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Abstract

Glaucoma is the number one cause of irreversible blind-

ness globally. A major challenge for accurate glaucoma

detection and progression forecasting is the bottleneck of

limited labeled patients with the state-of-the-art (SOTA)

3D retinal imaging data of optical coherence tomogra-

phy (OCT). To address the data scarcity issue, this pa-

per proposes two solutions. First, we develop a novel

generalization-reinforced semi-supervised learning (SSL)

model called pseudo supervisor to optimally utilize unla-

beled data. Compared with SOTA models, the proposed

pseudo supervisor optimizes the policy of predicting pseudo

labels with unlabeled samples to improve empirical gener-

alization. Our pseudo supervisor model is evaluated with

two clinical tasks consisting of glaucoma detection and pro-

gression forecasting. The progression forecasting task is

evaluated both unimodally and multimodally. Our pseudo

supervisor model demonstrates superior performance than

SOTA SSL comparison models. Moreover, our model also

achieves the best results on the publicly available LAG fun-

dus dataset. Second, we introduce the Harvard Glaucoma

Detection and Progression (Harvard-GDP) Dataset, a mul-

timodal multitask dataset that includes data from 1,000 pa-

tients with OCT imaging data, as well as labels for glau-

coma detection and progression. This is the largest glau-

coma detection dataset with 3D OCT imaging data and the

first glaucoma progression forecasting dataset that is pub-

licly available. Detailed sex and racial analysis are pro-

vided, which can be used by interested researchers for fair-

ness learning studies. Our released dataset is benchmarked

with several SOTA supervised CNN and transformer deep

learning models. The dataset and code are made publicly

available via https://ophai.hms.harvard.edu/

datasets/harvard-gdp1000.

1. Introduction

Glaucoma is the leading cause of irreversible blind-

ness globally caused by retinal nerve fiber layer (RNFL)

*First three authors contribute equally.
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Figure 1: Examples of RNFLT maps with high similarities

but from different label groups.

damage[74, 58, 59, 69]. The global prevalence of glau-

coma for the population between 40 and 80 years old is

3.54% [74]. Timely clinical treatment in the early stage

of glaucoma can significantly reduce the risk of further vi-

sion loss [18, 17]. However, most commonly, glaucoma

patients are not aware of their early VF loss until the VF

loss becomes severe enough to impair their daily activities

such as reading and driving due to the brain and fellow eye

compensation[4, 19, 34, 50, 51, 30].

It is desirable to develop automated glaucoma screen

tools to reduce societal disease burden [77]. The clini-

cal diagnosis of glaucoma is a holistic decision primarily

based on RNFL damage and VF loss assessment supple-

mented with other patient clinical information and family

disease history [29, 47]. The VF test is only available in the

ophthalmology specialty. So existing automated screening

tools are based on the idea of predicting glaucoma diag-

nosis from evaluating RNFL damage using retinal images

[14, 57, 42, 5, 49, 37, 15, 35, 60, 81]. Before the massive

clinical adoption of the 3D retinal imaging tool of optical

coherence tomography (OCT) a decade ago [31, 12], 2D

fundus photos were used to assess RNFL damage. There-

fore, most prior glaucoma detection models are based on

the 2D fundus photo [37, 57, 33, 14, 42, 1, 64, 15], which

is not the state of the art (SOTA) clinical imaging modal-

ity anymore. OCT has replaced fundus photos as the pri-

mary imaging tool for glaucoma clinical care due to its

superiority in measuring RNFL damage [48, 12]. There

have been a number of recent works using OCT scans

to automatically screen glaucoma with machine learning

[15, 60, 5, 35, 24, 80, 49]. Apart from glaucoma detection,

a more clinically significant task is progression forecasting

using OCT scans [52, 16, 32, 28], which could inform clini-
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cians if they should treat the patient conservatively with eye

drops or aggressively with invasive surgeries.

For both the glaucoma screening and progression fore-

casting tasks, a significant challenge is limited labeled pa-

tients with the SOTA OCT measurements as the fundus

photo is already outdated in clinical practice [15, 60, 5, 35,

24, 80, 49]. This problem with the lack of labeled patients

is even more severe for progression forecasting, which re-

quires longitudinal VF measurements to determine progres-

sion outcomes [52, 16, 32]. Therefore, there is a strong

need for developing novel semi-supervised learning mod-

els to maximally utilize unlabeled patient data in clinics

to improve glaucoma detection and progression forecast-

ing. However, apart from several papers using standard

semi-supervised learning methods for glaucoma detection

[20, 2, 23, 79, 84, 9], there has been no dedicated algo-

rithm development for semi-supervised learning with its

application in glaucoma. SOTA semi-supervised learning

(SSL) approaches in computer vision are generally based

on consistency learning [11, 68, 10, 73] or pseudo-labeling

[40, 61]. Unlike consistency learning, the pseudo-labeling

approaches do not need domain knowledge to design the

image augmentation strategy. While many prior works

have endeavored to optimally select pseudo-labeled sam-

ples to improve the classifier training, the tasks of glau-

coma detection and progression forecasting still have some

unique challenges that might not be well tackled by existing

pseudo-labeling SSL methods [61, 63, 13, 40, 56]. Figure

1 shows examples of RNFLT maps with high similarities

but from different label groups. With such obscured group

differences, existing pseudo-labeling SSL methods might

not be able to provide sufficient guidance to select correct

pseudo-labeled samples to improve the classifier training.

Furthermore, having high-quality public datasets with OCT

scans for glaucoma detection and progression forecasting

is equally important to enable more computer vision re-

searchers to study this topic to push forward the field,

In this study, we make two contributions: (1) devel-

oping a generalization-reinforced semi-supervised learning

model called pseudo supervisor to improve glaucoma detec-

tion and progression forecasting. Specifically, our pseudo

supervisor model will select pseudo-labeled samples via a

policy net that optimizes generalization error with a vali-

dation subset to update the classifier. (2) releasing a pi-

lot multitask and multimodal glaucoma dataset, called Har-

vard Glaucoma Detection and Progression (Harvard-GDP)

Dataset, for computer vision researchers to study this topic.

In Table1, we have listed major public glaucoma datasets.

Most of them are fundus photo datasets, while there are two

major OCT datasets previously published [24, 80]. In com-

parison, our dataset has the largest patient numbers among

all datasets with patient numbers available. In addition, our

dataset is the first and the only one with progression fore-

casting task data, which is a way more clinically significant

Table 1: Public Glaucoma Datasets.
Study Imaging

Modality

Sample Size Glaucoma

Detection

Progression

Forecasting

Multimodal Label Source Accessibility

LAG [38] Fundus NA (4,854) ✓ ✗ ✗ Clinician Assessment Upon Request

REFUGE [54] Fundus NA (1,200) ✓ ✗ ✗ Clinician Assessment Web Download

G1020 [6] Fundus 432 (1,020) ✓ ✗ ✗ Clinician Assessment Web Download

ACRIMA [21] Fundus NA (705) ✓ ✗ ✗ Clinician Assessment Web Download

RIM-ONE [7] Fundus 169 (485) ✓ ✗ ✗ Clinician Assessment Web Download

ORIGA [84] Fundus NA (650) ✓ ✗ ✗ Clinician Assessment Upon Request

PAPILA [36] Fundus 244 (488) ✓ ✗ ✗ Clinician Assessment Web Download

GOALS [24] OCT 158 (300) ✓ ✗ ✗ Clinician Assessment Web Download

GAMMA [80] OCT 300 (300) ✓ ✗ ✓ Clinician Assessment Web Download

Ours OCT 1,000 (1,000) ✓ ✓ ✓ Functional Test Web Download

task than glaucoma detection itself. Compared with the

other two OCT datasets, our dataset is superior in patient

numbers (1,000 versus up to 300), task versatility (glau-

coma detection and progression forecasting versus glau-

coma detection only), and availableness of objective visual

function tests (i.e. VF test). Furthermore, since our dataset

is from the US population, the racial representation in our

data is more diverse than the two OCT datasets [24, 80] and

the large LAG dataset [38], which consists of mainly Asian

patients. Therefore, our dataset can be potentially used for

medical fairness learning studies, especially since we know

Black people have more than doubled glaucoma prevalence

than other races, which is a significant disparity [62, 25].

2. Related Work

Glaucoma Detection. Vast majority of glaucoma de-

tection works using deep learning are based on the fun-

dus photo, which is a 2D snapshot of the patient’s retina

[37, 57, 33, 14, 42, 1, 64, 15, 76, 75]. However, the 3D

imaging modality OCT scan has replaced fundus photos

to become the de facto standard for structural damage as-

sessment in glaucoma. Compared with the deep learn-

ing glaucoma detection using fundus photos, deep learning

glaucoma detection works using OCT scans generally have

much smaller sample sizes, which are up to several thou-

sand [15, 60, 5, 35, 24, 80, 49]. As deep learning mod-

els are typically data-hungry, there is a clear need to de-

velop new approaches to deal with the limited labeled data

issue. It is known that semi-supervised learning can im-

prove prediction accuracy by leveraging unlabeled data in

model training. So far, apart from several glaucoma detec-

tion papers using standard semi-supervised learning mod-

els [20, 2, 23, 79, 84, 9], no novel semi-supervised learn-

ing model has been developed with an application focus on

glaucoma.

Progression Forecasting. Compared with the glaucoma

detection task, progression forecasting is a much more clin-

ically significant task for patients. If we could have an ac-

curate progression forecasting model to inform clinicians

of which patient will progress or not, then the clinicians can

accordingly decide if a patient should be treated more ag-

gressively with invasive surgeries, which may have a strong

side effect, or more conservatively with eye drops. So far,

due to the data scarcity issue, we have only found several

recent papers using retinal imaging data (whether fundus
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or OCT) to forecast progression [52, 16, 32]. The sample

sizes of these works are only up to several hundred. Imag-

inably, we have not found any prior studies applying semi-

supervised learning for progression forecasting.

Semi-Supervised Learning. Semi-Supervised Learning

(SSL) aims to optimize a model with both labeled and

unlabeled data. The current SSL methods can be di-

vided into pseudo-labeling-based methods [61, 63, 13, 40]

and/or consistency-based methods [73, 68, 11, 10, 41, 43].

Consistency-based SSL methods optimize the model with

standard classification losses (e.g., cross-entropy) on la-

beled images and regularizes/minimizes the prediction out-

puts of different weakly and/or strongly augmented views

of unlabeled images, where these views are constructed us-

ing different types of image augmentations, such as flip-

and-shift, color sharpness, and contrast, etc. Even though

consistency-based SSL methods achieve SOTA results in

many computer vision benchmarks [73, 68, 11, 10], these

methods significantly rely on the orderly design of aug-

mentation functions that requires domain knowledge to de-

sign proper image augmentation strategies, which are even

more challenging for multimodal modeling. Prior pseudo-

labeling SSL methods [61, 63, 13, 40, 56] typically uti-

lize a model that trained with the labeled subset to esti-

mate the pseudo labels of the confident unlabeled samples

and take these pseudo-labeled data to re-train the model.

As mentioned previously, pseudo-labeling-based SSL ap-

proaches is a general SSL learning framework for different

data modalities naturally. More importantly, as mentioned

in Section 1, since the structural differences between glau-

coma and non-glaucoma (similarly for progression versus

non-progression) are obscured as shown in Figure 1, ex-

isting pseudo-labeling SSL methods [61, 63, 13, 40, 56]

might not be able to provide sufficient guidance to select

correct pseudo labeled samples to benefit the classifier train-

ing. In this aspect, we propose a generalization-reinforced

SSL model by selecting optimal pseudo-labeled samples for

classifier training that explicitly optimize generalization er-

ror with a policy net stochastically generates pseudo labels.

Reinforcement Learning. Reinforcement learning studies

an agent interacts with the environment and learns an op-

timal policy to tackle decision-making problems effectively

[70, 8, 26, 65, 66]. Reinforcement learning has been applied

to semi-supervised learning setting for real-world applica-

tions, e.g. domain adaptation [39]. However, how to utilize

reinforcement learning techniques to determine pseudo la-

bels for improving the generalization of classification mod-

els remains under exploration.

3. Multimodal and Multitask Dataset

3.1. Data Collection and Quality Control

This work was approved by the institutional review

board (IRB) and adhered to the tenets of the Declaration of

25th, 50th and 75th Percentile RNFLTs in the Glaucoma Detection Dataset

Figure 2: Pointwise RNFLT distribution at different per-

centiles.

Helsinki. Because of the retrospective nature of the study,

the IRB waived the need for informed consent of patients.

The glaucoma patients are from Mass Eye and Ear of Har-

vard Medical School, which were tested between 2010 and

2021. The RNFLT (0 − 350 microns) is from the OCT re-

port provided by the OCT device manufacturer (Cirrus, Carl

Zeiss Meditec, Jena, Germany) calculated as the vertical

distance between the internal limiting membrane boundary

and nerve fiber layer boundary. The RNFLT measurement

is the de facto structural measurement for clinicians to diag-

nose glaucoma. Each two-dimensional 224 × 224 RNFLT

map is generated within the 6 × 6 mm2 peripapillary area

around the optic nerve head. The VF testing is performed

using the Humphrey Field Analyzer with the 24-2 protocol,

which measures the patient’s eye’s visual spatial sensitivity

with a radius of 24 degrees from the fixation. Data qual-

ity control based on standard clinical practice guideline fol-

lowing the manufacturer’s recommendation was applied to

exclude unreliable data: (1) OCT scans with signal strength

less than 6 (10 represents the best imaging quality) were

excluded; (2) VF tests with fixation losses > 33%, false

positive rates > 20% or false negative rates > 20% were

excluded. Each VF measurement is represented as a vec-

tor of 52 total deviation (TD) values between -38 dB and

26 dB. In this work, we refer RNFLT map and VF test as

two data modalities which constitute a multimodal dataset.

Note that, the modifier word “Harvard” from the Harvard

GDP Dataset only indicates that our dataset is from the De-

partment of Ophthalmology of Harvard Medical School and

does not imply an endorsement, sponsorship, or assumption

of responsibility by either Harvard University or Harvard

Medical School as a legal identity.

3.2. Data Analysis

The glaucoma detection dataset contains 15,725 training

samples, 1,047 validation samples, and 4,287 samples from

5,640, 376, and 1,505 glaucoma patients, respectively. Half

of the samples are unlabeled. Among the half samples with

labels, 45.2% of the samples are glaucoma, while the rest

are non-glaucoma. The progression forecasting dataset in-

cludes 5,889 training samples, 431 validation samples, and

1,547 test samples from 1,292, 86, and 345 glaucoma pa-

tients, respectively. Among the half samples with progres-

sion outcome labels, 24.0% and 2.6% of the samples are TD

Progression and MD Fast Progression, respectively. The
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two clinically accepted criteria to define glaucoma progres-

sion: (1) TD Progression: eyes with at least three locations

with TD slope≤ -1 dB; (2) MD Fast Progression: eyes with

MD slope ≤ -1 dB [78]. The MD Fast Progression is more

detrimental for the patients than TD progression [3].

Figure 2 presents the pointwise distributions of 25th,

50th, and 75th percentile RNFLTs in the train (validation set

included) and test sets, which demonstrate two obvious su-

perotemporal and inferotemporal RNFL bundles with their

damages are known closely related to the visual function

loss. As in the two representative examples shown in Figure

1, RNFLT maps with similar appearances may have differ-

ent labels. This suggests the class boundary may be obscure

to determine, which naturally prompts us to adopt semi-

supervised solutions to address the glaucoma detection and

progression forecasting problems which fully leverage the

abundant information in unlabeled samples to mitigate the

challenges.

The released dataset including 1,000 patients is a random

subset from the entire dataset used to build the glaucoma de-

tection and progression forecasting models in this paper, it

naturally inherits the original data characteristics. The re-

leased glaucoma detection dataset contains 1,000 samples

from 1,000 patients, where each sample includes two data

modalities (i.e. RNFLT map and VF test) and respective

glaucoma labels. The progression forecasting dataset is a

subset from the released glaucoma detection dataset, which

entails 500 patients with progression labels and patient de-

mographics including age, sex, and race. For all glaucoma

patients, the age distribution of 25th, 50th, and 75th per-

centiles are 54.3, 64.5, and 72.8 years, respectively. The

male and female account for 56% and 44% of the 1,000 pa-

tients, respectively. Among the 1,000 patients, the White,

Black, and Asian groups account for 76.4%, 14.9%, and

8.7%, respectively. To the best of our knowledge, this is the

first public glaucoma dataset with the patient demographic

information available, which carries great potential to en-

able interested researchers to conduct and evaluate fairness

learning studies.

4. Problem Formalization & Background

In this section, we formally introduce the problems of

glaucoma detection and progression forecasting.

Denote Dl = {(xi, yi)|1 ≤ i ≤ N l} be a labeled

dataset, where x ∈ Rn are the RNFLT maps and y ∈ Y
are corresponding glaucoma/progression labels. Also, we

have a stack of unlabeled RNFLT maps, i.e.Dul = {xj |1 ≤
j ≤ Nul}. We assume that we have a classification model

f : Rn θ
−→ Y (fθ for short), where θ are the parameters. To

update the classification model with the labeled data, a pre-

defined loss function ℓ : Y −→ Y is used to gauge the dis-

crepancy between the predictions and the ground-truth la-

bels such that the classification model can be updated along

RNFLT Map
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Figure 3: The definitions of (a) glaucoma detection task;

and (b) progression forecasting task. In the VF test, blue in-

dicates normal visual function while red indicates abnormal

visual function.

the direction of minimizing the loss, i.e. minθℓ(fθ(x), y).

As shown in Figure 3 (a), the practical utility scenario of

glaucoma detection with deep learning is to use OCT scans

that can be easily measured in the setting of primary care or

pharmacy to predict glaucoma diagnosis defined by visual

field tests that typically only can be measured in the setting

of an ophthalmology clinic or eye hospital with specialized

technicians. The clinical relevance of progression forecast-

ing as shown in Figure 3 (b) with deep learning is that clin-

icians can better decide if a patient should be treated more

conservatively with eye drops or aggressively with invasive

surgeries. As suggested by conventional semi-supervised

learning methods [20, 2, 40, 68, 11], pseudo labels ỹ are

predicted by a supervisor model π : Rn ω
−→ Y with the un-

labeled data x̃, i.e. ỹ = π(x̃;ω). Similar to the supervised

learning setting, the unlabeled data with the pseudo labels

can participate in the supervised learning process, namely

minθ ℓ(fθ(x̃), ỹ).

However, as shown in Figure 4, the natural images asso-

ciated with different visual concepts are relatively easy to be

distinguished. In contrast, the differences in RNFLT maps

between glaucoma versus non-glaucoma (similarly for pro-

gression versus non-progression) can be very subtle due to

large retinal physiological inter-subject variations. There

might not be clear and adequate guidance in the learning

process to determine the underlying labels of the unlabeled

RNFLT maps. Instead, a more sensible way to better deter-

mine the pseudo labels is to apply a policy to obtain pseudo

labels. Then, we observe how these pseudo labels affect
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Figure 4: A challenge in glaucoma detection and progres-

sion forecasting. Unlike the classification with natural im-

ages, where the images with different labels are likely vi-

sually distinguishable, RNFLT images with different labels

(e.g. glaucoma vs. non-glaucoma and progression vs non-

progression) might not be easily distinguishable.

the training process of the classifier and adjust the policy

to predict the pseudo labels such that the generalizability of

the classifier learned with the pseudo labels can be max-

imized. In short, the pseudo labels predicted by the su-

pervisor model should be aligned with the improvement of

the generalizability of the classifier on a set of unseen data

Dunseen. This objective can be formulated as

min
{ỹ}

1

|Dunseen|

∑

(x,y)∈Dunseen

ℓ(fθ∗(x), y)

where θ∗ ∈ argmin
θ

1

|Dl+ul|

∑

(x,y)∈Dl+ul

ℓ(fθ(x), y),

(1)

Dl+ul is the union of labeled dataset D and unlabeled

dataset with pseudo labels Dul.

5. Generalization-Reinforced Pseudo Supervi-

sor

Different from prior-work semi-supervised learning

methods [68, 11, 10, 53], the proposed method explicitly

leverages the empirical generalizability of the classifier that

is quantified with unseen RNFLT maps (e.g. the ones from

the validation set) to optimize the policy of predicting the

pseudo labels. The empirical generalizability can be viewed

as a type of informative reward as the goal of training a clas-

sifier is to find one that can generalize well on the unseen

test data drawn from the underlying distribution.

Figure 5 shows how the proposed generalization-

reinforced pseudo supervisor predicts pseudo labels and is

trained according to the observed sets of states (maps), ac-

tions (pseudo labels), and rewards (the empirical generaliz-

ability with a mini-batch of validation samples). The pro-

posed pseudo supervisor is based on the policy gradient

[70], which is one type of generic reinforcement learning

methods [8, 26, 65].

Here we formally introduce the concepts related to the

proposed pseudo supervisor. An RNFLT map xt at time

step t can be viewed as a state st ∈ S , while the predicted

pseudo label ỹt can be viewed as an action at ∈ A. A

reward function rt : S × A −→ R is defined on the state-

action space. The proposed pseudo supervisor that employs

a policy to determine pseudo labels is denoted as πω : S −→
P(A), where P(A) are the probability measures on A and

ω are the parameters of the proposed pseudo supervisor.

In the first place, the classifier takes labeled samples for

training. The unlabeled samples will be fed into the pseudo

supervisor for predicting pseudo labels. Before updating

the weights of the classifier, the empirical generalizabil-

ity of classifier fθt can be quantified with validation sam-

ples (x(val), y(val)), that is, ℓ(fθt(x
(val)), y(val)) (ℓ

(val)
t ).

Specifically, ℓ is the widely-used cross-entropy loss for

classification. After updating the weights of the classifier

with unlabeled samples and corresponding pseudo labels,

given the same mini-batch of validation samples, the em-

pirical generalizability of the updated classifier can be re-

quantified again, i.e. ℓ(fθt+1
(x(val)), y(val)) (ℓ

(val)
t+1 ). Then,

the discrepancy between ℓ
(val)
t and ℓ

(val)
t+1 is informative to

measure the effect of updating the classifier with the un-

labeled samples and the pseudo labels. In this sense, it is

desired to use in the reward function, i.e.

rt = max(exp(ℓ
(val)
t − ℓ

(val)
t+1 )− 1, 0) (2)

In Eq. (2), if ℓ
(val)
t+1 is far less than ℓ

(val)
t , it implies that the

unlabeled samples and pseudo labels lead to a positive ef-

fect on the learning process such that the reward increases

adaptively.

A trajectory of states, actions, and rewards within a time

window β will be saved. The expected return of policy op-

timization can be written as

J(πω) = Eπω

(

∑

k=0

γkrk

)

(3)

where γ ∈ [0, 1] is the discount rate for the numerical sta-

bility of reinforcement learning, and β is the time window

for updating πω periodically. According to the policy gra-

dient theorem [70], the expectation of the sample gradient

is equal to the actual gradient

∇πω
J(πω) = Eπω

[

β
∑

k=0

γkrt+k+1∇πω
log πω(at|st)

]

(4)

Then the policy parameterization can be updated according

to the gradient ascend rule

πω ← πω + ηπ∇πω
J(πω) (5)

where ηπ is the learning rate of πω .

6. Experiments

6.1. SetUp & Implementation Detail

To optimize our models, we employ the AdamW opti-

mizer [46] and train all models for 10 epochs in all experi-

ments conducted in this study. For supervised classification
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Figure 5: An overview of the proposed generalization-reinforced pseudo supervisor in the semi-supervised learning frame-

work. The learning framework consists of the process of training the classifier, the process of measuring the empirical

generalizability of the classifier to be used as rewards, and the process of updating the proposed pseudo supervisor to predict

pseudo labels that can maximize the classifier’s empirical generalizability.

models for glaucoma detection, we use a learning rate of 4

× 10−5 and weight decay of 0, and for progression fore-

casting, we use a learning rate of 2 × 10−5 and weight de-

cay of 0. These hyperparameters are determined to achieve

the best baseline performance based on our experiments.

The proposed method is trained using a learning rate of

4 × 10−5 and weight decay of 0. The batch sizes used

in the supervised model, semi-supervised models, and the

proposed method vary due to the different semi-supervised

learning contexts [73, 11, 10, 68, 53]. We adopt the batch

sizes that result in the best performance for each respec-

tive context. To ensure consistency with previous work, we

apply data augmentation techniques to the samples in the

semi-supervised learning models, including MeanTeacher

[73], MixMatch [11], ReMixMatch [10], FixMatch [68],

and DASO [53]. Specifically, we utilize random crop and

resize, as well as random horizontal flip. However, we do

not apply these data augmentation techniques to the super-

vised baseline or the proposed method.

For the glaucoma detection task, we train all models

with 7,860 labeled samples and 7,865 unlabeled samples

for training. We use 1,047 and 4,287 labeled samples for

validation and testing, respectively. For the progression

forecasting task, all the models are trained with 2,944 la-

beled samples and 2,945 unlabeled samples for training. We

use 431 and 1,547 labeled samples for validation and test-

ing, respectively. For multi-modality modeling, we simply

concatenate the RNFLT images and VF matrices for joint

learning using the same architecture as our single-modality

model and apply this model to the progression forecasting

task. The model is trained and evaluated using the same

train-val-test split as our single-modality experiments.

We use the accuracy, F1 score, and AUC on the test sets

as our evaluation matrices. The code is written in PyTorch

[55] and we use one RTX A6000 GPU for all experiments.

6.2. Baseline Methods

Our Supervised baseline is a standard ImageNet pre-

trained EffcientNet classifier [72] learning with cross-

entropy using only labeled images. For Semi-Supervised

baselines, we choose MeanTeacher [73], MixMatch [11],

ReMixMatch [10], FixMatch [68], and DASO [53] due to

their previous powerful performances. MeanTeacher [73] is

one of the initial methods to enforce models to predict con-

sistent pseudo predictions for labeled and unlabeled data,

which construct a target-generating teacher model by av-

eraging the model weights. MixMatch [11], ReMixMatch

[10], and FixMatch [68] are consistency-based SSL meth-

ods that are based on the data augmentations (i.e., weak

and strong augmentation) to make consistent classifica-

tion predictions between different views of unlabeled data.

DASO [53] suggests that those methods fail for imbalanced

datasets and proposes a pseudo-labeling framework based

on different consistency SSL models by adaptively mixing

the linear and semantic pseudo-labels to mitigate the over-

all bias between majority and minority classes. We adopt

the FixMatch version of DASO, following the default set-

ting reported in the paper [53]. We implement all baseline

methods using Pytorch [55] from DASO’s official codes and

conducted experiments under the same codebase and ex-

perimental protocols for fair comparison. All models are

equipped with the same EfficientNetV2-S [72] backbone

and their hyper-parameters are specifically tuned to suit our

Glaucoma detection and progression forecasting tasks.

6.3. Results for Glaucoma Detection

In Table 2, we evaluate our Pseudo-Sup model against

multiple SOTA baselines on the glaucoma detection task.

Our model achieves the best performance in terms of ac-

curacy, F1 score, and AUC score. We compute the mean

performances over 5 different runs. Notably, our model

achieves such results without any specific design of im-

age perturbations/augmentations, guaranteeing its simplic-

ity and applicability to different tasks. Our method sur-

passes the previous SOTA method DASO by 6.8% of ac-

curacy, 11.1% of F1 score, and 3.7% of AUC, respec-

tively. The best-performing consistency method FixMatch

still worse by 0.4% of accuracy, 1.2% of F1 score, and 1.5%
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Table 2: Performance on the cross-sectional data for

the glaucoma detection task. The baseline method is

the supervised model trained with labeled samples only,

while pseudo-sup stands for the proposed pseudo supervi-

sor method.

Model Acc↑ F1↑ AUC↑

Baseline 0.8131 ± 0.0039 0.8057 ± 0.0033 0.8693 ± 0.0022

MeanTeacher 0.8148 ± 0.0053 0.8053 ± 0.0072 0.8541 ± 0.0040

MixMatch 0.6392 ± 0.0161 0.6273 ± 0.0059 0.8451 ± 0.0062

ReMixMatch 0.6741 ± 0.0019 0.6716 ± 0.0018 0.8442 ± 0.0032

DASO 0.7444 ± 0.0115 0.6929 ± 0.0050 0.8371 ± 0.0118

FixMatch 0.8077 ± 0.0032 0.7912 ± 0.0021 0.8574 ± 0.0019

Pseudo-Sup 0.8124 ± 0.0025 0.8038 ± 0.0046 0.8727 ± 0.0006

Pseudo-Sup+Aug 0.8224 ± 0.0101 0.8128 ± 0.0122 0.8818 ± 0.0020

of AUC than our Pseudo-Sup model, indicating the effec-

tiveness of our approach and the challenges of designing

appropriate augmentations for RNFLT maps from previous

approaches. We also apply weak augmentations (similar

to FixMatch) to our Pseudo-Sup (Pseudo-Sup+Aug) lead-

ing to improved performances. Please note that consistency

methods (e.g., DASO, FixMatch, etc.) employ both weak

and strong augmentations.

6.4. Results for Progression Forecasting

Unimodal Results. We further evaluate our model on

progression forecasting, a more clinically significant task

than glaucoma detection, as shown in Table 3. Accurate

forecasting of glaucoma progression plays a vital role in

prescribing appropriate treatment plans to efficiently pre-

vent further vision losses and is important for assisting the

development of new pharmaceutical medicines to treat glau-

coma. Adding weak augmentations further improves the re-

sults for both progression tasks. Please note that similar to

glaucoma detection experiments, we also compute the mean

performances over 5 different runs.

For TD Progression, our model achieves the best

74.47% of mean AUC, respectively. When compared with

consistency-based approaches, our method improves be-

tween 0.5% - 2.1% in AUC. For MD Fast Progression, our

approach consistently achieves the best AUC performance,

illustrating the effectiveness and accuracy of our method re-

gardless of any glaucoma progression criteria. Given that

most of the glaucoma patients are non-progressive, our pro-

gression dataset for TD Progression and MD Fast Progres-

sion are both highly imbalanced (i.e., most of the samples

are labeled as non-progression). Therefore, it is worth not-

ing that our method also outperforms the previous imbal-

anced SSL SOTA DASO by a large margin in all measures

under such imbalanced scenarios.

Multimodal Results. One of the major contributions of

this work is to introduce a multi-modal dataset for glaucoma

progression forecasting. To the best of our knowledge, this

is the first work to explore and benchmark SSL approaches

using multimodal model inputs. In Table 5, we show the

Table 3: Performance on the longitudinal data with sin-

gle modality RNFLT for the progression forecasting task.

The baseline method is the supervised model trained with

labeled samples only, while Pseudo-Sup represents the pro-

posed pseudo supervisor method.

Models AUC ↑ (TD) AUC ↑ (MD Fast)

Baseline 0.7367 ± 0.0126 0.6677 ± 0.0017

MeanTeacher 0.7367 ± 0.0126 0.6677 ± 0.0017

MixMatch 0.7238 ± 0.0098 0.6518 ± 0.0069

ReMixMatch 0.7390 ± 0.0124 0.6595 ± 0.0083

DASO 0.7231 ± 0.0188 0.6787 ± 0.0148

FixMatch 0.7395 ±0.0152 0.6747 ± 0.0054

Pseudo-Sup 0.7447 ± 0.0084 0.7004 ± 0.0218

Pseudo-Sup+Aug 0.7477 ± 0.0074 0.7215 ± 0.0162

progression forecasting results using two modalities (RN-

FLT and VF). Our model achieves the best performance on

all evaluation measures. To keep its simplicity and adapt-

ability, we concatenate the RNFLT and the up-scaled VF

together as the inputs of our model. Please note that con-

sistency SSL approaches that are based on image augmen-

tations are not included in this table because of the lack of

design of augmentation techniques in multimodal medical

data. The SOTA results with multimodal glaucoma data en-

able more accurate and applicable potential computer-aided

diagnosis (CAD) systems in real clinical settings.

6.5. Supervised Benchmarks on Released Data

In Table 6, we show the supervised classification results

for the progression forecasting tasks with multiple SOTA

supervised CNN and transformer baseline methods, includ-

ing VGG [67], ResNet [27], ResNext [82], WideResNet

[83], EfficientNet [71], ConvNext [45], ViT [22], and Swin

Transformers [44]. This benchmark is conducted on our

future data release with 500 patients upon acceptance, of

which 400 patients are used for training and the remain-

ing are used for testing. To the best of our knowledge,

this is the first supervised glaucoma progression forecast-

ing benchmark, which aims to provide broader impacts for

the computer vision and medical imaging communities to

build clinically effective computer-aided diagnosis systems.

Moreover, the results are reported with both single RNFLT

modality and multi-modality (RNFLT and VF) samples. It

is worth noting that the accuracy and F1 are the same on MD

fast progression because the testing set only contains 100

samples under highly imbalanced class distributions. For

more experimental details regarding this supervised pro-

gression forecasting benchmark and the supervised results

on future release data with 1,000 patients for the glaucoma

detection task, please refer to the Supplemental Material.
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Table 4: Performance comparisons for glaucoma detection

task on LAG dataset.

Model Acc↑ F1↑ AUC↑

MeanTeacher 0.8280 0.8279 0.9082

MixMatch 0.5020 0.3378 0.9075

ReMixMatch 0.6980 0.4785 0.8369

DASO 0.7971 0.7906 0.9164

FixMatch 0.8366 0.8297 0.9198

Pseudo-Sup 0.9160 0.9158 0.9858

Table 5: Performance on the longitudinal data with two

modalities (RNFLT and VF) for the progression forecast-

ing task. The baseline method is the supervised model

trained with labeled samples only, while pseudo-sup stands

for the proposed pseudo supervisor method. Please note

that most methods in Table 3 are based on weak/strong aug-

mentations [68, 11, 10] requiring RGB channels, which are

not adaptable for multi-modal learning.

Models AUC (TD) AUC (MD Fast)

Baseline 0.7343 ± 0.0098 0.6814 ± 0.0081

MeanTeacher 0.7436 ± 0.0133 0.6697 ± 0.0035

Pseudo-Sup 0.7517 ± 0.0041 0.7265 ± 0.0095

6.6. Performances on LAG

In Table 4, we show the performance comparisons on

LAG dataset [37]. LAG is a large-scale fundus imaging

dataset for glaucoma detection. For this experiment, we

use 3,854 images for training with half with labels and

the remaining without labels, and 1,000 images for testing,

with the size of 224 × 224. For fair comparisons, we use

the same hyper-parameters and experimental setups as our

other benchmarks. It is worth noting that our approach sur-

passes the SOTA methods by a large margin and achieves

the highest 98.58% AUC with only half-labeled data, illus-

trating the effectiveness and applicability of our proposed

Pseudo-Sup in different data and tasks.

6.7. Ablation Study

According to Section 5, the time window β and discount

rate γ are the most important hyperparameters affecting the

proposed pseudo supervisor. The ablation studies of the two

hyperparameters are shown in Figure 6. We can see that the

proposed pseudo supervisor behaviors stably with various

β on AUC. Specifically, when β = 50 leads to better perfor-

mance. The consistent pattern can be also observed in the

analysis of γ. The discount factor is used to achieve a trade-

off between the rewards in the distant future and the rewards

in the near future. If it is 0, reinforcement learning agents

would only look for an optimal policy for the first action.

As shown in Figure 6 (b), we find the optimal discount rate

at 0.9, which implies that the states, actions, and rewards in

the progression task are coherent to a certain degree.

Table 6: Performance of different supervised methods on

the longitudinal data with single/multi-modality for the pro-

gression forecasting tasks on the released 500 glaucoma

progression data.

TD Progression MD Fast Progression

Model Acc↑ F1↑ AUC↑ Acc↑ F1↑ AUC↑

VGG [67] 0.78/0.80 0.75/0.74 0.84/0.79 0.98/0.98 0.49/0.49 0.78/0.68

ResNet [27] 0.75/0.74 0.64/0.67 0.74/0.75 0.98/0.98 0.49/0.49 0.71/0.59

ResNext [82] 0.78/0.77 0.65/0.68 0.78/0.76 0.98/0.98 0.49/0.49 0.61/0.80

WideResNet [83] 0.77/0.79 0.71/0.75 0.77/0.80 0.98/0.98 0.49/0.49 0.71/0.64

EfficientNet [71] 0.73/0.78 0.66/0.73 0.76/0.79 0.98/0.98 0.49/0.49 0.55/0.66

ConvNext [45] 0.74/0.81 0.62/0.77 0.78/0.81 0.98/0.98 0.49/0.49 0.84/0.62

ViT [22] 0.73/0.77 0.54/0.71 0.68/0.79 0.98/0.98 0.49/0.49 0.92/0.69

Swin [44] 0.71/0.77 0.49/0.72 0.68/0.77 0.98/0.98 0.49/0.49 0.87/0.57

Figure 6: Ablation study of hyperparameters’ impact on TD

Progression forecasting.

6.8. Experiment on Racial Groups

The patients in our dataset are from three racial groups

(White (0.88 AUC), Black (0.83 AUC), and Asian (0.85

AUC)). In our experiments, we observe that black pa-

tients have the lowest AUC yet the highest glaucoma preva-

lence [62, 25]. Therefore, our dataset is well-suited for fu-

ture fairness studies.

7. Conclusion

In this paper, we have made two contributions. First,

we have developed a generalization-reinforced semi-

supervised learning model termed pseudo supervisor for

glaucoma detection and progression forecasting. Specifi-

cally, the pseudo supervisor predicts pseudo labels follow-

ing a policy that optimizes the generalization error in train-

ing the classifier. Our pseudo supervisor model overall

demonstrates superior performance over a number of SOTA

methods. Second, we release a multimodal and multi-task

dataset for glaucoma detection and progression forecasting

with SOTA 3D OCT imaging data. Our dataset is the largest

by far for glaucoma detection with 3D OCT data and the

first for progression forecasting task. More importantly, our

dataset entails demographic information including gender

and race, which is generally unavailable in existing public

glaucoma datasets. Given the diverse racial representation

in our dataset as detailed in Section 3, our dataset is well

equipped for potential fairness learning studies, especially

considering the significant glaucoma prevalence disparity

between Black and other races [62, 25].
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