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Abstract

We study the problem of estimating optical flow from
event cameras. One important issue is how to build a high-
quality event-flow dataset with accurate event values and
flow labels. Previous datasets are created by either captur-
ing real scenes by event cameras or synthesizing from im-
ages with pasted foreground objects. The former case can
produce real event values but with calculated flow labels,
which are sparse and inaccurate. The latter case can gener-
ate dense flow labels but the interpolated events are prone to
errors. In this work, we propose to render a physically cor-
rect event-flow dataset using computer graphics models. In
particular, we first create indoor and outdoor 3D scenes by
Blender with rich scene content variations. Second, diverse
camera motions are included for the virtual capturing, pro-
ducing images and accurate flow labels. Third, we render
high-framerate videos between images for accurate events.
The rendered dataset can adjust the density of events, based
on which we further introduce an adaptive density mod-
ule (ADM). Experiments show that our proposed dataset
can facilitate event-flow learning, whereas previous ap-
proaches when trained on our dataset can improve their
performances constantly by a relatively large margin. In
addition, event-flow pipelines when equipped with our ADM
can further improve performances. Our code is available at
https://github.com/boomluo02/ADMFlow .

1. Introduction

Event cameras [29] record brightness changes at a vary-
ing framerate [4]. When a change is detected in a pixel, the
camera returns an event in the form e = (x, y, t, p) imme-
diately, where x, y stands for the spatial location, t refers to
the timestamp in microseconds, and p is the polarity of the
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Figure 1: (a) the captured dataset from real event cam-
era [55, 54]. (b) the synthesized dataset with flying chairs
foreground [50]. (c) the synthesized dataset by moving
a foreground image [42]. (d) Our synthesized dataset by
graphics rendering, which not only reflects the real motions
under correct scene geometries, but also produces accurate
dense flow labels and events.

change, indicating a pixel become brighter or darker. On
the other hand, optical flow estimation predicts motions be-
tween two frames [44], which is fundamental and important
for many applications [49, 52, 7]. In this work, we study the
problem of estimating optical flow from event camera data,
instead of from RGB frames. Different from traditional im-
ages, events are sparse and are often integrated in short in-
tervals as the input for the prediction. As such, early works
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can only estimate sparse flows at the location of events [1].
Recent deep methods can estimate dense flows but with the
help of images, either as the guidance [54] or as the addi-
tional inputs [26, 38]. Here, we tackle a hard version of the
problem, where dense flows are predicted based purely on
the event values e. One key issue is how to create high qual-
ity event-based optical flow dataset to train the network.

Existing methods of event flow dataset creation can be
classified into two types, 1) directly capturing from real
event cameras [55, 54, 16]; 2) moving foregrounds on
top of a background image to create synthesized flow mo-
tions [50, 42] and apply frame interpolation [14] to create
events. For the first type, the ground-truth (GT) flow labels
need to be calculated based on gray images acquired along
with the event data. However, the optical flow estimations
cannot be perfectly accurate [48, 43, 32, 24, 51], leading
to the inaccuracy of GT labels. To alleviate the problem,
additional depth sensors, such as LIDAR, have been intro-
duced [55]. The flow labels can be calculated accurately
when the depth values of LIDAR scans are available. How-
ever, LIDAR scans are sparse, and so do the flow labels,
which are unfriendly for dense optical flow learning. Fig. 1
(a) shows an example, LIDAR points on the ground are
sparse. Moreover, some thin objects are often missing, as
indicated by the red box in Fig. 1 (a).

For the second category, the flow labels are created by
moving foreground objects on top of a background image,
similar to flying chairs [12] or flying things [36]. In this
way, the flow labels are dense and accurate. To create
events, intermediate frames are interpolated [23]. However,
the frame interpolation is inaccurate due to scene depth dis-
parities, where the occluded pixels cannot be interpolated
correctly, leading to erroneous event values in these regions.
To match high framerate of events, the large number of in-
terpolated frames makes the problem even worse. Fig. 1 (b)
shows an example, where the events are incorrect at the oc-
cluded chairs. Moreover, the motions are artificial, further
decreasing the realism of the dataset (Fig. 1 (b) and (c)).

In this work, we create an event-flow dataset from syn-
thetic 3D scenes by graphics rendering (Fig. 1 (d)). While
there is a domain gap between rendered and real images,
this gap is empirically found insignificant in event camera
based classification [41] and segmentation [14] tasks. As
noted by these works, models trained on synthetic events
work very well for real event data. Because events con-
tain only positive and negative polarities, no image ap-
pearances are involved. To this end, we propose a Multi-
Density Rendered (MDR) event optical flow dataset, cre-
ated by Blender on indoor and outdoor scenes with accurate
events and flow labels. In addition, we design an Adaptive
Density Module (ADM) based on MDR, which can adjust
the densities of events, one of the most important factors for
event-based tasks but has been largely overlooked.

Specifically, our MDR dataset contains 80, 000 samples
from 50 virtual scenes. Each data sample is created by first
rendering two frames and obtaining the GT flow labels di-
rectly from the engine. Then, we render 15 ∼ 60 frames in-
between based on the flow magnitude. The events are cre-
ated by thresholding log intensities and recording the times-
tamp for each spatial location. The density of events can be
controlled by the threshold values. The ADM is designed
as a plugin module, which further consists of two sub-
modules, multi-density changer (MDC) and multi-density
selector (MDS), where the MDC adjusts the density glob-
ally while the MDS picks the best one for every spatial loca-
tion. Experiments show that previous event-flow methods,
when trained on our MDR dataset, can improve their perfor-
mances. Moreover, we train several recent representative
flow pipelines, such as FlowFormer [21], KPA-Flow [32],
GMA [24] and SKFlow [47], on our MDR dataset. When
equipped with our ADM module, the performances can in-
crease consistently.

Our contributions are summarized as:

• A rendered event-flow dataset MDR, with 80,000 sam-
ples created on 53 virtual scenes, which possess physi-
cally correct accurate events and flow label pairs, cov-
ering a wide range of densities.

• An adaptive density module (ADM), which is a plug-
and-play module for handling varying event densities.

• We achieve state-of-the-art performances. Our MDR
can improve the quality of previous event-flow meth-
ods. Various optical flow pipelines when adapted to the
event-flow task, can benefit from our ADM module.

2. Related Work

2.1. Image-based Optical Flow

Optical flow estimates the per-pixel motion between two
frames according to photo consistency. Traditional ap-
proaches minimize energies, leveraging both feature simi-
larities and motion smoothness [13]. Deep methods train
the networks that take two frames as input and directly out-
put dense flow motions [12, 46]. Recent deep methods de-
sign different pipelines [30, 48, 24] as well as learning mod-
ules [35, 31, 34, 33] for performance improvements. The
training often requires large labeled datasets, which can be
synthesized by moving a foreground on top of a background
image, such as FlyingChairs [12], and AutoFlow [45], or
rendered from graphics such as Sintel [5] and FlyingTh-
ings [36], or created directly from real videos [19]. In this
work, we use computer graphics techniques to render accu-
rate and physically correct event and flow values.
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Figure 2: Our data generation pipeline. Given 3D scenes in the graphics engine, we generate camera trajectories and render
high-frame-rate videos with forward and backward optical flow labels. Then, we build the event optical flow dataset by
generating events using the videos.

2.2. Event-based Optical Flow

Benosman et al. [1] first proposed to estimate optical
flow from events, which can only estimate sparse flows at
the location of event values. Recent deep methods can esti-
mate dense optical flows. EV-FlowNet [54] learns the event
and flow labels in a self-supervised manner, which mini-
mizes the photometric distances of grey images acquired
by DAVIS [4]. Different event representations were ex-
plored, e.g., EST [15] and Matrix-LSTM [6], with vari-
ous network structures, such as SpikeFlowNet [27], LIF-
EV-FlowNet [18], STE-FlowNet [11], Li et al. [28], and
E-RAFT [17]. Some works take both events and images
as input for the flow estimation [26, 38]. In general, dense
flows are more desirable than sparse ones but are more dif-
ficult to train. Normally, regions with events can produce
more accurate flows than empty regions where no events are
triggered. Moreover, supervised training can produce bet-
ter results than unsupervised ones, as long as the training
dataset can provide sufficient event-flow guidance.

2.3. Event Dataset

The applications to the event camera dataset were first
explored in the context of classification [37, 2]. Early
works generate events simply by applying a threshold on
the image difference [25]. Frame interpolation is often
adopted for high framerate [14]. The synthesized events of-
ten contain inaccurate timestamps. The DAVIS event cam-
era can directly capture both images and events [4], based
on which two driving datasets are captured, DDD17 [3]
and MVSEC [55]. With respect to the event flow dataset,
EV-Flownet [54] calculated sparse flow labels from LIDAR
depth based on MVSEC [55]. Wan et al. [50] and Stoffre-
gen et al. [42] created the foreground motions and interpo-
lated the intermediate frames for events. The real captured

dataset can only provide sparse labels while the synthesized
ones contain inaccurate events. In this work, we propose to
render a physically correct event dense flow dataset.

3. Method

3.1. The event-based optical flow dataset

In order to create a realistic event dataset for optical flow
learning, we propose to employ a graphics engine with 3D
scenes for data generation. Given 3D scenes, we first define
camera trajectories, according to which we generate optical
flow labels for timestamps at 60 FPS and 15 FPS. Then we
render high-frame-rate videos based on the motion magni-
tude of the optical flow label between two timestamps. Fi-
nally, we generate event streams by rendering high-frame-
rate videos and simulating the event trigger mechanism in
the event camera using the v2e toolbox [20]. The overview
of our data generation pipeline is shown in Fig. 2.

Virtual Scenes. To ensure that the generated event dataset
has the correct scene structure, we utilize a variety of
indoor and outdoor 3D scenes, including cities, streets,
forests, ports, beaches, living rooms, bedrooms, bathrooms,
kitchens, and parking lots. Totally, we obtain 53 virtual 3D
scenes (31 indoor and 22 outdoor) that simulate real-world
environments. Some examples are shown in Fig. 3.

Camera Trajectory. Given a 3D scene model, we first
generate the 3D camera trajectory using PyBullet [8], an
open-source physics engine, to ensure that the camera does
not pass through the inside of the objects and out of the ef-
fective visible region of the scene during the motion. After
setting the start position, end position, and moving speed of
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Figure 3: Examples of our MDR training set. Each row
shows images, events and flow labels from top to bottom.

the camera trajectory, we randomly add translation and rota-
tion motions to create a smooth curve function Γ(t) that out-
puts the location and pose P (t) = [x(t), y(t), z(t), r(t)]T .

High-frame-rate Video and Optical Flow. After camera
trajectory generation, we use the graphics engine to render a
sequence of images I(u, ti), where u = (x, y) is the pixel
coordinates and ti is the timestamp. We extract the for-
ward and backward optical flow labels between every two
timestamps (Fti→tj , Ftj→ti ). Then we need to generate the
event data to construct the event optical flow dataset. Here,
we render high-frame-rate videos {I(u, τ)}, τ ∈ [ti, tj ] be-
tween timestamps ti and tj for events generation according
to the camera trajectory Γ(t).

Inspired by ESIM [40], we adopt an adaptive sampling
strategy to sample camera locations from the camera tra-
jectory for interval ti to tj , so that the largest displace-
ment of all pixels between two successive rendered frames
(I(u, τk), I(u, τk+1)) is under 1 pixel, we define the sam-
pling time interval ∆τk as follows:

∆τk = τk+1 − τk

= (max
u

max{
∥∥Fτk−1→τk

∥∥ ,∥∥Fτk→τk−1

∥∥})−1,
(1)

where |F | = maxu max{
∥∥Fτk−1→τk

∥∥ ,∥∥Fτk→τk−1

∥∥} is
the maximum magnitude of the motion field between im-
ages I(u, τk−1) and I(u, τk).

Event Generation from High-frame-rate Video. Given
a high-frame-rate video {I(u, τ)}, τ ∈ [ti, tj ] between
timestamps ti and tj , we next generate event stream by sim-
ulating the event trigger mechanism. Similar to [40] and
[14], we use linear interpolation to approximate the contin-
uous intensity signal in time for each pixel between video
frames. Events {(ue, te, pe)} are generated at each pixel
ue = (xe, ye) whenever the magnitude of the change in the

log intensity values (L(ue, te) = ln(I(ue, te)) exceeds the
threshold C. This can be expressed as Eq. (2) and Eq. (3):

L(ue, te +∆te)− L(ue, te) ≥ peC, (2)

te = te−1 +∆τk
C

|L(ue, te +∆te)− L(ue, te)|
, (3)

where te−1 and te are the timestamps of the last trig-
gered event and the next triggered event respectively, pe ∈
{−1,+1} is the polarity of the triggered event. We define
it as E(tk, tk+1), witch is the sequence {(ue, te, pe)

N , e ∈
[0, N ]} with N events between time tk and tk+1.

Multi-Density Rendered Events Dataset. Using the
above data generation method, we can generate data with
different event densities by using different threshold val-
ues C. Since event stream is commonly first transformed
into event representation [56, 42, 17] and then fed into deep
networks. In order to measure the amount of useful infor-
mation carried by the event stream, we propose to calculate
the density of the event stream using the percentage of valid
pixels (pixels where at least one event is triggered) in the
voxel representation:

V (ue, b) =

N∑
e=0

pe max(0, 1−|b− te − t0
tN − t0

(B−1)|), (4)

D =
1

HW

N∑
e=1

ε(

B−1∑
b=0

|V (ue, b)|), ε(x) =
{
1, x > 0
0, x ≤ 0

,

(5)
where V (ue) ∈ RB×H×W is the voxel representation [56]
of the event stream

{
(ue, te, pe)

N
}

between t0 and tN ,
b ∈ [0, B − 1] indicates the temporal index , B (typically
set to 5) donates temporal bins and D is the density of the
input event representation V .The notation | · | denotes the
absolute value operation. In practical applications, different
event cameras may use different threshold values in differ-
ent scenes, resulting in data with different event densities.
Intuitively, event data with lower density is more difficult
for optical flow estimation. In order to train models that
can cover event data with various densities, in this paper,
we propose to adaptively normalize the density of the input
events to a certain density representation for optical flow es-
timation, so as to increase the generalization ability of the
network.

3.2. Event-based Optical Flow Estimation

Event-based optical flow estimation involves predict-
ing dense optical flow Fk−1→k from consecutive event se-
quences E(tk−1, tk) and E(tk, tk+1). In this paper, we find
that networks perform better on event sequences with ap-
propriate density than on those with excessively sparse or
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Figure 4: The structure of the proposed network. We de-
sign a plug-and-play Adaptive Density Module (ADM) to
transform input event representations V1 and V2 into V ad

1

and V ad
2 with suitable density for optical flow estimation.

dense events, when given events from the same scene. Mo-
tivated by this, we propose a plug-and-play Adaptive Den-
sity Module (ADM) that normalizes the input event stream
to a density suited for estimating optical flow. Our network
architecture is shown in Fig. 4, where the ADM transforms
input event representations V1 and V2 to justified event rep-
resentations V ad

1 and V ad
2 , which are then used by an exist-

ing network structure to estimate optical flow.

Adaptive Density Module. As shown in Fig. 4, our
ADM module consists of two sub-modules: the multi-
density changer (MDC) module and the multi-density selec-
tor (MDS) module. The MDC module globally adjusts the
density of the input event representations from multi-scale
features, then the MDS module picks the best pixel-wise
density for optical flow estimation.

The MDC module adopts an encoder-decoder architec-
ture with three levels, as illustrated in Fig. 5(a). To gener-
ate multiscale transformed representations V MDC

3 , V MDC
2

and V MDC
1 (also noted as V MDC

out ) from the concatenated in-
put event representations V , three encoding blocks are em-
ployed to extract multiple scale features, followed by three
decoding blocks and two feature fusion blocks. It is worth
noting that, to ensure the lightweightness of the entire mod-
ule, we utilize only two 3 × 3 and one 1 × 1 convolutional
layers in each encoding and decoding block.

To maintain the information in the input event repre-
sentation and achieve density transformation, we adopt the
MDS module for adaptive selection and fusion of V MDC

out

and V , as depicted in Fig. 5(b). We first concatenate V MDC
out

and V , and then use two convolutional layers to compare
them and generate selection weights via softmax. Finally,
we employ the selection weights to identify and fuse V MDC

out

and V , producing the transformed event representation V ad
1

and V ad
2 , which are fed into an existing flow network for op-

tical flow estimation. In this paper, we use KPA-Flow [32]
for optical flow estimation by default.
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Figure 5: The detailed structure of sub-modules used in our
proposed ADM model: (a) MDC, (b) MDS.

Loss Function. Based on our MDR dataset, we use the
event representation with a moderate density as the ground
truth (noted as V GT) to train our ADM module. For the
MDC module, we use a multi-scale loss as follows:

LMDC =

3∑
k=1

√
(V MDC

k − V GT
k )2 + ξ2, (6)

where ξ = 10−3 is a constant value, V MDC
k is the output

of the k-th level in MDC, and V GT
k is downsampled from

V GT to match the spatial size.
For the MDS module, we use the distance between the

density of V ad and V GT as the guidance:

LMDS =
∥∥D(V ad)−D(V GT)

∥∥
1
, (7)

where D means to calculate the density as in Eq. (5).
For the flow network, we use L1 loss (denoted as LFlow

) between flow prediction and ground truth as the guidance.
The final loss function for training the whole pipeline in

Fig. 4 is determined as follows:

Ltotal = λ1LMDC + λ2LMDS + LFlow, (8)

where we empirically set λ1 = 0.1 and λ2 = 10.

4. Experiments
4.1. Datasets

MDR: We create the MDR dataset using the graphics en-
gine blender. We use various 3D scenes for data genera-
tion. There are 80, 000 training samples and 6, 000 valida-
tion samples with accurate dense optical flow ground truth.
Each sample has event sequences with different densities
produced by using different thresholds C. By default, for

9851



Method (dt = 1) Train Train indoor flying1 indoor flying2 indoor flying3 outdoor day1 Avg
D.Type D.Set EPE %Out EPE %Out EPE %Out EPE %Out EPE %Out

ESTS [15] E M 0.97 0.91 1.38 8.20 1.43 6.47 - - 1.26 5.19
EV-FlownetS [54] I1, I2,E M 1.03 2.20 1.72 15.1 1.53 11.9 0.49 0.20 1.19 7.35
Deng et al.S [10] E M 0.89 0.66 1.31 6.44 1.13 3.53 - - 1.11 3.54
Paredes et al.S [39] E M 0.79 1.20 1.40 10.9 1.18 7.40 0.92 5.40 1.07 6.22
Matrix-LSTMS [6] I1, I2,E M 0.82 0.53 1.19 5.59 1.08 4.81 - - 1.03 3.64
LIF-EV-FlowNetS [18] E FPV 0.71 1.41 1.44 12.8 1.16 9.11 0.53 0.33 0.96 5.90
Spike-FlowNetS [27] I1, I2,E M 0.84 - 1.28 - 1.11 - 0.49 - 0.93 -
Fusion-FlowNetD [26] I1, I2,E M 0.62 - 0.89 - 0.85 - 1.02 - 0.84 -
Fusion-FlowNetS [26] I1, I2,E M 0.56 - 0.95 - 0.76 - 0.59 - 0.71 -
E-RAFTD [17] E M 1.10 5.72 1.54 9.79 1.36 8.24 0.27 0.00 1.07 5.94
E-RAFTS [17] E M 0.87 1.32 1.13 6.20 1.03 4.70 0.24 0.00 0.82 3.06
Zhu et al.S [56] E M 0.58 0.00 1.02 4.00 0.87 3.00 0.32 0.00 0.69 1.75
DCEIFlowD [50] I1, I2,E M 0.56 0.28 0.64 0.16 0.57 0.12 0.91 0.71 0.67 0.31
DCEIFlowS [50] I1, I2,E C2 0.57 0.30 0.70 0.30 0.58 0.15 0.74 0.29 0.64 0.26
Stoffregen et al.S [42] E ESIM 0.56 1.00 0.66 1.00 0.59 1.00 0.68 0.99 0.62 0.99
STE-FlowNetS [11] I1, I2,E M 0.57 0.10 0.79 1.60 0.72 1.30 0.42 0.00 0.62 0.75
ADM-FlowD(ours) E MDR 0.48 0.11 0.56 0.40 0.47 0.02 0.52 0.00 0.51 0.14
ADM-FlowS(ours) E MDR 0.52 0.14 0.68 1.18 0.52 0.04 0.41 0.00 0.53 0.34

Method (dt = 4) Train Train indoor flying1 indoor flying2 indoor flying3 outdoor day1 Avg
D.Type D.Set EPE %Out EPE %Out EPE %Out EPE %Out EPE %Out

LIF-EV-FlowNetS [18] E FPV 2.63 29.6 4.93 51.1 3.88 41.5 2.02 18.9 3.36 35.3
EV-FlownetS [54] I1, I2,E M 2.25 24.7 4.05 45.3 3.45 39.7 1.23 7.30 2.74 29.3
E-RAFTD [17] E M 3.26 35.4 4.32 48.6 4.14 48.2 0.84 1.70 3.14 33.5
E-RAFTS [17] E M 2.81 30.6 3.99 40.9 3.78 40.5 0.72 1.12 2.83 28.3
Zhu et al.S [56] E M 2.18 24.2 3.85 46.8 3.18 47.8 1.30 9.70 2.62 32.1
Spike-FlowNetS [27] I1, I2,E M 2.24 - 3.83 - 3.18 - 1.09 - 2.58 -
Fusion-FlowNetD [26] I1, I2,E M 1.81 - 2.90 - 2.46 - 3.06 - 2.55 -
Fusion-FlowNetS [26] I1, I2,E M 1.68 - 3.24 - 2.43 - 1.17 - 2.13 -
STE-FlowNetS [11] I1, I2,E M 1.77 14.7 2.52 26.1 2.23 22.1 0.99 3.90 1.87 16.7
DCEIFlowD [50] I1, I2,E C2 1.49 8.14 1.97 17.4 1.69 12.3 1.87 19.1 1.75 14.2
DCEIFlowS [50] I1, I2,E C2 1.52 8.79 2.21 22.1 1.74 13.3 1.37 8.54 1.71 13.2
ADM-FlowD(ours) E MDR 1.39 7.33 1.63 11.5 1.51 9.34 1.91 19.2 1.61 11.8
ADM-FlowS(ours) E MDR 1.42 7.78 1.88 16.7 1.61 11.4 1.51 10.2 1.60 11.5

Table 1: Quantitative comparison of our method with previous methods on the MVSEC dataset [55]. Subscripts S and D
donate the sparse and dense evaluation, respectively. We mark the best results in red and the second best results in blue.

training on MDR, we use the combination of all these sam-
ples with different densities to train flow networks. For
the learning of our ADM module, we choose events with
density between 0.45 and 0.55 as the label for LMDC and
LMDS.
MVSEC: The MVSEC dataset [55] is a real-world dataset
collected in indoor and outdoor scenarios with sparse opti-
cal flow labels. As a common setting, 28, 542 data pairs of
the ‘outdoor day2’ sequence are used as the train set, and
8, 410 data pairs of the other sequences are used as the vali-
dation set. The density ranges of MVSEC train set and vali-
dation set are [0.0003, 0.47] and [0.001, 0.31], respectively.
DSEC: The DSEC dataset [16] is also collected using actual
event cameras and lidar sensors on outdoor scenes. The
dataset consists of 7, 800 training samples and 2, 100 test
samples, divided into 24 sequences that include both day
and night scenarios.

Previous methods have trained on other datasets, includ-
ing synthetic datasets like C2 [50] and ESIM [42], as well

as real-world captured datasets such as FPV [9]. To assess
the performance of these methods, comparisons are made
on the validation set of the MVSEC dataset. Both MVSEC
and MDR datasets have two input settings for training and
testing. These settings involve using the events between
successive images within a time interval of dt = 1 and
dt = 4. On the other hand, for the DSEC dataset, there is a
public benchmark available specifically designed to evalu-
ate flow networks. However, this benchmark only provides
one input setting for testing. We denote MVSEC, DSEC,
and MDR datasets by “M”, “D”, and “MDR”.

4.2. Implementation details

We use PyTorch to implement our method and train all
networks using the same setting. The networks are trained
with the AdamW optimizer, with a batch size of 6 and learn-
ing rate of 4× 10−4 for 150k iterations. Since the MVSEC
dataset lacks multiple density event streams required for the
learning of our ADM module, we disable LMDC and LMDS
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when training on the MVSEC dataset.

4.3. Evaluation metrics

The evaluation metrics used in flow prediction models
are the average End-point Error (EPE) and 1PE, 2PE, and
3PE (the percentage of pixels with EPE greater than 1,2,3
pixels) for DSEC dataset, and %Out (the percentage of
points with EPE greater than 3 pixels and 5% of the ground
truth flow magnitude) for MVSEC dataset. There are two
types of evaluations: dense and sparse. In emphdense eval-
uation, errors are calculated only at pixels with valid flow
annotations. Sparse evaluation focuses on pixels with valid
flow annotations that have triggered at least one event. Ex-
periments are performed on both MVSEC and MDR, con-
sidering both dense and sparse evaluations. However, only
dense dense is conducted for DSEC.

4.4. Comparison with State-of-the-Arts

Results on MVSEC. In Table 1, we compare our model
trained on the MDR train set with previous methods on the
MVSEC evaluation set, and report detailed results for each
sequence. We provide information on the data types (Train
D.Type) and the training sets (Train D.Set) used in the train-
ing process for each method. Specifically, ‘I1, I2,E’ indi-
cates that both image data and event data are used in the
training and inference processes of the model, while ‘E’ in-
dicates that only event data is used. As shown in Table 1,
our model trained on the MDR dataset achieves state-of-the-
art performance for both EPE and %Out metrics in settings
of dt = 1 and dt = 4. Notably, our method demonstrates
a 23.9% improvement (reducing EPE from 0.67 to 0.51)
for dense optical flow estimation in dt = 1 settings, and
an 8.0% improvement (reducing EPE from 1.75 to 1.61) in
dt = 4 settings, surpassing previous methods. Qualitative
comparison results are shown in row 1 and row 2 in Fig. 6.

Results on MDR. In Table 3, we compare our method
with previous methods for training on the MVSEC dataset
and testing on the MDR dataset for cross-training and val-
idation to avoid over-fitting. We use different thresholds C
to generate test data with different density ranges for eval-
uation. For the average EPE error of dense optical flow
estimation, our model obtains the best result, which is a
17.1% improvement (reducing EPE from 0.82 to 0.68) in
dt = 1 settings, and a 16.7% improvement (reducing EPE
from 1.98 to 1.65) in dt = 4 settings. We also show some
qualitative comparison results in row 3 and row 4 in Fig. 6.

Results on DSEC. In Table 2, we report the results on
the DSEC test set for different models that are trained on
DSEC, MDR, and a combination of DSEC and MDR. As
can be seen, MDR-trained models produce comparable re-
sults to in-domain learned models on the DSEC train set.

Methods Train 1PE 2PE 3PE EPED.Set

EV-FlowNet [54]
D 55.13 28.43 16.71 2.22

MDR 42.52 24.40 16.32 1.86
D+MDR 35.06 15.41 7.84 1.31

E-RAFT [17]
D 16.19 6.22 3.59 0.90∗

MDR 18.85 7.44 4.37 1.00
D+MDR 13.16 5.19 2.93 0.82

ADM-EVFLOW
D 42.89 25.21 15.80 1.90

MDR 40.02 14.88 12.34 1.67
M+D 23.46 10.32 5.61 1.12

ADM-Flow(ours)
D 13.96 5.32 3.18 0.88

MDR 14.53 5.78 3.59 0.92
D+MDR 12.52 4.67 2.65 0.78

Table 2: Results on the DSEC test set. ∗ denotes our re-
produced results of E-RAFT, since the official training code
is not released. All experiments are conducted on the same
training code for fair comparison.

Moreover, training E-RAFT on the combined DSEC/MDR
datasets yields improved performance, demonstrating the
effectiveness of MDR. Our ADMFlow model achieves im-
proved performance on all training datasets, highlighting
the effectiveness and versatility of ADM. Some qualitative
results are shown in Fig. 7.

Analysis of the MDR dataset. To demonstrate the effec-
tiveness of our proposed MDR dataset, we train several op-
tical flow networks [46, 17, 53, 21, 47, 24, 32] on both MDR
and MVSEC train sets using identical training settings. For
training, we use a combination of data samples from the
MDR dataset with a density range of [0.09, 0.69]. We eval-
uate the trained networks on the MVSEC validation set, and
the results, presented in Table 4, demonstrate that all net-
works trained on the MDR dataset outperform those trained
on the MVSEC dataset.

4.5. Ablation study.

Training with different densities. We examine the im-
pact of input event sequence density on optical flow learn-
ing, as our MDR dataset contains event data with vari-
ous densities and corresponding dense flow labels. We
train SKFlow [47], GMA [24], FlowFormer [21] and KPA-
Flow [32] on the same sequence from our MDR dataset but
with different average densities produced by using differ-
ent threshold C, and then test them on the MVSEC dataset.
Figure 8 shows the results in dt = 4 setting, indicating
that these models perform better as the average density of
the training set increases. However, their performance di-
minishes as the average density continues to increase. This
phenomenon highlights the importance of selecting an ap-
propriate density for the training set when learning event
optical flow.
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Reference Spike-Flownet STE-FlowNet E-RAFT DCEIFlow Ours Flow GT

Figure 6: Qualitative comparisons compared with existing event-based methods. Row 1 and 2 are from MVSEC, whereas
row 3 and 4 are from MDR. Row 1 and 3 visualize the dense predictions, whereas row 2 and 4 show the sparse.

Reference EV-Flownet E-RAFT Ours

Figure 7: Qualitative comparisons on the DSEC test set. We
visualize the dense predictions and zoom in the areas where
are apparent differences.

Ablation for ADM. In order to verify the impact of our
proposed ADM module, we conduct ablation experiments
by plugging the ADM module into several optical flow net-

Method (dt = 1) density range Avg0.09-0.24 0.24-0.39 0.39-0.54 0.54-0.69
Spike-FlowS [27] 1.93 1.20 1.33 2.01 1.62
STE-FlowS [11] 1.17 1.11 0.82 1.30 1.10
DCEIFlowD [50] 1.28 1.37 1.27 1.46 1.35
DCEIFlowS [50] 1.00 0.84 0.75 0.82 0.85
E-RAFTD [17] 0.93 0.74 0.69 0.92 0.82
E-RAFTS [17] 0.82 0.65 0.66 0.82 0.74
ADM-FlowD(ours) 0.77 0.69 0.50 0.74 0.68
ADM-FlowS(ours) 0.69 0.64 0.49 0.74 0.64

Method (dt = 4) density range Avg0.09-0.24 0.24-0.39 0.39-0.54 0.54-0.69
Spike-FlowS [27] 3.95 1.96 2.09 2.87 2.72
STE-FlowS [11] 2.90 2.27 1.98 2.17 2.33
DCEIFlowD [50] 3.84 2.68 2.99 4.27 3.45
DCEIFlowS [50] 2.25 1.32 1.19 2.34 1.78
E-RAFTD [17] 2.64 1.42 1.35 2.51 1.98
E-RAFTS [17] 2.18 1.31 1.24 2.29 1.76
ADM-FlowD(ours) 2.12 1.20 1.24 2.02 1.65
ADM-FlowS(ours) 2.03 1.13 1.09 1.90 1.54

Table 3: Quantitative evaluation on our MDR dataset. The
methods in the table are all trained on the MVSEC dataset
for cross-training and validation to avoid over-fitting. S and
D donate the sparse and dense evaluation, respectively. We
use EPE as the evaluation metric.

works to selectively adjust the densities of the input events.
We train these networks on both MDR and MVSEC datasets
with the same setting except that the ADM module is dis-
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Method Train dt = 1 dt = 4
D.Set EPE %Out EPE %Out

PWCNet [22] M 1.25 5.41 4.03 51.48
MDR 1.14 3.48 2.92 38.62

RAFT [48] M 1.19 4.90 3.33 39.78
MDR 0.59 0.51 2.57 30.24

GMFlowNet [53] M 1.00 3.75 3.61 42.31
MDR 0.82 1.66 2.70 31.53

FlowFromer [21] M 0.87 3.08 3.38 41.04
MDR 0.61 0.40 2.49 28.83

SKFlow [47] M 1.07 3.97 3.41 40.87
MDR 0.59 0.33 2.46 27.64

GMA [24] M 0.88 4.05 2.99 34.80
MDR 0.58 0.44 2.19 23.00

KPAFlow [32] M 0.86 2.86 3.19 38.32
MDR 0.58 0.39 2.33 26.10

Table 4: Comparison of training on MVSEC vs. MDR.
Models are evaluated on MVSEC for dense optical flow es-
timation.

Figure 8: The performance of some supervised optical
flow networks with different densities of the training set in
dt = 4 setting. X-axis is the average density of events in
the training set, and y-axis is their average EPE on MVSEC
validation set. Different colors represent the performance
of different networks, and the pentagons show the perfor-
mance of networks trained on the MDR training set with a
widely density range of [0.09, 0.69], and the average den-
sity is 0.41.

abled or not, and test them on the MVSEC dataset. The ex-
periment results are shown in Table 5, where we can notice
that our ADM module can bring performance improvement
for all supervised methods.

Ablation for the design of ADM. We conduct ablation
experiments to verify the effectiveness of each component
in our ADM module, including MDC, MDS, and the two
training loss functions LMDC and LMDS. We train mod-
els using the same settings on the MDR dataset and eval-
uate them on the MVSEC dataset to show the individual
impact of each component in our ADM module. The re-
sults are presented in Table 6. The comparison of (a)&(b)
shows that adding only the MDC plugin results in a slight
performance gain. Comparison of (b)&(c) reveals that en-

Method M(dt = 1) MDR(dt = 1) M(dt = 4) MDR(dt = 4)
EPE %Out EPE %Out EPE %Out EPE %Out

PWCNet [22] 1.25 5.41 1.14 3.48 4.03 51.48 2.92 38.62
ADM-PWCNet 1.07 4.52 0.76 1.48 2.95 33.31 1.94 18.74
RAFT [48] 1.19 4.90 0.59 0.51 3.33 39.78 2.57 30.24
ADM-RAFT 0.82 3.03 0.56 0.24 2.73 30.91 1.72 13.83
GMFlowNet [53] 1.00 3.75 0.82 1.66 3.61 42.31 2.70 31.53
ADM-GMFlowNet 0.87 3.05 0.58 0.32 2.78 31.26 1.81 14.45
FlowFromer [21] 0.87 3.08 0.61 0.40 3.38 41.04 2.49 28.83
ADM-FlowFromer 0.78 2.87 0.53 0.15 2.56 26.57 1.67 12.78
SKFlow [47] 1.07 3.97 0.59 0.33 3.41 40.87 2.46 27.64
ADM-SKFlow 0.84 3.18 0.53 0.14 2.67 28.17 1.69 12.61
GMA [24] 0.88 4.05 0.58 0.44 2.99 34.80 2.19 23.00
ADM-GMA 0.76 2.65 0.54 0.22 2.45 25.75 1.63 11.95
KPAFlow [32] 0.86 2.86 0.58 0.39 3.19 38.32 2.33 26.10
ADM-KPAFlow 0.80 2.67 0.51 0.14 2.59 28.42 1.61 11.83

Table 5: Quantitative comparison of whether using ADM.
Models are trained on MVSEC and MDR, and evaluated on
MVSEC for dense optical flow estimation in dt = 1 and
dt = 4 settings.

Method MDC MDS LMDC LMDS
Param. dt = 1 dt = 4
(M) EPE %Out EPE %Out

(a) ✕ ✕ ✕ ✕ 6.01 0.58 0.39 2.33 26.10
(b) ✓ ✕ ✕ ✕ 7.71 0.57 0.33 2.20 23.78
(c) ✓ ✓ ✕ ✕ 7.72 0.54 0.26 1.92 18.26
(d) ✓ ✓ ✓ ✕ 7.72 0.52 0.16 1.66 13.29
(e) ✓ ✓ ✓ ✓ 7.72 0.51 0.14 1.61 11.83

Table 6: Ablation study. Models are trained on the MDR
training set, and evaluated on the MVSEC validation set for
dense optical flow estimation in dt = 1 and dt = 4 settings.

abling the density selection function through the MDS mod-
ule brings a significant improvement. Comparing (c)&(d)
and (d)&(e), we notice that with the guidance of two loss
functions, ADM can learn to selectively choose the best
density for optical flow estimation, resulting in a relatively
significant improvement.

5. Conclusion
In this work, we have created a rendered dataset for

event-flow learning. Indoor and outdoor virtual scenes have
been created using Blender with rich scene contents. Vari-
ous camera motions are placed for the capturing of the vir-
tual world, which can produce frames as well as accurate
flow labels. The event values are generated by rendering
high frame rate videos between two frames. In this way, the
flow labels and event values are physically correct and ac-
curate. The rendered dataset can adjust density of events by
modifying the event trigger threshold. We have introduced
a novel adaptive density module (ADM), which has shown
its effectiveness by plugin into various event-flow pipelines.
When trained on our dataset, previous approaches can im-
prove their performances constantly.
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vide Scaramuzza. E-raft: Dense optical flow from event cam-
eras. In 3DV, 2021. 3, 4, 6, 7, 8

[18] Jesse Hagenaars, Federico Paredes-Vallés, and Guido
De Croon. Self-supervised learning of event-based optical
flow with spiking neural networks. In Proc. NeurIPS, 2021.
3, 6

[19] Yunhui Han, Kunming Luo, Ao Luo, Jiangyu Liu, Haoqiang
Fan, Guiming Luo, and Shuaicheng Liu. Realflow: Em-
based realistic optical flow dataset generation from videos.
In Proc. ECCV, 2022. 2

[20] Yuhuang Hu, Shih-Chii Liu, and Tobi Delbruck. v2e: From
video frames to realistic dvs events. In Proc. CVPR, 2021. 3

[21] Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng
Li. FlowFormer: A transformer architecture for optical flow.
In Proc. ECCV, 2022. 2, 7, 9

[22] Junhwa Hur and Stefan Roth. Iterative residual refinement
for joint optical flow and occlusion estimation. In Proc.
CVPR, 2019. 9

[23] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In Proc. CVPR, 2018. 2

[24] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In Proc. ICCV, 2021. 2, 7, 9

[25] Jacques Kaiser, J Camilo Vasquez Tieck, Christian Hub-
schneider, Peter Wolf, Michael Weber, Michael Hoff,
Alexander Friedrich, Konrad Wojtasik, Arne Roennau, Ralf
Kohlhaas, et al. Towards a framework for end-to-end con-
trol of a simulated vehicle with spiking neural networks. In
SIMPAR, 2016. 3

[26] Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy.
Fusion-flownet: Energy-efficient optical flow estimation us-
ing sensor fusion and deep fused spiking-analog network ar-
chitectures. In ICRA, 2022. 2, 3, 6

[27] Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Ken-
neth Chaney, Kostas Daniilidis, and Kaushik Roy. Spike-
flownet: event-based optical flow estimation with energy-
efficient hybrid neural networks. In Proc. ECCV, 2020. 3, 6,
8

[28] Zhuoyan Li, Jiawei Shen, and Ruitao Liu. A lightweight
network to learn optical flow from event data. In ICPR, 2021.
3

[29] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A
128 times 128 120 db 15 mus latency asynchronous tem-
poral contrast vision sensor. IEEE journal of solid-state cir-
cuits, 2008. 1

[30] Shuaicheng Liu, Kunming Luo, Ao Luo, Chuan Wang, Fan-
man Meng, and Bing Zeng. Asflow: Unsupervised optical
flow learning with adaptive pyramid sampling. IEEE Trans.
on Circuits and Systems for Video Technology, 2021. 2

[31] Shuaicheng Liu, Kunming Luo, Nianjin Ye, Chuan Wang,
Jue Wang, and Bing Zeng. Oiflow: Occlusion-inpainting op-

9856



tical flow estimation by unsupervised learning. IEEE Trans.
on Image Processing, 2021. 2

[32] Ao Luo, Fan Yang, Xin Li, and Shuaicheng Liu. Learn-
ing optical flow with kernel patch attention. In Proc. CVPR,
2022. 2, 5, 7, 9

[33] Ao Luo, Fan Yang, Xin Li, Lang Nie, Chunyu Lin, Haoqiang
Fan, and Shuaicheng Liu. Gaflow: Incorporating gaussian
attention into optical flow. In Proc. ICCV, 2023. 2

[34] Ao Luo, Fan Yang, Kunming Luo, Xin Li, Haoqiang Fan,
and Shuaicheng Liu. Learning optical flow with adaptive
graph reasoning. In Proc. AAAI, 2022. 2

[35] Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan,
Jue Wang, and Jian Sun. Upflow: Upsampling pyramid for
unsupervised optical flow learning. In Proc. CVPR, 2021. 2

[36] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proc. CVPR,
2016. 2

[37] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased
lstm: Accelerating recurrent network training for long or
event-based sequences. Proc. NeurIPS, 2016. 3

[38] Liyuan Pan, Miaomiao Liu, and Richard Hartley. Single im-
age optical flow estimation with an event camera. In Proc.
CVPR, 2020. 2, 3

[39] Federico Paredes-Vallés and Guido CHE de Croon. Back to
event basics: Self-supervised learning of image reconstruc-
tion for event cameras via photometric constancy. In Proc.
CVPR, 2021. 6

[40] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza.
Esim: an open event camera simulator. In Conference on
robot learning. PMLR, 2018. 4

[41] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. Hats: Histograms of aver-
aged time surfaces for robust event-based object classifica-
tion. In Proc. CVPR, 2018. 2

[42] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza,
Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the sim-to-real gap for event cam-
eras. In Proc. ECCV, 2020. 1, 2, 3, 4, 6

[43] Xiuchao Sui, Shaohua Li, Xue Geng, Yan Wu, Xinxing Xu,
Yong Liu, Rick Goh, and Hongyuan Zhu. Craft: Cross-
attentional flow transformer for robust optical flow. In Proc.
CVPR, 2022. 2

[44] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of
optical flow estimation and their principles. In Proc. CVPR,
2010. 1

[45] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun
Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,
William T Freeman, and Ce Liu. Autoflow: Learning a better
training set for optical flow. In Proc. CVPR, 2021. 2

[46] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proc. CVPR, 2018. 2, 7

[47] Shangkun Sun, Yuanqi Chen, Yu Zhu, Guodong Guo, and Ge
Li. Skflow: Learning optical flow with super kernels. Proc.
NeurIPS, 2022. 2, 7, 9

[48] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Proc. ECCV, 2020. 2, 9

[49] Mikko Vihlman and Arto Visala. Optical flow in deep visual
tracking. In Proc. AAAI, 2020. 1

[50] Zhexiong Wan, Yuchao Dai, and Yuxin Mao. Learning dense
and continuous optical flow from an event camera. IEEE
Trans. on Image Processing, 2022. 1, 2, 3, 6, 8

[51] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In Proc. CVPR, 2022. 2

[52] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy.
Deep flow-guided video inpainting. In Proc. CVPR, 2019. 1

[53] Shiyu Zhao, Long Zhao, Zhixing Zhang, Enyu Zhou, and
Dimitris Metaxas. Global matching with overlapping atten-
tion for optical flow estimation. In Proc. CVPR, 2022. 7,
9

[54] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. Ev-flownet: Self-supervised optical flow estima-
tion for event-based cameras. In Proceedings of Robotics:
Science and Systems, 2018. 1, 2, 3, 6, 7

[55] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd
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