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Abstract

3D shape modeling is labor-intensive, time-consuming,
and requires years of expertise. To facilitate 3D shape mod-
eling, we propose a 3D shape generation network that takes
a 3D VR sketch as a condition. We assume that sketches
are created by novices without art training and aim to re-
construct geometrically realistic 3D shapes of a given cat-
egory. To handle potential sketch ambiguity, our method
creates multiple 3D shapes that align with the original
sketch’s structure. We carefully design our method, train-
ing the model step-by-step and leveraging multi-modal 3D
shape representation to support training with limited train-
ing data. To guarantee the realism of generated 3D shapes
we leverage the normalizing flow that models the distribu-
tion of the latent space of 3D shapes. To encourage the
fidelity of the generated 3D shapes to an input sketch, we
propose a dedicated loss that we deploy at different stages
of the training process. The code is available at https:
//github.com/Rowl1ng/3Dsketch2shape.

1. Introduction

The demand for convenient tools for 3D content cre-
ation constantly grows as the creation of virtual worlds be-
comes an integral part of various fields such as architecture
and cinematography. Recently, several works have demon-
strated how text and image priors can be used to create
3D shapes [43, 28, 27, 16, 26]. However, it is univer-
sally accepted that text is much less expressive or precise
than a 2D freehand sketch in conveying spatial or geomet-
ric information [53, 12, 44]. Therefore, many works fo-
cus on sketch-based modeling from 2D sketches [38, 5, 4,
6, 31, 25, 13, 46, 58, 57, 55, 17, 21] as a convenient tool
for creating virtual 3D content. Yet, 2D sketches are am-
biguous, and depicting a complex 3D shape in 2D requires
substantial sketching expertise. As Virtual Reality (VR)

Sketch Randomly generated 3D shapes for a given sketch

Figure 1. Given a VR (Virtual Reality) sketch input, we gener-
ate 3D shape samples that satisfy three requirements: (1 - fidelity)
reconstructed shapes follow the overall structure of a quick VR
sketch; (2 - diversity) reconstructed shapes contain some diversity
in shape details: such as a hollow or solid backrest, and (3 - real-
ism) reconstructions favor geometrically realistic 3D shapes of a
given category.

headsets and associated technologies progress [20, 19, 35],
more and more works consider 3D VR sketch as an in-
put modality in the context of 3D modeling [52, 54, 42]
and retrieval [23, 24, 22, 51, 33, 34, 32]. Firstly, 3D VR
sketches are drawn directly in 3D and therefore provide a
more immersive and intuitive design experience. Secondly,
3D VR sketches offer a natural way to convey volumet-
ric shapes and spatial relationships. Moreover, the use of
3D VR sketches aligns with advancements in virtual reality
technology, making the process of sketching and designing
more future-proof and adaptable to emerging technologies.

Existing works on 3D shape modeling assume carefully
created inputs and focus primarily on the interface and lo-
gistics of the sketching process. In this paper, we introduce
a novel method for 3D shape modeling that utilizes 3D VR
sketching. Our method does not require professional sketch
training or detailed sketches and is trained and tested on a
dataset of sketches created by participants without art expe-
rience. This approach ensures that our model can accom-
modate a diverse range of users and handle sketches that
might be less polished or precise, making it more accessi-
ble and practical for real-world applications. Considering
the sparsity of VR sketches, a single 3D shape model may

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9267



not match the user’s intention. Therefore, we advocate for
generating multiple shape variations that closely resemble
the input sketch, as demonstrated in Fig. 1. The user can
then either directly pick one of the models, or refine the de-
sign given the visualized 3D shapes, or multiple shapes can
be used in some physical simulation process to select the
optimal shape within the constraints of the VR sketch.

Working with freehand VR sketches presents several
challenges due to the lack of datasets. We are aware of only
one fine-grained dataset of VR sketches by Luo et al. [34],
which we use in this work. The challenge of working with
this data comes from its limited size and the misalignment
between sketches and 3D shapes. Luo et al. [34] let par-
ticipants sketch in an area different from the one where the
reference 3D shape is displayed. This allows to model the
scenario of sketching from memory or imagination, how-
ever, results in a lack of alignment between 3D shapes and
sketches, as shown in Fig. 2. Considering the misalignment
of sketches and shapes in the dataset, and the ambiguity of
the VR sketches, we aim to generate shapes with good fi-
delity to an input sketch, rather than the reference shape.

We represent our sketches as point clouds, and regress
Signed Distance Fields (SDFs) values [39] representing 3D
shapes. Despite the seemingly simple nature of the prob-
lem, we found that training an auto-encoder in an end-to-
end manner results in poor performance due to a dataset’s
limited size and sketch-shape misalignments as discussed
above. We, therefore, start by training an SDF auto-decoder,
similar to the one proposed by Park et al. [39]. We then
propose several losses that allow us to efficiently train our
sketch encoder. In particular, we design a sketch fidelity
loss, exploiting the fact that sketch strokes represent 3D
shape surface points. Leveraging the properties of SDF, this
implies that the regressed SDF values in the points sam-
pled from sketch strokes should be close to zero. To be
able to sample multiple 3D shapes for a given input sketch,
we adopt a conditional normalizing flow (CNF) model [14],
trained to model the distribution of the latent space of 3D
shapes. During the training of CNF, we again leverage the
introduced sketch fidelity loss, improving the fidelity of re-
construction to the input sketch.

In summary, our contributions are the following:

• We, for the first time, study the problem of condi-
tional 3D shape generation from rapid and sparse 3D
VR sketches and carefully design our method to tackle
the problem of (1) limited data, (2) misalignments be-
tween sketches and 3D shapes and (3) abstract nature
of freehand sketches.

• Taking into consideration the ambiguity of VR sketch
interpretation, we design our method so that diverse
3D shapes can be generated that follow the structure
of a given 3D VR sketch.

Ref. VR sketch Ref. VR sketch Ref. VR sketch
Misalignment

Ambiguity

Ref. VR sketch

Figure 2. Example of misalignment and ambiguity of 3D sketch.
Misalignment: the collected sketches and reference shapes have
deviations in terms of the position and proportion of their parts.
Ambiguity: due to the sparsity and abstract nature of sketches,
strokes can be interpreted differently. For example, the strokes of
a cube can represent either slender bars or a closed solid shape.

2. Related Work

2.1. Shape reconstruction and retrieval from 3D
sketches

Many earlier works targeted category-level retrieval [23,
24, 22, 51, 33], but the field advancement stagnated due to
the lack of fine-grained datasets. Recently several works
addressed the problem of fine-grained retrieval from VR
sketches [34, 32], and introduced the first dataset which
we use in this work. Luo et al. [32] proposed a structure-
aware retrieval that allows increasing relevance of the top
retrieval results. However, retrieval methods are always lim-
ited to the existing shapes. Therefore, we explore condi-
tional sketch generation, aiming to achieve good fidelity to
the input, combined with generation results diversity.

Recently, Yu et al. [52] considered the problem of VR
sketch surfacing. Their work is optimization-based and as-
sumes professional and detailed sketch input. Similarly to
their work, we aim to achieve good fidelity of the recon-
struction to an input sketch but take as input sparse and ab-
stract sketches. Moreover, our approach is learning-based,
which means we require a class shape prior, but we can han-
dle abstract sketches, and inference is instant.

2.2. 3D shapes generation

In addition to maximizing the fidelity to the input sketch,
we aim to generate a set of shapes that are distinctive from
each other. This diversity allows users to efficiently explore
the design space of shapes resembling their initial sketch.
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2.2.1 Generative models

Various 3D shape generative models have been proposed
in the literature based on Generative Adversarial Networks
(GANs) [48, 1, 9, 49, 56], Variational Auto-Decoders
(VADs)[39, 11], autoregressive models [?, 47, 36, 50],
normalizing flow models [43] and more recently diffusion
models [21, 10, 37, 59, 40]. We chose to use normalizing
flows trained in the latent space of our auto-encoder due to
the simplicity of this model and the fact that it can be easily
combined with any pretrained auto-encoder. Recently, sev-
eral concurrent works proposed the use of diffusion models
in the latent space [10, 37, 40]. Our network can easily be
adapted to the usage of diffusion models instead of normal-
izing flows. The contribution of our work lies in the defi-
nition of the problem and the overall network architecture,
as well as the introduction of appropriate loss functions and
the training setup, allowing to generate multiple samples fit-
ting the input 3D VR sketch, given limited training data.

2.2.2 Conditional shape generation

Similarly, diverse conditional generative models were con-
sidered that takes as input a sketch [4, 6, 31, 25, 13, 46, 58,
57, 55, 17, 21, 11], an image [18, 10], an incomplete scan
in a form of a point cloud [3, 49, 2, 59, 50], a coarse voxel
shape [8], or a textual description [10, 43, 16, 29, 40].

Sketch-/image-based reconstruction methods typically
focus on the generation of only one output result for each in-
put, while we aim at the generation of multiple 3D shapes.
Meanwhile, in the point cloud completion task, it is typi-
cally to infer the missing parts from the observed parts and
generate multiple possible completion results. Their task,
however, differs from our goal as we do not want the net-
work to synthesize non-existent parts, but only to create var-
ious shapes that match the sparse freehand sketch taking
into account how humans might abstract 3D shapes. This is
also the reason why the autoregressive approaches, such as
[45, 36, 50], are not suitable for our problem.

Text-guided 3D shape generation shares similar ambigu-
ity properties as VR sketch-guided, i.e., diverse results may
match the same input text. CLIP-Forge [43] employs pre-
trained visual-textual embedding model CLIP to bridge text
and 3D domains, and uses conditional normalizing flow to
model the conditional distribution of latent shape represen-
tation given text or image embeddings. Zhengzhe et al. [29]
introduce shape IMLE (Implicit Maximum Likelihood Es-
timation) to boost results diversity while utilizing a cyclic
loss to encourage consistency. In our work, we condition
on a VR sketch rather than text and aim to obtain diverse
3D shapes that follow the input sketch structure.

3. Method
We present a conditional generation method that gen-

erates geometrically realistic shapes of a specific category
conditioned on abstract, sparse, and inaccurate freehand VR
sketches. Our goal is to enforce the generation to stay close
to the input sketch (sketch fidelity) while providing suffi-
cient diversity of 3D reconstructions.

The architecture of our method is shown in Fig. 3. The
method consists of two stages, where the first stage (Fig. 3
(a)) enables deterministic reconstruction for an input sketch,
and the second stage allows for multiple sample generation
(Fig. 3 (a)). We next describe the details of each stage.

3.1. Shape decoder

We represent 3D shapes using truncated signed distance
functions (SDFs), as one of the most common 3D shape
representations. This representation is limited to watertight
meshes, but without loss of generality, here we assume that
our meshes are watertight.

An SDF is a continuous function of the form:

SDF(x) = s : x ∈ R3, s ∈ R, (1)

where x is a 3D point coordinates and s is the signed
distance to the closest shape surface (a negative/positive
sign indicates that the point is inside/outside the surface).
The underlying surface is implicitly represented by the iso-
surface of SDF(·) = 0, and can be reconstructed using
marching cubes [30].

Our goal is to reconstruct a 3D shape from a given
VR sketch, however, we found that classical auto-encoder
training frameworks on our problem perform poorly when
trained in an end-to-end manner. This is caused by (1) a lim-
ited training set size, and (2) the fact that the sketches are
not perfectly aligned with 3D shapes. Therefore, we first
train a 3D shape auto-decoder, following Park et al. [39].

Shape auto-decoder The auto-decoder is trained by min-
imizing an L1 loss between the ground truth and predicted
truncated signed distance values. The decoder

Dθ([d
g, pi]) = s̃i, pi ∈ R3, s̃i ∈ R (2)

takes as input the 3D shape latent code dg and the 3D point
coordinates pi; [·, ·] represents a concatenation operation.
The decoder predicts the per point signed distance value s̃i.
Once the decoder is trained, we freeze its parameters θ.

At inference time, we estimate the 3D shape latent code
via Maximum-a-Posterior estimation as follows:

d̂g = argmin
dg

∑
(pi,si)∈G

L (Dθ (d
g, pi) , si) +

1

σ2
∥dg∥22

(3)
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Figure 3. Our method consists of 2 stages: (a) the first stage allows to obtain deterministic 3D shape reconstructions from input sketches,
as described in Secs. 3.1 and 3.2, while (b) the second stage enables conditional 3D shape sample generation, as described in Sec. 3.3.
The auto-encoder (AE) is trained in three steps: first auto-decoder is trained, then the shape encoder is trained, and finally, the encoder is
fine-tuned to jointly encode sketches and shapes.

where the latent vector dg is initialized randomly, and the
sum is taken over points of the 3D shape geometry G. We
treat the estimated latent vector d̂g as a ground truth shape
embedding and denote it as dg for simplicity.

3.2. Encoding VR sketches.

We then train a sketch encoder that maps sketches to the
latent space of our 3D shape decoder.

Due to the sparsity of sketch inputs, we represent them
as point clouds. We observe that if we only use sketches
for training, we obtain very poor generalization to the test
set. Therefore, we exploit a joint encoder for sketches and
3D shapes, using a PointNet++ [41] encoder. The encoder
Eϕ(·) : RNs×3 → R256 embeds randomly sampled points
from input shape surface G ∈ RNs×3 or sketch strokes
C ∈ RNs×3 to a feature vector eg ∈ R256 and ec ∈ R256,
respectively.

The encoder parameters {ϕ} are optimized by several
losses at training time:

L = Lshape + Lsketch + Lalign, (4)

where Lshape ensures that we can accurately regress 3D
shapes SDF from a 3D shape point cloud representation,
Lsketch ensures that the reconstructed 3D shape is close to
the input sketch, and Lalign establishes a connection between
sparse VR sketches and 3D shapes.

3.2.1 3D shape auto-encoder

First loss, Lshape, operates only on 3D shape inputs, and en-
sures that the full network Dθ([Eϕ(·), pi]) functions as a 3D
shape autoencoder. First, we minimize the sum of L1 losses
between the truncated predicted and ground truth SDF val-
ues of sampled points pi ∈ R3:

LSDF(ϕ) =
1

Ns

∑
pi

|tr(Dθ([e
g, pi]))− tr(s(pi))| (5)

where the decoder parameters θ are from our auto-decoder
and are frozen when training the sketch/shape encoder; s(·)
denotes ground-truth 3D shape SDF values, and tr(·) ≜
min(δ,max(−δ, ·)).

Additionally, we ensure that the 3D shape embedding
eg = Eϕ(f) maps directly to a latent representation of a 3D
shape dg , computed with Eq. (3):

Lg-L1
(ϕ) = |eg − dg|. (6)

We also found that adding contrastive latent term loss
increases performance. Let’s assume that our mini-batch
consists of Ng shapes. First, we obtain latent representa-
tions {dg

1, . . . ,d
g
Ng

} of 3D shapes, using Eq. (3). Then, we
formulate our contrastive loss term as follows:

Lg-NCE(ϕ) = −
Ng∑
i=1

[
log

exp (− |egi − dg
i |)∑Ng

j=1 exp
(
−
∣∣egi − dg

j

∣∣)
]
. (7)
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Therefore, the shape loss Lshape is the sum of the three losses
defined above:

Lshape = LSDF(ϕ) + Lg-L1
(ϕ) + Lg-NCE(ϕ). (8)

3.2.2 Sketch loss

Given the misalignment between sketches and reference 3D
shapes in the dataset [33], as we show in Fig. 2, we aim for
the reconstruction result to stay close to the sketch input. To
achieve this goal, we design a sketch loss Lsketch.

Since a sketch is a sparse representation of a 3D shape,
the intended 3D shape surface should lie in the vicinity of
sketch stroke points. Therefore, the reconstructed SDF val-
ues at those points should be close to zero. Formally, we
define this loss as follows:

Lsketch(ϕ) =
1

Ns

Ns∑
i=1

|D(ec, pci )|, (9)

where pci ∈ C is the i-th sample points from the condition-
ing sketch, and Ns is the number of sampled points in a
sketch.

3.2.3 Sketch-shape latent space alignment

The considered so far losses do not explicitly ensure that
there is a meaningful mapping between sketches and 3D
shapes’ latent representations. Therefore, we design addi-
tional losses encouraging an alignment in the feature space.

First, we introduce a contrastive loss, similar to the one
in Eq. (10), leveraging that sketches in our dataset contain
reference shapes. It takes the following form:

Lc-NCE(ϕ) = −
Nc∑
i=1

[
log

exp (− |eci − dg
i |)∑Ng

j=1 exp
(
−
∣∣eci − dg

j

∣∣)
]
,

(10)
where Nc is the number of sketches and Ng is the number
of shapes in the mini-batch. This loss pulls the encodings
of a sketch and a reference shape closer than the encodings
of a sketch and non-matching 3D shapes.

Additionally, we minimize the L1 distance between the
sketch C embedding ec = Eϕ(C) to the ground-truth shape
latent code dg:

Lc-L1
(ϕ) = |ec − dg|. (11)

Finally, the alignment loss is the sum of the two losses:

Lalign = Lc-L1
+ Lc-NCE (12)

3.3. Conditional shape generation

As shown in Fig. 2, a sparse sketch can represent mul-
tiple 3D shapes, generally following the sparse sketch

strokes. Therefore, we would like to be able to generate
multiple 3D shapes given a sketch. We achieve this by train-
ing a conditional normalizing flow (CNF) model in the la-
tent space.

Specifically, we model the conditional distribution of
shape embeddings using a RealNVP network [15] with five
layers as in [43]. It transforms the probability distribution
of shape feature embedding pd(d

g) to a unit Gaussian dis-
tribution pz(z). We obtain the sketch embedding vector ec

as described in the previous section, which serves as a con-
dition for our normalizing flow model. Please note that the
sketch encoder parameters ϕ are frozen at this stage. The
sketch condition ec is concatenated with the matching 3D
shape feature vector dg at each scale and translation cou-
pling layers, following RealNVP [15]:

z1:d = dg1:d and (13)

zd+1:D = dgd+1:D ⊙ exp
(
s
([

ec; dg1:d
]))

+ t
([

ec; dg1:d
])

(14)

where s(·) and t(·) are the scale and translation functions,
parameterized by a neural network, as described in [15].

The idea of the normalizing flow model is to approx-
imate a complicated probability distribution with a sim-
ple distribution through a sequence of invertible nonlinear
transforms. We train the flow model by maximizing the log-
likelihood log (pd (d)):

LCNF = − log (pd (d))

= −(log (pz (z)) + log

(∣∣∣∣det(∂F (d)

∂zT

)∣∣∣∣)), (15)

where F (·) is the normalizing flow model, and ∂F (d)/∂zT

is the Jacobian of F at d.

Sketch fidelity. To ensure the fidelity of the generated 3D
shapes to an input sketch, we additionally train the flow
model with a loss similar to an Lsketch loss (Eq. (9)).

First, the flow module F is updated with the gradients
from LCNF. Then, for each sketch condition ec, we ran-
domly sample K different noise vectors {zk} from the unit
Gaussian distribution zk ∈ N (0, 1), as shown in Fig. 3 (b).
These noise vectors are mapped back to the shape embed-
ding space through the reverse path of the flow model. Dur-
ing training, the obtained shape embeddings {dc

k} are fed
to the implicit decoder Dθ(·) together with sketch stroke
points pci . Formally, this loss takes the following form:

Lsketch,CNF =
λ

NsK

Ns∑
i=1

K∑
k=1

|D (dc
k, p

c
i ) |, (16)
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where Ns is a number of sketch stroke points, as before, and
λ is a hyper-parameter set to 100 to increase the relative im-
portance of this loss. In each mini-batch, we first propagate
gradients from LCNF, and then from Lsketch,CNF.

Conditional shape generation. During inference, given
an input sketch, represented as a set of points, we first obtain
its embedding ec using the encoder Eϕ(·). We then condi-
tion the normalizing flow network with ec and a random
noise vector sampled from the unit Gaussian distribution to
obtain a shape embedding dc. We obtain the mean embed-
ding by using the mean of the normal distribution. Finally,
this shape embedding is fed into implicit decoder Dθ(·) to
obtain a new set of SDF values {sdc |sdc

= D(dc)}. A 3D
geometry is then reconstructed by applying the marching
cubes algorithm [30].

4. Experiments

4.1. Implementation Details

Auto-decoder We train a decoder, similar to [39], to
regress the continuous SDF value for a given 3D space
point and latent space feature vector. Our decoder Dθ :
R(256+3) → R consists of 5 feed-forward layers, each
with dropouts. All internal layers are 512-dimensional and
have ReLU non-linearities. The output layer uses tanh non-
linearity to directly regress the continuous SDF scalar val-
ues. Similar to [39], we found training with batch normal-
ization to be unstable and applied the weight-normalization
technique.

During training, for each shape, we sample locations of
the 3D points at which we calculate SDF values. We sam-
ple two sets of points: close to the shape surface and uni-
formly sampled in the unit box. Then, the loss is evalu-
ated on the random subsets of those pre-computed points.
During inference, the 3D points are sampled on a regular
(256× 256× 256) grid.

Encoder and Normalizing flow We train with an Adam
optimizer, where for the encoder training the learning rate
is set to 1e− 3, and for the normalizing flow model, it is set
to 1e− 5. Training is done on 2 Nvidia A100 GPUs.

When training a sketch encoder jointly on sketches and
shapes each mini-batch consists of 12 sketch-shape pairs
and additional 24 shapes that do not have a paired sketch.
When training CNF model, each mini-batch consists of 12
sketch-shape pairs.

We train the encoder and the conditional normalizing
flow for 300 epochs each. The encoder is however trained in
two steps. First, it is pre-trained using 3D shapes only, us-
ing Lshape loss, defined in Eq. (8). The performance of the
shape reconstruction from this step is provided for reference

in the 1st line in Tab. 1. The encoder is then fine-tuned using
sketches and shapes with the full loss given by Eq. (4).

To train the sketch/shape encoder we sample Ns = 4096
points from sketch strokes and shape surface, respectively.
Please refer to the supplemental for additional details.

4.2. Datasets

For training and testing, we use the only available fine-
grained dataset of freehand VR sketches by Luo et al. [34]1.
The dataset consists of 1,005 sketch shape pairs for the chair
category of ShapeNet [7]. We follow their split to training
and test sets, containing 803 and 202 shape-sketch pairs,
respectively. The 6,576 shapes from the ShapeNetCore-v2,
non-overlapping with the 202 shapes in the test set, are used
for training the auto-decoder and sketch/shape encoder.

Alignment of multiple data types: The sketches in the
used dataset have a consistent orientation with reference
3D shapes, but might be not well aligned horizontally and
vertically to the references, and can have a different scale.
We sample shape point clouds and compute SDF values for
the normalized 3D shapes as provided in ShapeNetCore-
v2, which ensures consistency between the two 3D shape
representations. We then normalize the sketches to fit
a unit bounding box, following the normalization in the
ShapeNetCore-v2. To further improve alignment between
sketches and 3D shapes, we translate sketches, so that their
centroids match the centroids of reference shapes.

4.3. Evaluation Metrics

Following prior work, we choose a bidirectional Cham-
fer distance (CD) as the similarity metric between two 3D
shapes. CD measures the average shortest distance from
one set of points to another. To compute CD, we randomly
sample 4,096 points from 3D meshes.

Shape fidelity, Fshape(·) First, we evaluate the ability of
our auto-encoder to faithfully regress 3D shape SDF values
given a 3D shape point cloud. We evaluate the fidelity of
the regressed 3D shape, Geg , to the ground-truth 3D shape,
G, as follows: Fshape(G

eg ) = CD(G,Geg ).
Then, while the sketches in the used dataset do not align

perfectly with reference 3D shapes and contain ambiguity,
it is meaningful to expect that the reconstructed 3D shape
still should be close to the reference 3D shape. There-
fore, we evaluate how close the reconstructed 3D shapes
are to the ground-truth when (1) the shape is reconstructed
from the sketch embedding ec, denoted as Gec ; (2) the
shape is reconstructed from the predicted conditional mean
z̄c of the CNF model, denoted as Gz̄c

= D(F−1(z̄c));
and (3) the shape is reconstructed from a random sample

1https://cvssp.org/data/VRChairSketch/
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Method Loss Fshape(G
ec) ↓ Fshape(G

eg ) ↓
Shape AE Lshape 0.834 0.110

Sketch AE LSDF 0.437 0.581
Lg-L1 + Lsketch 0.504 0.321

Joint AE L 0.357 0.126

Table 1. Evaluation of auto-encoder training strategies with re-
spect to the fidelity (Fshape(·)) of the reconstructed 3D shapes
to the reference/ground-truth 3D shapes, depending on the used
data. Here, Gec and Geg are reconstructions from an input sketch
and 3D shape, respectively. Shape AE, Sketch AE, and Joint AE
stand for training encoder only with shape inputs, sketch inputs, or
both, respectively.

from the latent space of the CNF model, denoted as Gdc

.
The respective losses are: Fshape(G

ec), Fshape(G
z̄c

) and
F avg

shape(G
dc

) =
∑5

i=1 Fshape(G
dc

i ), where in the latter case
we generate 5 samples and report an average loss value.

Sketch fidelity, Fsketch(·) Since the used sketches are am-
biguous and are not perfectly aligned to a reference, we
evaluate the fidelity of the reconstructions to the sketch
input, using the loss similar to Eq. (9): Fsketch(G

c) =
1
Ns

∑Ns

i=1 s
c(pci ), where pci is the i-th sample point from the

input sketch and sc denotes the predicted SDF. With that,
we define Favg

sketch(s
dc

) = 1
5

∑5
i=1 Fsketch(s

dc

i ), as the aver-
age fidelity of multiple samples from the CNF model space
to an input sketch.

Diversity, Dgnrtns To measure the diversity of the gener-
ated shapes, we formulate the pair-wise similarity of gener-
ated shapes using CD. Specifically, for any two generated
shapes conditioned on the same sketch, we compute their
CD, and finally report the mean of all pairs, which we refer
to as Dgnrtns.

4.4. Results

We first evaluate the reconstruction performance of our
AE and then evaluate multiple shape generation, condi-
tioned on the input sketch. Fig. 4 shows qualitative results
for both stages.

4.4.1 Deterministic sketch to shape generation

Our first goal is to learn to map sketches to 3D shapes in
a deterministic fashion. One of the challenges in our work
comes from the limited dataset size, which is a common
factor that should be taken into consideration when work-
ing with freehand sketches. Therefore, we proposed train-
ing the sketch-to-shape auto-encoder in multiple steps, and
in addition, we propose to use a joint auto-encoder, and we
use 3D shapes without paired sketches in the NCE loss to

Method Fshape(G
ec) ↓ Fshape(G

eg ) ↓
LL1 0.418 0.199
LL1 + LSDF 0.374 0.140
LL1 + LSDF + LNCE 0.373 0.126

LL1 + LSDF + LNCE + Lsketch 0.357 0.126

Table 2. Evaluation of auto-encoder training strategies with re-
spect to the fidelity (Fshape(·)) of the reconstructed 3D shapes
to the reference/ground-truth 3D shapes, depending on the used
loss function. Here, we group together sketch and shape L1 and
NCE losses.

improve robustness. Tab. 1 shows that our strategy indeed
outperforms alternative strategies. It allows reconstructing
3D shapes similar to reference 3D shapes, as shown by
Fshape(G

ec). The fact that Fshape(G
eg ) stays low in our

proposed design implies that if the sketch is very detailed
and accurate, we will obtain careful 3D shape reconstruc-
tions.

Tab. 2 demonstrates the importance of individual loss
terms. It shows that the shape reconstruction loss LSDF en-
sures that we can reconstruct shapes well when the input is
dense (the case for the shape point cloud or very detailed
sketches). The sketch fidelity loss Lsketch ensures that the
reconstructed shape is following the structure of an input
sketch. Finally, NCE losses improve both the sketch and
shape fidelity criteria of the reconstructed results.

4.4.2 Conditional sketch to shape generation

Next, we conduct a number of experiments to assess the
proposed conditional generation framework.

Shape encoding choices Note that when training CNF
model, we use the shape latent code, dg , obtained via an
inversion process with Eq. (3). Tab. 3, lines 2 and 3, shows
that this allows to greatly increase the diversity of the gen-
erated results compared to using latent shape codes, eg , ob-
tained from the encoder. This comes with a small decrease
in fidelity to the reference shape, while the fidelity to the
sketch increases a little bit. This result reinforces our de-
sign choice of training the auto-decoder first, providing a
richer latent space.

Sketch fidelity loss in CNF model Tab. 3, lines 3 and 4,
show that sketch consistency loss Lsketch, CNF results in much
better sketch fidelity while maintaining comparable diver-
sity. Varying the number of samples K from the CNF latent
space, we can further adjust the balance between sketch fi-
delity and diversity (Tab. 3, lines 4-6). We use the model
with K = 8 samples for the visual results in all our fig-
ures. The advantage of this loss is demonstrated visually in
Fig. 5. It can be observed that the proposed loss encourages
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Method K Fshape(G
ec) ↓ Favg

sketch(G
dc

) ↓ F avg
shape(G

dc

) ↓ Dgnrtns ↑

Joint AE - 0.357 - - -

CNF(eg) - 0.373 0.026±0.036 0.380 0.043
CNF(dg) - 0.385 0.030±0.039 0.420 0.165

CNF(dg) + Lsketch,CNF

1 0.366 0.019±0.034 0.422 0.158
4 0.397 0.018±0.034 0.448 0.165
8 0.368 0.017±0.034 0.431 0.161

Table 3. Ablation of design choices for the CNF model. ‘Joint AE’ stands for the result of our autoencoder model, and provides the
estimated fidelity of the deterministic reconstruction to a sketch reference 3D shape. ‘CNF’ stands for a conditional normalizing flow. K
refers to the number of samples used to compute Lsketch,CNF during training. Favg

sketch measures the average fidelity of the reconstructed 3D
shape samples to an input sketch. F avg

shape measures the average fidelity of the reconstructed 3D shape samples to a reference shape. Dgnrtns

measures the diversity of the the reconstructed 3D shape samples. All fidelity measures are multiplied by 1e2.

Sketch Randomly generated 3D shapes for a given sketchMeanRef. Ref.AE AE Randomly generated 3D shapes for a given sketchMeanSketch

Figure 4. Generation results. ‘Ref.’ shows the reference 3D shape. ‘AE’ shows the deterministic prediction by our AE from the first stage
of our method. ‘Mean’ denotes the shape reconstructed from the sample corresponding to the mean of the conditional distribution. And
finally, we show 5 randomly generated shapes conditioned on the input sketch, sorted in the order of fidelity to a reference shape.

the network to always reconstruct some shape structure near
the sketch strokes.

Sketch Randomly generated 3D shapes for a given sketchMean

w
w

/o

Figure 5. Comparison of the generated samples conditioned on the
input sketch when Lsketch, CNF is used (purple) or not (green). This
example shows that the sketch fidelity loss indeed results in better
fidelity to a sketch input: all generated shapes when the loss is used
contain handles and better respect the shape of chair legs/support.
‘Mean’ denotes the shape reconstructed from the sample corre-
sponding to the mean of the conditional distribution.

4.5. Comparison to retrieval

Fig. 6 shows comparison to the retrieval results by the
state-of-the-art method [32] that is designed to retrieve
structurally-similar shapes. It can be observed that gener-
ation can be more robust to shapes that are not common
shapes in a 3D shape gallery. However, the reconstruction
quality of our method is limited, and some shapes still do

Sketch Generated Retrieved [Luo et al. 2022]

Figure 6. Comparison to the retrieval results by Luo et al. [32].

not look like real-world shapes, missing details.

5. Conclusion and Discussion
We present the first method for multiple 3D shape gen-

eration conditioned on sparse and abstract sketches. We
achieve good fidelity to the input sketch combined with the
shape diversity of the generated results. In our work, we
show how to efficiently overcome the limitation of small
datasets. Our experiments are currently limited to a single
category, but none of the components of our method explic-
itly exploits any priors about this category. In the future,
we would like to extend this work by (1) further improving
the input sketch fidelity, potentially taking perceptual multi-
view losses into account during training, and (2) consider-
ing alternative shape representation for our auto-decoder.
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