a gradient denoising process for re-
constructing normal images from anomalous ones and pro-
vide an interpretable explanation of the anomaly detection
results. Our process smoothly transforms an anomalous im-
age into a normal image while preserving the structural ap-
pearance and high-frequency details of the normal regions.
It is achieved by consistently denoising the gradients from
a pre-trained deep feature extractor. Our approach is shown
to outperform existing methods in terms of reconstruction
quality and anomaly detection accuracy.

2. Related Works

Anomaly Detection Various methods have been devel-
oped to tackle anomaly detection and localization. Sup-
port vector data description (SVDD) [31, 26] is proposed
for anomaly detection. Teacher-Student [4] proposes to dis-
till the knowledge from a pre-trained teacher network to a
student network on the anomaly-free data. The difference
in the outputs of teacher and student networks is used as an
anomaly score. DRAEM [40] proposes to add artificial de-
fects to the normal images to generate pseudo anomaly sam-
ples and labels to train a segmentation network for anomaly
segmentation. CutPaste [19] proposed a self-training strat-
egy with a generative one-class classifier.
Reconstruction-based approaches [5, 7] are a widely
used branch of anomaly detection. They assume that only
the normal image can be well reconstructed. Anomalies can
be detected by measuring the difference between original
and reconstructed images. Autoencoders [5, 7], variational
autoencoders (VAE) [34], and Adversarial generative net-
works (GAN) [1] are often used to reconstruct an anoma-
lous image to a normal one. However, a limitation of these
methods is that anomalies can sometimes be reconstructed,

leading to degraded anomaly detection performance.

Embedding-based methods [6, 8, 25] employ neural net-
works to extract meaningful features for anomaly detection
and localization. Spade [6] first introduced a method for
detecting anomalies using ImageNet pre-trained deep net-
works. This method uses K-NN search to match anomaly
features with the K nearest normal features. PaDiM [8]
build a multivariate Gaussian distribution and use Maha-
lanobis distance as the anomaly score. PatchCore [25] pro-
poses a memory bank to save the coreset of the normal fea-
tures, which improves the time and memory complexity.
Recently, UniAD [36] proposed a transformer network for
reconstructing features with masked self-attention to avoid
the model collapsing into an identity function. This allows
a single model to detect anomalies in all categories.

Flow-based methods [11, 16, 13, 38] recently boosted

the performance of anomaly detection. Normalized flow
models are generative models that learn to map two dis-
tributions and estimate the probability density reversibly.
CFLOW-AD [13] proposes to use conditional normalized
flow with positional embedding on the multi-scale features
for anomaly detection. FastFlow [38] proposes to employ a
2D flow model that combines local and global features to es-
timate the probability density. These methods demonstrate
the efficacy of generative models in addressing anomaly
detection, which has inspired our work with the diffusion
model.
Diffusion Models Diffusion models [27, 15] are a powerful
generative model that achieves state-of-the-art performance
in image generation tasks. Recent methods [15, 23, 10]
are proposed to generate a realistic image by gradually de-
noising random Gaussian noises. The likelihood training
makes the diffusion model capable of learning data density.
DDIM [28] speeds up the diffusion sampling with a non-
Markov reverse sampling. The score-based model [29] is
another denoising generative model with a similar diffusion
process.

AnoDDPM [35] has introduced diffusion models for
medical image anomaly segmentation but only used the dif-
fusion model as a high-quality reconstruction model. Rely-
ing on reconstruction error in RGB space for anomaly score
leads to noisy predictions and limited performance in many
industrial anomaly detection applications.

3. Methods
3.1. Preliminary

Diffusion models are powerful generative models that
can approximate data distribution and create realistic im-
ages. Given a data distribution p(x), denoising diffusion
probabilistic models (DDPM) [15] learn the distribution
with a Markov Chain denoising process. During training, it
gradually adds random Gaussian noises to a real image x,
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Figure 2: Our denoising diffusion model is trained with only anomaly-free images. During inference, noises of different
scales are added to the anomaly sample. With large enough noises, the anomalous pixels become indistinguishable from the
normal pixels and easier for reconstruction. We take the KL-divergence between the posterior distribution g(x;—1|x¢, o)
and estimated distribution pg(x:—1|x:) as the pixel-level anomaly score. The MSE error of feature reconstruction is used as
a feature-level score. We take the average of results from different noise scales as the outputs.

which leads to a series of noised images (x1,xs, ..., ZT).
The variances of Gaussian noises introduced are denoted as
{Bi}i=1,2,... 7. Since the data distribution and noises added
are both Gaussian, the closed form of a noised image x; is:

q(zi|zo) = N (24 Vauzo, (1 — ay)I), (D

where @; = []'_,(1 — f). The diffusion models are then
represented with pg(xg) = fp(a:o:T) day1.7. During the
image generation process, the model first samples from uni-
form Gaussian distribution pr(x) ~ N (2r; 0, I') and grad-
ually denoises the image by sampling from the estimated
distribution pg(:):

po(@or) = plar) [ [ p(@ialz), 2)

t=1
po(Ti_1|xe) = N(@i—1; po(xe, 1), Bg (e, ). (3)

The training of diffusion models can be treated as an autoen-
coder. As proposed in DDPM [15], the diffusion models are
trained with an MSE loss to predict the scale of noises e.

Lpse = Et,wo,e [(E — €9 (mtv t))2] 4)

An additional training loss based on the variational bound
is used to automatically learn the variance of noises by the
diffusion model itself, as proposed by [23]:

Lyy=Lo+ L1+ + Lr_1+ L, &)
Lo = —logpe(zo|z1), (6)

L1 = Drr(q(zi—1|ze, o) ||pe(Ti—1]z:)),  (7)
Lt = D r(q(zr|z0)||Ip(27))- 3)

3.2. Denoising Model for Anomaly detection

Previous reconstruction methods based on AutoEn-
coder [2, 5] suffer from the successful reconstruction of
anomalies because the AutoEncoder easily degrades to an
identical mapping during training. However, reconstruction
with noisy images prevents the issue. As illustrated in Fig 2,
gradually adding noise to an anomalous image causes the
anomalous regions to vanish for large noise levels, making
them indistinguishable from the pixels of normal samples.
Nevertheless, direct reconstruction from noisy to noise-free
images can result in significant reconstruction errors. In this
study, we utilize a generative diffusion model DDPM [15]
to gradually denoise and reconstruct the image. The diffu-
sion model is trained on anomaly-free data using the train-
ing procedure of DDPM.

Pixel-level score. For anomaly detection, we begin by cor-
rupting an image x, with random Gaussian noises to ob-
tain x;. Previous reconstruction-based methods employ the
difference between the reconstructed image and the origi-
nal input in RGB space as the anomaly score. However,
this approach entails a difficult estimation of p(xo|z:) and
introduces significant noise to the results. To address this
limitation, we employ the KL divergence of the posterior
distribution g(x;_1|xs, xo) and the estimated distribution
pl(x:—1|x:) as the anomaly score,

st = KL(q(xi—1|@e, o)|[po(@i—1]24)). 9

We show in Fig. 6 that the KL divergence correctly mea-
sures the likelihood of input pixels with much less noise.

Feature-level score. We observe that the results from the
diffusion model are usually sharp in boundary but not robust
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Figure 3: Ambiguity of label. The diffusion model focuses
on the anomalous pixels that need to be altered for success-
ful reconstruction. It requires semantic information to cor-
rectly segment large-area hazelnut cracking and metal nut

flipping.

in anomaly recall. As demonstrated in Fig. 3, the anomaly
regions with a similar color to the normal pixels are as-
signed with a high likelihood by the denoising model. The
diffusion model prioritizes the anomalous pixels that need
to be altered for successful reconstruction, which requires
semantic information to address the issue.

To enhance the accuracy of anomaly detection, we pro-
pose a joint distribution approach that considers both the
pixel space and feature space, represented by P(x, f). We
employ a pre-trained feature extractor to extract the deep
features of the input image. The diffusion model is trained
to concurrently reconstruct the pixels and semantic features
of the noise-free image with the corrupted image. We adopt
the Mean Squared Error (MSE) loss function as the training
loss and anomaly score, which is defined as follows:

1
Lf;se T OXHXW Z | f(zo) —

where f is a pre-trained feature extractor to extract fea-
tures with shape RE*H*W g, and x, represent a noise-
free image and the corresponding corrupted image with ran-
dom noises, respectively. The final anomaly score is the
weighted sum of the pixel-level and feature-level results.

f(m)?, (10)

Multi-scale noises. We have observed that different anoma-
lies exhibit varying sensitivities to different noise scales.
While some anomalies can be detected easily, others require
sufficiently large noise to overwhelm the anomalous pixels.
We measure the anomaly score for various noise scales and
average the results. Since the KL-divergence score varies
significantly with the timestep ¢, we normalize it before av-
eraging. The final anomaly score is obtained as follows:

A= Y ek, +(1-a)s, (11

1=1,2,....n

Algorithm 1: Gradient Denoising Reconstruction.

Input: Image x(, Gaussian (p, 32)

Output: x

fort=1,---,Ndo

fe=F(zy)

g= V:ct (ft ) - )
=4y/1-8 Jiai— 1+\/>9,

1f t%Nd = 0 then

|z~ N(po(x:), 00(xt))

end

end

where 5, is the normalized score by mean and standard de-
viation, T' = {#1,t2,- - ,t,} are the selected timesteps of
the forward-process of the diffusion model. We analyze the
effects of ensembling factor « in Sec. 4.4.

Unified model. It has been proved that the diffusion
model’s capacity of the diffusion network is large enough
for modeling any complex distributions [15, 10]. Like
UniAD [36], we conduct experiments to learn distributions
of multiple categories with a single diffusion model. Table 3
illustrates that the performance of our unified model outper-
forms the other methods by a large margin under the single
unified model setting. The results confirm the effectiveness
of utilizing the diffusion model for anomaly localization.

3.3. Gradient Denosing for Reconstruction

An image’s anomalous regions can be viewed as a spe-
cial type of noise that can be removed using the diffusion
model. We propose a gradient denoising process to remove
the anomalies with simple adjustments to the reverse dif-
fusion process of DDPM [15]. An anomalous image can
be smoothly transformed into a normal one, providing an
interpretable explanation of the anomaly detection results.

We first introduce a gradient descending optimization
process for anomaly reconstruction. We take the mul-
tivariate Gaussian distribution A (p X) approximated by
PaDiM [8] on the deep features of anomaly-free data. For
reconstruction, we extract embedding f(x() with the fea-
ture extractor of PaDiM and use the Mahalanobis distance
to optimize the image with gradient descending:

L=(f(zo) =)= (f(xo) —p),  (12)
Tiy1 = wWxt — SVg, L, (13)

where w is weight decay factor and s is the learning rate.
The process optimizes the image such that the anomaly
score of PaDiM is minimized. However, the noisy gradients
V&, L will corrupt the image after some iterations, introduc-
ing significant noises to the image. We propose to leverage
the diffusion model to denoise the gradients for high-quality
reconstruction.
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We assume that the gradients to the input image follow
a Gaussian distribution Vg, L ~ N(0, 5:I) with variance
B¢. Our target is to denoise the gradients to generate high-
quality anomaly-free images. Notice that if the weight de-
cay factor is set to be w = /1 — s2, each optimization step
becomes a diffusion step with the noise ¢; ~ N(0, s25,1).
We denote the new variance as Bt = 52B3;. Then we can
safely use the diffusion model to denoise the intermediate
images during the optimization. Since the variance of noise
€; is relatively small, we denoise the image every [N, opti-
mization step. We demonstrate the sampling process with
Algorithm 1.

We visualize the intermediate steps of our gradient de-
noising process in Fig 7. The anomalous pixels are gradu-
ally altered to transform the input image into a normal im-
age. We compare the reconstruction results with other state-
of-the-art reconstruction-based anomaly detection methods
in Fig. 4. The reconstructed image from our gradient de-
noising process keeps high-frequency details and success-
fully removes the anomaly pixels.

4. Experiments
4.1. Dataset and Implementation Details

MVTec-AD We evaluate our proposed method on the
MVTec-AD dataset [3], an industrial anomaly detection
benchmark that comprises 15 categories, including ten ob-
ject classes and five texture classes. Each class contains ap-
proximately 200 anomaly-free images for training and 100
images with anomalies for testing. The dataset provides
pixel-level segmentation ground truth for evaluation. The
MVTec-AD dataset contains various anomalies, making it a
comprehensive and ideal benchmark for anomaly detection
evaluation.

Metrics We assess our pixel-level anomaly segmenta-
tion performance with two commonly used threshold-
independent metrics: the Area Under the Receiver Op-
erating Characteristic curve (AUROC), and Per-Region-
Overlap (PRO) [3]. While AUROC equally measures per-
formance for each pixel, it tends to favor larger area anoma-
lies. To correctly assess the performance on both large and
small area anomalies, we also evaluate our method with the
PRO. To compute PRO, the area coverage ratios of each
connected component are averaged for the same false pos-
itive rate. By repeatedly computing the values for the false
positive rate from 0 to 0.3, we get a curve, and the nor-
malized integral of this curve is the PRO-score. Unlike AU-
ROC, the PRO metric equally measures the performance for
large and small anomalies, which makes it a balanced eval-
uation metric for industrial anomaly detection.

Implementation details We train our diffusion model sep-
arately for each category of MVTec-AD[3]. We adopt
the UNet network design with attention modules from im-

proved diffusion [23]. Please refer to the supplementary for
network details. The timestep for the diffusion process is set
to be 1000 for training and 250 for reverse sampling. The
diffusion model is trained for 10,000 iterations with batch
size 2 on a single GPU for all the experiments. We adopt
AdamW [21] as the optimizer with an annealing learning
rate starting at 0.0001. We also adopt the exponential-
moving-average (EMA) during evaluation and reconstruc-
tion. For the unified model, we train a single diffusion
model on all the categories of MVTec-AD for 20,000 it-
erations. The class label is provided to the UNet [24] of the
diffusion models for image reconstruction.

We resize the image to (256,256) and train the model
with a 5 degree random rotation augmentation. For the pre-
trained deep networks, we choose EfficientNet [30] pre-
trained on ImageNet [9]. We set the ensembling factor «
in 11 to 0.5 for all categories for the same-hyperparameter
setting. Our best results are achieved with ensemble fac-
tors adjusted for each category. We select three timesteps
T = {5,50,100} during the forward diffusion process to
get three different noise scales. The anomaly scores pre-
dicted are averaged as the final output. We set the learning
rate for the gradient denoising process to be 0.02. The im-
age is denoised once every Ny = 5 iteration.

4.2. Quantitative Results

We compare our anomaly localization results with
CutPaste [19], Spade [6], PaDiM [8], DRAEM [40],
CFlow [13], and UniAD [36]. We evaluate the results
with two localization metrics: pixel-wise AUROC and Per-
Region-Overlap (PRO) [3]. We present the results on the
MVTec-AD benchmark in Tab. 1. Our model with the same
hyperparameters for all categories boosts the PRO by 0.7%,
and our best model with adjusted hyperparameters for each
category improves the PRO by 1.1%, compared with pre-
vious state-of-the-art reconstruction-based methods. We
show results on BTAD [22] in the supplementary.
Robustness. Our study demonstrates the effectiveness of
incorporating random noise to enhance the robustness of
anomaly localization. We observed that the previous state-
of-the-art reconstruction method DRAEM [40] uses pseudo
anomalies that are unsuitable for detecting anomalies that
vary from the pseudo data, particularly in the cable, pill,
and transistor classes. The UniAD’s transformer-based Au-
toEncoder [36] performs poorly on the metal nut, tile, and
wood classes. In contrast, our denoising model learns the
normal data distribution for anomaly detection, which is ro-
bust for all the categories.

4.3. Qualitative results of localization.

Figure 6 shows the anomaly localization results on
MVTec-AD [3]. The first and fifth columns are images with
anomalies from MVTec-AD. The columns from left to right
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Embedding-based

Reconstruction-based

Class Spade [6]  PaDiM [8] CFlow [13] | DRAEM[40] UniAD [36] __ Ours Ours*
bottle (984,955 (98.5,953) (99.0,96.8) | (99.1,97.2) (98.0,93.8) (97.7,95.0) (97.7,95.0)
cable  (97.2,90.9) (98.1,91.1) (97.7,93.5) | (94.7,76.0) (97.2,86.3) (952,88.7) (95.6,89.5)
capsule  (99.0,93.7) (98.8,92.3) (99.0,93.4) | (94.3,91.7) (98.7,90.8) (98.0,90.1) (97.5.91.4)
carpet  (97.5,94.7) (98.9,94.5) (99.3,97.7) | (95.5,92.9) (98.4,94.5) (98.9.95.8) (98.9,95.8)
grid  (937,86.7) (96.1,90.5) (99.0,96.1) | (99.7,98.4) (97.5,92.6) (99.1,98.1) (99.1,98.4)
hazelnut  (99.1,95.4) (98.4,84.0) (98.9,96.7) | (99.7,98.1) (98.2,93.0) (97.7,89.5) (97.391.1)
leather  (97.6,97.2) (99.2,97.9) (99.7,99.4) | (98.6,98.0) (98.7,97.2) (99.599.1) (99.5,99.1)
metalnut ~ (98.1,94.4) (98.0,92.9) (98.6,91.7) | (99.5,94.1)  (94.9,87.1) (96.8,93.0) (96.8,93.0)
pill (96.5,94.6) (97.0,95.3) (99.0,95.4) | (97.6,88.9) (96.2,95.3) (92.594.5) (92.5,94.5)
screw  (98.9,96.0) (98.7,94.6) (98.9,95.3) | (97.6,98.2) (98.9,953) (99.0,95.6) (99.0,95.6)
tile (87.4,75.9) (94.3,93.7) (98.0,94.3) | (99.2,98.9) (92.0,79.6) (92.1,95.1) (92.1,95.1)
toothbrush  (97.9,93.5) (98.7,94.3) (98.9,95.1) | (98.1,90.3)  (98.3,88.2) (98.9,947) (98.6,95.7)
transistor  (94.1,87.4) (97.9,91.4) (98.0,81.4) | (90.9,81.6) (97.9,93.9) (92.6,89.7) (93.1,90.1)
wood  (88.5,87.4) (957,89.3) (96.7,95.8) | (96.4,94.6) (93.0,86.0) (94.7,92.9) (94.5,93.0)
zipper  (96.5,92.6) (98.5,95.0) (99.0,96.6) | (98.8,96.3) (97.7,932) (97.6,93.6) (97.6,93.6)
average  (96.0,91.7) (97.8,92.8) (98.6,94.6) | (97.3,93.0) (97.0,91.1) (96.7,93.7) (96.7,94.1)

Table 1: Compare with the state-of-the-art anomaly detection approaches on MVTec-AD [3] dataset. We compare anomaly
localization performance with pixel-wise AUROC and PRO metrics, denoted as (AUROC, PRO) in the table. We highlight
the best PRO scores among all the reconstruction-based methods. We denote the result in Red if the result underperforms
other reconstruction-based methods by a large margin. We show our results with the same hyperparameters for all categories,
denoted as Ours, and different hyperparameters adjusted for each category, denoted as Ours*.

(a) Input (b) DRAEM (c) UniAD (d) Ours
Figure 4: Comparisons of the reconstruction results on class
cable and hazelnut of MVTec-AD. The anomaly types are

color-swap, crack, and cut-lead for the three categories.

represent ground truth, our pixel-level anomaly predictions,
our feature-level anomaly predictions, and the final results
visualized on the original images. We show that our de-
noising model is capable of precise boundary estimation of
anomalies.

—8— AUROC
0.98 1 —A— pixel AUROC
—&— PRO

006 )ﬁ—‘A—r_\’\\
0.94 1
0.92 1

0.904 //\

0.0 0.2 0.4 0.6 0.8
Enesmble factor

Metrics

Figure 5: The effects of different ensembling factor a.

4.4. Ablation study

Ensemble factor. We combine the pixel-level and
feature-level 11 predictions to get the final anomaly score.
We conduct experiments to verify the effects of the ensem-
bling weights. As Fig. 5 shows, we choose the best ensem-
ble factor « = 0.5. The PRO metric is improved by 0.7%
compared with only using the feature-level anomaly score.

Pretrained feature extractor. We observe that the deep
features extracted by ResNet [14] and WideResNet [39] are
of high dimensional, which brings great difficulties for our
denoising model to reconstruct the features. Instead, we
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Figure 6: Visualization of anomaly localization on MVTec-AD [3]. The columns from left to right present anomalous
images, the corresponding ground truths, our pixel-level predictions based on KL divergence, and the visualization of the
final anomaly map on the original image. Our denoising diffusion models produce boundary-aware pixel-level anomaly

scores to improve the quality of final anomaly scores.

adopt EfficientNet [30] as our feature extractor, where the
dimension of features is relatively small. We select the in-
termediate feature map of stride (2, 4, 8, 16) with dimension
(24,32, 56,160), resize to 64 x 64 and concatenate them
together into a tensor f € R272x64x64 We conduct exper-
iments to verify the resolution of the concatenated features;
see Tab. 2. Increasing resolution from 16 x 16 to 64 x 64 in-
creases the PRO by 2.5%. Combining EfficentNet features
of stride (2,4, 8, 16) improves the PRO by 3.5%.

Unified model. Since our denoising diffusion model
is capable of modeling complex real industrial data distri-
bution, we conduct experiments to use a single model for
anomaly localization for all categories of MVTec-AD, see
Tab. 3. The performance of DRAEM [40] and PaDiM [8]
drops greatly for the unified setting, with more than 5%
degradation in the PRO metric. In contrast, our model still
achieves 93.0% in PRO, with less than 1.1% performance
drop.

4.5. Qualitative results of reconstruction.

We show in Fig. 7 that our denoising gradient process
can smoothly transform an anomalous image into a normal
one under the guidance of a pre-trained feature extractor.
The left two columns are ground truth and input anomalous

. Stride

Resize 6 8 4 2 AUROC PRO
v 94.2 90.2

64 v oV 95.8 91.9
v v Vv 96.4 93.2

v v v Vv 96.7 93.7

32 v v v Y 96.6 92.4
16 v v v Y 95.5 91.2

Table 2: Ablation study of feature level reconstruction. Ex-
periments are conducted with features from different layers
of EfficientNet [30], resized to different resolutions.

Base Unified
AUROC PRO AUROC PRO
PaDiM[8] 97.8 92.8 90.5 85.3
DRAEM[40] 97.3 93.0 89.4 82.2
UniAD[36] 96.6 - 97.0 91.1
Ours 96.7 94.1 96.0 93.0

Method

Table 3: Comparison of a single unified model for anomaly
localization of all the categories on MVTec-AD.
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Figure 7: Visualization of the intermediate steps of denoising gradient process on MVTecAD. The 1st and 2nd columns
are the ground truth of anomalies and the image to be reconstructed. The last column is the reconstructed results from the
anomalous image. The intermediate results of the denoising gradient process are shown in the middle columns. We show that
our reconstruction process can generate high-quality anomaly-free images and keep high-frequency details of normal pixels.

image, followed by the intermediate results from our gra-
dient denoising process. The anomalous pixels are grad-
ually removed by the gradients and diffusion steps. We
show that the proposed reconstruction process can generate
normal images with strong correspondence to the original
anomalous image, while keeping most visual appearances
of normal regions unchanged.

We compare the reconstruction results with previous
anomaly detection methods, DRAEM [40] and UniAD [36].
As Fig. 4 shows, the DRAEM generates artifacts and fails
to remove the anomalous pixels. The appearance of normal
regions is changed and blurred by UniAD since it recon-
structs the results with a VAE decoder. Our gradient noising
process greatly improves the reconstruction results for both
anomalous and normal pixels.

5. Conclusions

In this work, we propose a denoising diffusion model
to boost the performance of reconstruction-based anomaly
localization. Our model combines pixel-level and feature-

level reconstruction errors as the anomaly score. We use
the KL divergence from the diffusion model to produce
boundary-aware results for better localization. Moreover,
our model can reconstruct anomalous images to a high-
quality normal image by denoising the gradients from a pre-
trained deep feature extractor, surpassing the previous re-
construction results by a large margin. We also demonstrate
that our reconstruction-based denoising diffusion model is
robust to various anomaly types and can be extended as a
unified anomaly detector for all categories.

Discussions Our approach addresses the anomaly localiza-
tion problem from a denoising perspective. The MVTec-
AD dataset contains many noises in the background regions,
which are easily detected as anomalous by our denoising
model, causing a 3% performance drop on the image-level
AUROC metric.
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