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Abstract

Neural Radiance Fields (NeRF) have the potential to be

a major representation of media. Since training a NeRF

has never been an easy task, the protection of its model

copyright should be a priority. In this paper, by analyz-

ing the pros and cons of possible copyright protection solu-

tions, we propose to protect the copyright of NeRF models

by replacing the original color representation in NeRF with

a watermarked color representation. Then, a distortion-

resistant rendering scheme is designed to guarantee robust

message extraction in 2D renderings of NeRF. Our pro-

posed method can directly protect the copyright of NeRF

models while maintaining high rendering quality and bit ac-

curacy when compared among optional solutions. Project

page: https://luo-ziyuan.github.io/copyrnerf.

1. Introduction

Though Neural Radiance Fields (NeRF) [23] have the

potential to be the mainstream for the representation of dig-

ital media, training a NeRF model has never been an easy

task. If a NeRF model is stolen by malicious users, how can

we identify its intellectual property?

As with any digital asset (e.g., 3D model, video, or im-

age), copyright can be secured by embedding copyright

messages into asset, aka digital watermarking, and NeRF

models are no exception. An intuitive solution is to directly

watermark rendered samples using an off-the-shelf water-

marking approach (e.g., HiDDeN [50] and MBRS [14]).

However, this only protects the copyright of rendered sam-

ples, leaving the core model unprotected. If the core model

has been stolen, malicious users may render new samples

*Corresponding author. This work was carried out at Renjie’s Research

Group at the Department of Computer Science of Hong Kong Baptist Uni-

versity.
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Figure 1: When NeRF models are stolen ( 1 ) by macli-

cious users, CopyRNeRF can help to claim model owner-

ship by transmitting copyright messages embedded in mod-

els to rendering samples ( 2 ). We show some comparisons

with HiDDeN [50] + NeRF [23], and NeRF [23] with mes-

sages. PSNR/Bit Accuracy is shown below each example.

using different rendering strategies, leaving no room for

external watermarking expected by model creators. Be-

sides, without considering factors necessary for rendering

during watermarking, directly watermarking rendered sam-

ples may leave easily detectable trace on areas with low ge-

ometry values.

The copyright messages are usually embedded into 3D

structure (e.g., meshes) for explicit 3D models [43]. Since

such structures are all implicitly encoded into the weights

of multilayer perceptron (MLP) for NeRF, its copyright

protection should be conducted by watermarking model

weights. As the information encoded by NeRF can only be

accessed via 2D renderings of protected models, two com-

mon standards should be considered during the watermark

extraction on rendered samples [1, 15, 41, 45]: 1) invisi-

bility, which requires that no serious visual distortion are

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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caused by embedded messages, and 2) robustness, which

ensures robust message extraction even when various dis-

tortions are encountered.

One option is to create a NeRF model using watermarked

images, while the popular invisible watermarks on 2D im-

ages cannot be effectively transmitted into NeRF mod-

els. As outlined in Figure 1 (HiDDeN [50] + NeRF [23]),

though the rendered results are of high quality, the secret

messages cannot be robustly extracted. We can also directly

concatenate secret messages with input coordinates, which

produces higher bit accuracy (NeRF with message in Fig-

ure 1). However, the lower PSNR values of rendered sam-

ples indicate that there is an obvious visual distortion, which

violates the standard for invisibility.

Though invisibility is important for a watermarking sys-

tem, the higher demand for robustness makes watermarking

unique [50]. Thus, in addition to invisibility, we focus on

a more robust protection of NeRF models. As opposed to

embedding messages into the entire models as in the above

settings, we create a watermarked color representation for

rendering based on a subset of models, as displayed in Fig-

ure 2. By keeping the base representation unchanged, this

approach can produce rendering samples with invisible wa-

termarks. By incorporating spatial information into the wa-

termarked color representation, the embedded messages can

remain consistent across different viewpoints rendered from

NeRF models. We further strengthen the robustness of wa-

termark extraction by using distortion-resistant rendering

during model optimization. A distortion layer is designed to

ensure robust watermark extraction even when the rendered

samples are severely distorted (e.g., blurring, noise, and ro-

tation). A random sampling strategy is further considered

to make the protected model robust to different sampling

strategy during rendering.

Distortion-resistant rendering is only needed during the

optimization of core models. If the core model is stolen,

even with different rendering schemes and sampling strate-

gies, the copyright message can still be robustly extracted.

Our contribution can be summarized as follows:

• a method to produce copyright-embedded NeRF mod-

els.

• a watermarked color representation to ensure invisibil-

ity and high rendering quality.

• distortion-resistant rendering to ensure robustness

across different rendering strategies or 2D distortions.

2. Related work

Neural radiance fields. Various neural implicit scene

representation schemes have been introduced recently [25,

42, 48]. The Scene Representation Networks (SNR) [32]

represent scenes as a multilayer perceptron (MLP) that

maps world coordinates to local features, which can be

trained from 2D images and their camera poses. DeepSDF

[27] and DIST [20] use trained networks to represent a con-

tinuous signed distance function of a class of shapes. PIFu

[30] learned two pixel-aligned implicit functions to infer

surface and texture of clothed humans respectively from

a single input image. Occupancy Networks [21, 28] are

proposed as an implicit representation of 3D geometry of

3D objects or scenes with 3D supervision. NeRF [23, 49]

in particular directly maps the 3D position and 2D view-

ing direction to color and geometry by a MLP and synthe-

size novel views via volume rendering. The improvements

and applications of this implicit representation have been

rapidly growing in recent years, including NeRF acceler-

ating [9, 24], sparse reconstruction [44, 6], and generative

models [31, 5]. NeRF models are not easy to train and may

use private data, so protecting their copyright becomes cru-

cial.

Digital watermarking for 2D. Early 2D watermarking

approaches encode information in the least significant bits

of image pixels [35]. Some other methods instead encode

information in the transform domains [17]. Deep-learning

based methods for image watermarking have made substan-

tial progress. HiDDeN [50] was one of the first deep image

watermarking methods that achieved superior performance

compared to traditional watermarking approaches. Red-

Mark [1] introduced residual connections with a strength

factor for embedding binary images in the transform do-

main. Deep watermarking has since been generalized to

video [37, 46] as well. Modeling more complex and real-

istic image distortions also broadened the scope in terms

of application [38, 34]. However, those methods all cannot

protect the copyright of 3D models.

Digital watermarking for 3D. Traditional 3D water-

marking approaches [26, 29, 39] leveraged Fourier or

wavelet analysis on triangular or polygonal meshes. Re-

cently, Hou et al. [11] introduced a 3D watermarking

method using the layering artifacts in 3D printed objects.

Son et al. [33] used mesh saliency as a perceptual metric

to minimize vertex distortions. Hamidi et al. [10] further

extended mesh saliency with wavelet transform to make 3D

watermarking robust. Jing et al. [19] studied watermark-

ing for point clouds through analyzing vertex curvatures.

Recently, a deep-learning based approach [43] successfully

embeds messages in 3D meshes and extracts them from 2D

renderings. However, existing methods are for explicit 3D

models, which cannot be used for NeRF models with im-

plicit property.

22402



Ray

casting

ۻ
Message Σ

Noise

Rotation

Scaling

෡ۻ
Extracted
message

(a) Building watermarked color representation
Sec 4.1.

Color
feature field

(b) Distortion-resistant rendering
Sec 4.2.

(c) Message

extractor
Sec 4.3.

Message Loss

ۻ
Message

࢞࣌
Content Loss

࣌
࢞ : Coordinateࢊ : Viewing direction࣌ : Geometry࢓ࢉ: Watermarked color

Watermarked
color

Color feature
encoder

Message feature
encoder

Feature fusion
module

Distortion layer

Core model Rendering Message extraction

Message
feature field

Feature
fusion

11010…

11010…

ࢊ
Random
sampling

࢓ࢉ
Figure 2: Illustration of our proposed method. (a) A watermarked color representation is obtained with the given secret

message, which is able to produce watermarked color for rendering. (b) During training, a distortion-resistant rendering

is deployed to map the geometry (σ) and watermarked color representations to image patches with several distortions. (c)

Finally, the secret message can be revealed by a CNN-based message extractor.

3. Preliminaries

NeRF [23] uses MLPs Θσ and Θc to map the 3D location

x ∈ R
3 and viewing direction d ∈ R

2 to a color value

c ∈ R
3 and a geometric value σ ∈ R

+:

[σ, z] = Θσ (γx(x)) , (1)

c = Θc (z, γd(d)) , (2)

where γx and γd are fixed encoding functions for location

and viewing direction respectively. The intermediate vari-

able z is a feature output by the first MLP Θσ .

For rendering a 2D image from the radiance fields Θσ
and Θc, a numerical quadrature is used to approximate the

volumetric projection integral. Formally, Np points are

sampled along a camera ray r with color and geometry val-

ues {(cir, σ
i
r)}

N
i=1. The RGB color value Ĉ(r) is obtained

using alpha composition

Ĉ(r) =

Np∑

i=1

T ir(1− exp
(
−σirδ

i
r

)
)cir, (3)

where T ir =
∏i−1

j=1

(
exp

(
−σirδ

i
r

))
, and δir is the distance

between adjacent sample points. The MLPs Θσ and Θc are

optimized by minimizing a reconstruction loss between ob-

servations C and predictions Ĉ as

Lrecon =
1

Nr

Nr∑

m=1

∥Ĉ(rm)−C(rm)∥22, (4)

where Nr is the number of sampling pixels. Given Θσ and

Θc, novel views can be synthesized by invoking volume

rendering for each ray.

Considering the superior capability of NeRF in rendering

novel views and representing various scenes, how can we

protect its copyright when it is stolen by malicious users?

4. Proposed method

As outlined in Figure 2, with a collection of 2D images

{In}
N
n=1 and the binary message M ∈ {0, 1}Nb with length

Nb, we address the issue raised in Section 3 by building a

watermarked color representation during optimization. In

training, a distortion-resistant rendering is further applied

to improve the robustness when 2D distortions or different

rendering schemes are encountered. With the above design,

the secret messages can be robustly extracted during testing

even encountering sever distortions or different rendering

strategies.

4.1. Building watermarked color representation

The rendering in Equation (3) relies on color and ge-

ometry produced by their corresponding representation in

NeRF. To ensure the transmission of copyright messages to

the rendered results, we propose embedding messages into

their representation. We create a watermarked color rep-

resentation on the basis of Θc defined in Equation (2) to

guarantee the message invisibility and consistency across

viewpoints. The representation of geometry is also the po-

tential for watermarking, but external information on geom-

etry may undermine rendering quality [36, 12, 7]. There-

fore, the geometry does not become our first option, while

experiments are also conducted to verify this setting.

We keep the geometry representation in Equation (1) un-

changed, and construct the watermarked color representa-

tion Θm to produce the message embedded color cm as fol-
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lows:

cm = Θm (c, γx(x), γd(d),M) , (5)

where M denotes the message to be embedded and Θm con-

tains several MLPs to ensure reliable message embedding.

The input c is obtained by querying Θc using Equation (2).

Several previous methods have pointed out the importance

of building a 3D feature field when distributed features are

needed to characterize composite information [40, 4]. Thus,

instead of directly fusing those information, we first con-

struct their corresponding feature field and then combine

them progressively.

Color feature field. In this stage, we aim at fusing the

spatial information and color representation to ensure mes-

sage consistency and robustness across viewpoints. We

adopt a color feature field by considering color, spatial po-

sitions, and viewing directions simultaneously as follows:

fc = Eξ(c, γx(x), γd(d)). (6)

Given a 3D coordinate x and a viewing direction d, we first

query the color representation Θc (z, γd(d)) to get c, and

then concatenate them with x and d to obtain spatial de-

scriptor v as the input. Then the color feature encoder Eξ
transforms v to the high-dimensional color feature field fc
with dimension Nc. The Fourier feature encoding is applied

to x and d before the feature extraction.

Message feature field. We further construct the message

feature field. Specifically, we follow the classical setting in

digital watermarking by transforming secret messages into

higher dimensions [2, 3]. It ensures more succinctly en-

coding of desired messages [2]. As shown in Figure 2, a

message feature encoder is applied to map the messages to

its corresponding higher dimensions as follows:

fM = Dφ(M). (7)

In Equation (7), given message M of length Nb, the mes-

sage feature encoder Dφ applies a MLP to the input mes-

sage, resulting in a message feature field fM of dimension

Nm.

Then, the watermarked color can be generated via a fea-

ture fusion module Gψ that integrates both color feature

field and message feature field as follows:

cm = Gψ(fc, fM, c). (8)

Specifically, c is also employed here to make the final re-

sults more stable. cm is with the same dimension to c,

which ensures this representation can easily adapt to cur-

rent rendering schemes.

4.2. Distortion­resistant rendering

Directly employing the watermarked representation for

volume rendering has already been able to guarantee in-

visibility and robustness across viewpoints. However, as

discussed in Section 1, the message should be robustly ex-

tracted even when encountering diverse distortion to the

rendered 2D images. Besides, for an implicit model relying

on rendering to display its contents, the robustness should

also be secured even when different rendering strategies

are employed. Such requirement for robustness cannot be

achieved by simply using watermarked representation un-

der the classical NeRF training framework. For example,

the pixel-wise rendering strategy cannot effectively model

the distortion (e.g., blurring and cropping) only meaning-

ful in a wider scale. We, therefore, propose a distortion-

resistant rendering by strengthening the robustness using a

random sampling strategy and distortion layer.

Since most 2D distortions can only be obviously ob-

served in a certain area, we consider the rendering process

in a patch level [16, 8]. A window with the random posi-

tion is cropped from the input image with a certain height

and width, then we uniformly sample the pixels from such

window to form a smaller patch. The center of the patch is

denoted by u = (u, v) ∈ R
2, and the size of patch is de-

termined by K ∈ R
+. We randomly draw the patch center

u from a uniform distribution u ∼ U(Ω) over the image

domain Ω. The patch P(u,K) can be denoted by by a set

of 2D image coordinates as

P(u,K) = {(x+ u, y + v) | x, y ∈ {−
K

2
, . . . ,

K

2
− 1}}.

(9)

Such a patch-based scheme constitutes the backbone of our

distortion-resistant rendering, due to its advantages in cap-

turing information on a wider scale. Specifically, we em-

ploy a variable patch size to accommodate diverse distor-

tions during rendering, which can ensure higher robust-

ness in message extraction. This is because small patches

increase the robustness against cropping attacks and large

patches allow higher redundancy in the bit encoding, which

leads to increased resilience against random noise [8].

As the corresponding 3D rays are uniquely determined

by P(u,K), the camera pose and intrinsics, the image patch

P̃ can be obtained after points sampling and rendering.

Based on the sampling points in Section 3, we use a random

sampling scheme to further improve the model’s robustness,

which is described as follows.

Random sampling. During volume rendering, NeRF [23]

is required to sample 3D points along a ray to calculate

the RGB value of a pixel color. However, the sampling

strategy may vary as the renderer changes [24, 18]. To

make our message extraction more robust even under dif-
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ferent sampling strategies, we employ a random sampling

strategy by adding a shifting value to the sampling points.

Specifically, the original Np sampling points along ray r is

denoted by a sequence, which can be concluded as X =

(x1
r, x

2
r, · · · , x

Np

r ), where xir, i = 1, 2, · · · , Np denotes the

sampling points during rendering. The randomized sam-

ple sequence Xrandom can be denoted by adding a shifting

value as

Xrandom = (x1
r + z1, x2

r + z2, · · · , xNp

r + zNp),

zi ∼ N (0, β2), i = 1, 2, · · · , Np,
(10)

where N (0, β2) is the Gaussian distribution with zero mean

and standard deviation β.

By querying the watermarked color representation and

geometry values at Np points in Xrandom, the rendering

operator can be then applied to generate the watermarked

color C̃m in rendered images:

C̃m(r) =

Np∑

i=1

T ir(1− exp
(
−σirδ

i
r

)
)cim, (11)

where T ir and δir are with the same definitions to their coun-

terparts in Equation (3).

All the colors obtained by coordinates P can form a

K×K image patch P̃. The content loss Lcontent of the 3D

representation is calculated between watermarked patch P̃

and the P̂, where P̂ is rendered from the non-watermarked

representation by the same coordinates P . In detail, the con-

tent loss Lcontent has two components namely pixel-wise

MSE loss and perceptual loss:

Lcontent = ∥P̃− P̂∥22+λ∥Ψ(P̃)−Ψ(P̂)∥22, (12)

where Ψ(·) denotes the feature representation obtained from

a VGG-16 network, and λ is a hyperparameter to balance

the loss functions.

Distortion layer. To make our watermarking system ro-

bust to 2D distortions, a distortion layer is employed in

our watermarking training pipeline after the patch P̃ is ren-

dered. Several commonly used distortions are considered:

1) additive Gaussian noise with mean µ and standard devi-

ation ν; 2) random axis-angle rotation with parameters α;

and 3) random scaling with a parameter s; 4) Gaussian blur

with kernel k. Since all these distortions are differentiable,

we could train our network end-to-end.

The distortion-resistant rendering is only applied during

training. It is not a part of the core model. If the core model

is stolen, even malicious users use different rendering strat-

egy, the expected robustness can still be secured.

4.3. Message extractor

To retrieve message M̂ from the K ×K rendered patch

P, a message extractor Hχ is proposed to be trained end-to-

end:

Hχ : RK×K → R
Nb , P 7→ M̂, (13)

where χ is a trainable parameter. Specifically, we employ

a sequence of 2D convolutional layers with the batch nor-

malization and ReLU functions [13]. An average pooling

is then performed, following by a final linear layer with a

fixed output dimension Nb, which is the length of the mes-

sage, to produce the continuous predicted message M̂. Be-

cause of the use of average pooling, the message extractor

is compatible with any patch sizes, which means the net-

work structure can remain unchanged when applying size-

changing distortions such as random scaling.

The message loss Lm is then obtained by calculating the

binary cross-entropy error between predicted message M̂

and the ground truth message M:

Lm = mean[−(M log M̂+ (1−M) log(1− M̂))], (14)

where mean[·] indicates the mean value over all bits.

To evaluate the bit accuracy during testing, the binary

predicted message M̂b can be obtained by rounding:

M̂b = clamp(sign(M̂), 0, 1), (15)

where clamp and sign are of the same definitions in [43]. It

should be noted that we use the continuous result M̂ in the

training process, while the binary one M̂b is only adopted

in testing process.

Therefore, the overall loss to train the copyright-

protected neural radiance fields can be obtained as

L = γ1Lcontent + γ2Lm, (16)

where γ1 and γ2 are hyperparameters to balance the loss

functions.

4.4. Implementation details

We implement our method using PyTorch. An eight-

layer MLP with 256 channels and the following two MLP

branches are used to predict the original colors c and opaci-

ties σ, respectively. We train a “coarse” network along with

a “fine” network for importance sampling. we sample 32

points along each ray in the coarse model and 64 points in

the fine model. Next, the patch size is set to 150 × 150.

The hyperparameters in Equation (12) and Equation (16)

are set as λ1 = 0.01, γ1 = 1, and γ2 = 5.00. We use the

Adam optimizer with defaults values β1 = 0.9, β2 = 0.999,

ϵ = 10−8, and a learning rate 5× 10−4 that decays follow-

ing the exponential scheduler during optimization. In our

experiments, we set Nm in Equation (7) as 256. We first

optimize MLPs Θσ and Θc using loss function Equation (4)
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Groundtruth Proposed Method HiDDeN+NeRF NeRF with message

Accuracy 100% / PSNR 30.28

CopyRNeRF in geometryMBRS+NeRF

Accuracy 51.04% / PSNR 28.61

Accuracy 51.38% / PSNR 29.09

Accuracy 69.28% / PSNR 22.83 Accuracy 61.50% / PSNR 18.82

Accuracy 68.00% / PSNR 17.61Accuracy 63.19% / PSNR 20.26

Accuracy 100% / PSNR 32.69 Accuracy 50.94% / PSNR 27.71

Accuracy 50.25% / PSNR 27.75

Figure 3: Visual quality comparisons of each baseline. We show the differences (×10) between the synthesized results and

the ground truth next to each method. Our proposed CopyRNeRF can achieve a well balance between the reconstruction

quality and bit accuracy.

Table 1: Bit accuracies with different lengths compared with baselines. The results are averaged on all all examples.

4 bits 8 bits 16 bits 32 bits 48 bits

Proposed CopyRNeRF 100% 100% 91.16% 78.08% 60.06%

HiDDeN [45]+NeRF[23] 50.31% 50.25% 50.19% 50.11% 50.04%

MBRS [14]+NeRF [23] 53.25% 51.38% 50.53% 49.80% 50.14%

NeRF[23] with message 72.50% 63.19% 52.22% 50.00% 51.04%

CopyRNeRF in geometry 76.75% 68.00% 60.16% 54.86% 53.36%

for 200K and 100K iterations for Blender dataset [23] and

LLFF dataset [22] separately, and then train the models Eξ,
Dφ, and Hχ on 8 NVIDIA Tesla V100 GPUs. During train-

ing, we have considered messages with different bit lengths

and forms. If a message has 4 bits, we take into account all

24 situations during training. The model creator can choose

one message considered in our training as the desired mes-

sage.

5. Experiments

5.1. Experimental settings

Dataset. To evaluate our methods, we train and test our

model on Blender dataset [23] and LLFF dataset [22],

which are common datasets used for NeRF. Blender dataset

contains 8 detailed synthetic objects with 100 images taken

from virtual cameras arranged on a hemisphere pointed in-

ward. As in NeRF [23], for each scene we input 100 views

for training. LLFF dataset consists of 8 real-world scenes

that contain mainly forward-facing images. Each scene con-

tains 20 to 62 images. The data split for this dataset also fol-

lows NeRF [23]. For each scene, we select 20 images from

their testing dataset to evaluate the visual quality. For the

evaluation of bit accuracy, we render 200 views for each

scene to test whether the message can be effectively ex-

tracted under different viewpoints. We report average val-

ues across all testing viewpoints in our experiments.

Baselines. To the best of our knowledge, there is no

method specifically for protecting the copyright of NeRF

models. We, therefore, compare with four strategies to

guarantee a fair comparison: 1) HiDDeN [50]+NeRF[23]:

processing images with classical 2D watermarking method

HiDDeN [50] before training the NeRF model; 2)

MBRS [14]+NeRF [23]: processing images with state-of-

the-art 2D watermarking method MBRS [14] before train-

ing the NeRF model; 3) NeRF with message: concatenat-

ing the message M with location x and viewing direction d

as the input of NeRF; 4) CopyRNeRF in geometry: chang-

ing our CopyRNeRF by fusing messages with the geometry

to evaluate whether geometry is a good option for message

embedding.

Evaluation methodology. We evaluate the performance

of our proposed method against other methods by follow-

ing the standard of digital watermarking about the invisibil-

ity, robustness, and capacity. For invisibility, we evaluate

the performance by using PSNR, SSIM, and LPIPS [47]

to compare the visual quality of the rendered results af-

ter message embedding. For robustness, we will investi-

gate whether the encoded messages can be extracted ef-

fectively by measuring the bit accuracy on different distor-

tions. Besides normal situations, we consider the follow-

ing distortions for message extraction: 1) Gaussian noise,

2) Rotation, 3) Scaling, and 4) Gaussian blur. For capac-

ity, following the setting in previous work for the water-

marking of explicit 3D models [43], we investigate the in-
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Table 2: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓)

means higher (lower) is better. We show the results on Nb = 16 bits. The results are

averaged on all all examples. The best performances are highlighted in bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Proposed CopyRNeRF 91.16% 26.29 0.910 0.038

HiDDeN [50]+NeRF[23] 50.19% 26.53 0.917 0.035

MBRS [14]+NeRF [23] 50.53% 28.79 0.925 0.022

NeRF with message 52.22% 22.33 0.773 0.108

CopyRNeRF in geometry 60.16% 20.24 0.771 0.095

Watermarked by MBRS Residual (X10)

Result of MBRS+NeRF Residual (X10)

Figure 4: Analysis for failure of

MBRS [14]+NeRF.

visibility and robustness under different message length as

Nb ∈ {4, 8, 16, 32, 48}, which has been proven effective in

protecting 3D models [43]. Since we have included differ-

ent viewpoints in our experiments for each scene, our eval-

uation can faithfully reflect whether the evaluated method

can guarantee its robustness and consistency across view-

points.

5.2. Experimental results

Qualitative results. We first compare the reconstruction

quality visually against all baselines and the results are

shown in Figure 3. Actually, all methods except NeRF

with message and CopyRNeRF in geometry can achieve

high reconstruction quality. For HiDDeN [50] + NeRF [23]

and MBRS [14]+NeRF [23], although they are efficient ap-

proaches in 2D watermarking, their bit accuracy values are

all low for rendered images, which proves that the mes-

sage are not effectively embedded after NeRF model train-

ing. From the results shown in Figure 4, the view synthesis

of NeRF changes the information embedded by 2D water-

marking methods, leading to their failures. For NeRF with

message, as assumed in our previous discussions, directly

employing secret messages as an input change the appear-

ance of the output, which leads to their lower PSNR values.

Besides, its lower bit accuracy also proves that this is not an

effective embedding scheme. For CopyRNeRF in geome-

try, it achieves the worst visual quality among all methods.

The rendered results look blurred, which confirms our as-

sumption that the geometry is not a good option for message

embedding.

Bit Accuracy vs. Message Length. We launch 5 ex-

periments for each message length and show the relation-

ship between bit accuracy and the length of message in Ta-

ble 1. We could clearly see that the bit accuracy drops

when the number of bits increases. However, our CopyRN-

eRF achieves the best bit accuracy across all settings, which

proves that the messages can be effectively embedded and

robustly extracted. CopyRNeRF in geometry achieves the

second best results among all setting, which shows that em-

bedding message in geometry should also be a potential op-

tion for watermarking. However, the higher performance of

our proposed CopyRNeRF shows that color representation

is a better choice.

Bit Accuracy vs. Reconstruction Quality. We con-

duct more experiments to evaluate the relationship between

bit accuracy and reconstruction quality. The results are

shown in Table 21. Our proposed CopyRNeRF achieves a

good balance between bit accuracy and error metric values.

Though the visual quality values are not the highest, the

bit accuracy is the best among all settings. Though HiD-

DeN [50] + NeRF [23] and MBRS [14]+NeRF [23] can pro-

duce better visual quality values, its lower bit accuracy indi-

cates that the secret messages are not effectively embedded

and robustly extracted. NeRF with message also achieves

degraded performance on bit accuracy, and its visual qual-

ity values are also low. It indicates that the embedded mes-

sages undermine the quality of reconstruction. Specifically,

the lower visual quality values of CopyRNeRF in geometry

indicates that hiding messages in color may lead to better

reconstruction quality than hiding messages in geometry.

Model robustness on 2D distortions. We evaluate the ro-

bustness of our method by applying several traditional 2D

distortions. Specifically, as shown in Table 3, we consider

several types of 2D distortions including noise, rotation,

scaling, and cropping. We could see that our method is quite

robust to different 2D distortions. Specifically, CopyRN-

eRF w/o DRR achieves similar performance to the complete

CopyRNeRF when no distortion is encountered. However,

when it comes to different distortions, its lower bit accura-

cies demonstrate the effectiveness of our distortion-resistant

rendering during training.

Analysis for feature field. In the section, we further eval-

uate the effectiveness of color feature field and message fea-

ture field. We first remove the module for building color

1Results for other lengths of raw bits can be found in the supplementary

materials.
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Table 3: Bit accuracies with different distortion types compared with each baseline and our CopyRNeRF without distortion-

resistant rendering (DRR). We show the results on Nb = 16 bits. The results are averaged on all all examples.

No Distortion Gaussian noise Rotation Scaling Gaussian blur

(ν=0.1) (±π/6) (≤ 25%) (deviation = 0.1)

Proposed CopyRNeRF 91.16% 90.44% 88.13% 89.33% 90.06%

HiDDeN [50]+NeRF[23] 50.19% 49.84% 50.12% 50.09% 50.16%

MBRS [14]+NeRF [23] 50.53% 51.00% 51.03% 50.12% 50.41%

NeRF with message 52.22% 50.53% 50.22% 50.19% 51.34%

CopyRNeRF in geometry 60.16% 58.00% 56.94% 60.09% 59.38%

CopyRNeRF W/o DRR 91.25% 89.12% 75.81% 87.44% 87.06%

32 ASP + 32 ISP 64 ASP 32 ASP 64 RSP16 ASPGroundtruth

Bit Acc.=90.06% Bit Acc.=89.22% Bit Acc.=88.06% Bit Acc.=85.81% Bit Acc.=88.41%

Figure 5: Comparisons for different rendering degradadtion in the inference phase. The message length is set to 16. We use

average sampling points (ASP), importance sampling points (ISP), and random sampling points (RSP) in different rendering

strategies. “32 ASP + 32 ISP” is a strategy employed in the training process, and message extraction also shows the highest

bit accuracy. When sampling strategies are changed to other ones during inference, the message extraction still shows similar

performance, which verifies the effectiveness of our distortion-resistant rendering.

Table 4: Comparisons for our full model, our model without

Message Feature Field (MFF) and our model without Color

Feature Field (CFF). The last row shows that our method

achieves consistent performance even when different ren-

dering scheme (DRS) is applied during testing.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Ours 100% 32.68 0.948 0.048

W/o MFF 82.69% 20.46 0.552 0.285

W/o CFF 80.69% 21.06 0.612 0.187

DRS 100% 32.17 0.947 0.052

feature field and directly combine the color representation

with the message features. In this case, the model performs

poorly in preserving the visual quality of the rendered re-

sults. We further remove the module for building mes-

sage feature field and combine the message directly with

the color feature field. The results in Table 4 indicate that

this may result in lower bit accuracy, which proves that mes-

sages are not embedded effectively.

Model robustness on rendering. Though we apply a nor-

mal volume rendering strategy for inference, the messages

can also be effectively extracted using a distortion rendering

Ours NeRF+HiDDeN NeRF+MBRSNo message

Figure 6: Comparisons for watermarking after rendering.

The patch in the lower left corner shows the augmentation

result by simply multiplying a factor 30. We use image in-

version for better visualization

utilized in training phase. As shown in the last row of Ta-

ble 4, the quantitative values with the distortion rendering

are still similar to original results in the first row of Ta-

ble 4, which further confirms the robustness of our proposed

method.

The results for different sampling schemes are presented

in Figure 5. Our distortion-resistant rendering employs 32
average sampling points and 32 importance sampling points

during training. When different sampling strategies are ap-

plied in the inference phase, our method can also achieve

high bit accuracy, which can validate the robustness of our

method referring to different sampling strategies.
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Comparison with NeRF+HiDDeN/MBRS [50, 14]. We

also conduct an experiment to compare our method with

approaches by directly applying 2D watermarking method

on rendered images, namely NeRF+HiDDeN [50] and

NeRF+MBRS [14]. Although these methods can reach a

high bit accuracy as reported in their papers, as shown in

Figure 6, these methods can easily leave detectable traces

especially in areas with lower geometry values, as they lack

the consideration for 3D information during watermarking.

Besides, they only consider the media in 2D domain and

cannot protect the NeRF model weights.

6. Conclusions

In this paper, we propose a framework to create a

copyright-embedded 3D implicit representation by embed-

ding messages into model weights. In order to guarantee

the invisibility of embedded information, we keep the ge-

ometry unchanged and construct a watermarked color rep-

resentation to produce the message embedded color. The

embedded message can be extracted by a CNN-based ex-

tractor from rendered images from any viewpoints, while

keeping high reconstruction quality. Additionally, we intro-

duce a distortion-resistant rendering scheme to enhance the

robustness of our model under different types of distortion,

including classical 2D degradation and different rendering

strategies. The proposed method achieves a promising bal-

ance between bit accuracy and high visual quality in exper-

imental evaluations.

Limitations. Though our method has shown promising

performance in claiming the ownership of Neural Radiance

Fields, training a NeRF model is time-consuming. We will

consider how to speed up the training process in our future

work. Besides, though we have considered several designs

to strengthen the system robustness, this standard may still

be undermined when malicious users directly attack model

weights, i.e., the model weights are corrupted. We conduct

a simple experiment by directly adding Gaussian noise (std

= 0.01) to the model parameters, and the accuracy slightly

decreases to 93.97% (Nb = 8). As this may also affect

rendering quality, such model weights corruption may not

be a priority for malicious users who intend to display the

content. We will still actively consider how to handle such

attacks in our future work.
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zstein. Scene representation networks: Continuous 3D-

structure-aware neural scene representations. Advances in

Neural Information Processing Systems, 2019.

[33] Jeongho Son, Dongkyu Kim, Hak-Yeol Choi, Han-Ul Jang,

and Sunghee Choi. Perceptual 3D watermarking using mesh

saliency. In International Conference on Information Sci-

ence and Applications, 2017.

[34] Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp:

Invisible hyperlinks in physical photographs. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2020.

[35] R.G. van Schyndel, A.Z. Tirkel, and C.F. Osborne. A digital

watermark. In Proceedings of 1st International Conference

on Image Processing, 1994.

[36] Can Wang, Ruixiang Jiang, Menglei Chai, Mingming

He, Dongdong Chen, and Jing Liao. NeRF-Art: Text-

driven neural radiance fields stylization. arXiv preprint

arXiv:2212.08070, 2022.

[37] Xinyu Weng, Yongzhi Li, Lu Chi, and Yadong Mu. High-

capacity convolutional video steganography with temporal

residual modeling. In Proceedings of the International Con-

ference on Multimedia Retrieval, 2019.

[38] Eric Wengrowski and Kristin Dana. Light field messaging

with deep photographic steganography. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2019.

[39] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

22410



Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[40] Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and

Bolei Zhou. 3D-aware image synthesis via learning struc-

tural and textural representations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022.

[41] Peng Yang, Yingjie Lao, and Ping Li. Robust watermark-

ing for deep neural networks via bi-level optimization. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021.

[42] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-

ral surface reconstruction by disentangling geometry and ap-

pearance. Advances in Neural Information Processing Sys-

tems, 2020.

[43] Innfarn Yoo, Huiwen Chang, Xiyang Luo, Ondrej Stava,

Ce Liu, Peyman Milanfar, and Feng Yang. Deep 3D-to-

2D watermarking: Embedding messages in 3D meshes and

extracting them from 2D renderings. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022.

[44] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

PixelNeRF: Neural radiance fields from one or few images.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2021.

[45] Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and

In So Kweon. Udh: Universal deep hiding for steganography,

watermarking, and light field messaging. Advances in Neural

Information Processing Systems, 2020.

[46] Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and

Kalyan Veeramachaneni. Robust invisible video watermark-

ing with attention. arXiv preprint arXiv:1909.01285, 2019.

[47] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018.

[48] Chengxuan Zhu, Renjie Wan, and Boxin Shi. Neural trans-

mitted radiance fields. In Advances in Neural Information

Processing Systems, 2022.

[49] Chengxuan Zhu, Renjie Wan, Yunkai Tang, and Boxin Shi.

Occlusion-free scene recovery via neural radiance fields. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, 2023.

[50] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.

HiDDeN: Hiding data with deep networks. In Proceedings

of the European Conference on Computer Vision, 2018.

22411


