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Figure 1: We propose an improved AR model (ImAM) to learn versatile 3D shape generation. ImAM can either generate
diverse and faithful shapes with multiple categories via an unconditional way (one column to the left), or can be adapted for
conditional generation by incorporating various conditioning inputs given on the left-top (three columns to the right).

Abstract

Auto-Regressive (AR) models have achieved impressive
results in 2D image generation by modeling joint distribu-
tions in the grid space. While this approach has been ex-
tended to the 3D domain for powerful shape generation, it
still has two limitations: expensive computations on vol-
umetric grids and ambiguous auto-regressive order along
grid dimensions. To overcome these limitations, we propose
the Improved Auto-regressive Model (ImAM) for 3D shape
generation, which applies discrete representation learning

*Equal contribution
†Corresponding author

based on a latent vector instead of volumetric grids. Our
approach not only reduces computational costs but also pre-
serves essential geometric details by learning the joint dis-
tribution in a more tractable order. Moreover, thanks to
the simplicity of our model architecture, we can naturally
extend it from unconditional to conditional generation by
concatenating various conditioning inputs, such as point
clouds, categories, images, and texts. Extensive experi-
ments demonstrate that ImAM can synthesize diverse and
faithful shapes of multiple categories, achieving state-of-
the-art performance.
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1. Introduction
3D shape generation has garnered increasing interest in

both academia and industry for its extensive applications
in robotics [20], autonomous driving [47, 28], augmented
reality [35] and virtual reality [34]. Based on whether user
prerequisites are provided, shape generation is typically cat-
egorized as unconditional or conditional. To be an effective
generative model, it is crucial for the synthesized shapes
to be both diverse and faithful to the universal cognition
of humans or given conditions. These qualities serve as the
foundation for other deterministic tasks, such as shape com-
pletion, single-view reconstruction, and more. Previous ap-
proaches [8, 14, 25] usually utilize an AutoEncoder (AE) to
learn latent features by shape reconstruction. Then, a GAN
is trained to fit the distributions of the latent features, allow-
ing for the generation of 3D shapes through sampling the
latent codes learned in AE. While achieving convincing re-
sults, a single embedding for one shape easily encounters
the problem of poor scalability and difficulty in training.

Recently, Auto-Regressive (AR) models have shown re-
markable performance in the generation of 2D images [11,
50, 5] and 3D shape [23, 45]. Instead of learning a contin-
uous latent space, these model leverage discrete represen-
tation learning to encode each 2D/3D input into grid-based
discrete codes. Subsequently, a transformer-based network
is employed to jointly model the distribution of all codes,
which essentially reflects the underlying prior of objects,
facilitating high-quality generation and tractable training.
However, applying AR models to 3D still suffers from two
limitations. First, as the number of discrete codes increases
from squared to cubed, the computational burden of the
transformer grows dramatically, making it difficult to con-
verge. Second, discrete codes in the grid space are highly
coupled. It is ambiguous to simply flatten them for auto-
regression (e.g., a top-down row-major order). This may
lead to poor quality or even collapse of generated shapes
(see Sec. 3.1 and the Supplementary for more details).

In this paper, we propose an improved auto-regressive
model (ImAM), to enhance the efficient learning of 3D
shape generation. Our key idea is to apply discrete rep-
resentation learning in a one-dimensional space instead of
3D volumetric space. Specifically, we first project volumet-
ric grids encoded from 3D shapes onto three axis-aligned
orthogonal planes. This process significantly reduces the
computational costs from cubed to squared while main-
taining the essential information about the input geometry.
Next, we present a coupling network to further encode three
planes into a compact and tractable latent space, on which
discrete representation learning is performed.

Our ImAM is straightforward and effective, simply tack-
ling the aforementioned limitations by two projections.
Thus, a vanilla decoder-only transformer can be attached to
model the joint distributions of codes from the latent spaces.

Furthermore, the simplicity of the transformer structure al-
lows us to switch freely between unconditional and con-
ditional generation by concatenating various conditioning
inputs, such as point clouds, categories, images and texts.
Figure 1 showcases the ability of our ImAM to generate di-
verse and accurate shapes across multiple categories, both
with and without the given condition on the top-left corner.

In summary, the contributions of this paper are listed as
follows. (1) We propose an improved AR Model (ImAM)
for 3D shape generation. By applying discrete representa-
tion learning in a latent vector instead of volumetric grids,
our ImAM enjoys the advantages of lightweight and flex-
ibility. (2) Our proposed ImAM model provides a more
unified framework for switching between unconditional and
conditional generation for a variety of conditioning in-
puts, including point clouds, categories, images, and texts.
(3) Extensive experiments are conducted on four tasks to
demonstrate that our ImAM can generate more faithful and
diverse shapes, achieving state-of-the-art results for uncon-
ditional and conditional shape generation. Overall, our con-
tributions advance the field of 3D shape generation, provid-
ing a powerful tool for researchers and practitioners alike.

2. Related work
3D shape generative models. As an extremely challenging
task, we review the most previous efforts by using voxel,
point clouds, and implicit representations. (1) Standard
voxel grids can be easily processed by 3D convolution for
learning-based 3D task [19, 44, 10, 41]. However, restricted
by its cubic space complexity, voxel representation can not
scale to a high resolution, usually limited in 643. Even with
efficient data structures like octrees or multi-scale represen-
tation [40, 13, 30], such representations still have some lim-
itations in quality. (2) Point clouds extracted from shape
surfaces is an alternative 3D representation [12, 43, 27],
which is efficient in terms of memory and does not suffer
from the restriction of resolution compared with voxel rep-
resentations. However, these representation can not repre-
sent topological relations in 3D space and are also nontrivial
to recover shape surfaces from point cloud representation.
(3) Recently, implicit representations have gained attention
for simplicity in representing 3D shapes [25, 21, 22, 33]. By
predicting the signed distance [25, 33] or occupancy label
[21, 26] of a given point, and then through Marching cubes
[18] methods, the surface can be easily recovered. Follow-
up works [21, 25, 8, 26, 15] focus on the design of implicit
function representation with global or local shape priors. To
sum up, different 3D representations lead to various shape
generative models. There are various good previous works
such as 3DGAN [41], PC-GAN [1], IM-GAN [8], and GBIF
[14]. However, most current generative methods are task-
specific. And it is difficult to be directly applied to different
generative tasks (e.g., shape completion). Fundamentally,
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Figure 2: Illustration of auto-regressive generation for grid-
based representation. Here, we show three different flatten-
ing orders as examples. Best viewed in color.

they rely on GANs for the generation step, suffering from
the known drawbacks such as mode collapse and training
instability. In contrast, we propose an improved AR model
for 3D shape generation that can synthesize high-quality
and diverse shapes while being easily generalized to other
multi-modal conditions.

Autoregressive models. AR models are probabilistic gen-
erative approaches that have tractable probability density.
Using the probability chain rule, the likelihood of a given
sample (usually high dimensional data) can be factorized
into a series of product of conditional probability. In con-
trast, GANs do not have such a tractable probability den-
sity. Recently, AR models achieve remarkable progress
in 2D image generation [11, 37, 29], to a less extent 3D
tasks [36, 9, 24]. Most of 3D AR models are struggling
with generating high-quality shapes due to the challenges of
representation learning with more points or faces. Particu-
larly, we notice two recent works [45, 23] that share similar
insights of utilizing AR models for 3D tasks. [45] intro-
duces a sparse representation to only quantize non-empty
grids in 3D space, but still follows a monotonic row-major
order. [23] presents a non-sequential design to break the or-
ders, but performs on all volumetric grids. However, both
of them address only one of the above limitations, and bur-
den the structure design and training of transformer. In con-
trast, our ImAM applies discrete representation learning in
a latent vector instead of volumetric grids. Such a represen-
tation offers plenty of advantages, including shorter length
of discrete codes, tractable orders from auto-regression, fast
convergence, and also preserving essential 3D information.
Moreover, benefiting from the simplicity of transformers,
we can freely switch from unconditional generation to con-
ditional generation by concatenating various conditions.

3. Methodology
Figure 3 illustrates the schematic of our proposed frame-

work for 3D shape generation, which consists of a two-stage
training procedure. It first represents the input as a compo-
sition of learned discrete codes (in Sec. 3.2), then utilizes a
transformer model to learn their interrelations (in Sec. 3.3).
Before beginning, we provide some symbol definitions and
necessary preliminaries in Sec. 3.1.

3.1. Preliminary

Ambiguity. Formally, ‘ambiguity’ appears in the order of
a series of conditional probabilities, which affects the diffi-
culty of likelihood learning, leading to approximation error
of the joint distribution. Critically, auto-regressive models
requires sequential outputs, autoregressively predicting the
next code conditioned on all previous ones. Thereby, the or-
der of the flattened sequence determines the order of condi-
tional probabilities. Although some methods (e.g. position
embedding [39]) can be aware of positions of codes, it can-
not eliminate approximation error caused by the condition
order. Notably, this ‘ambiguity’ phenomenon is also dis-
cussed in [11] (in Fig. 47), where the loss curves in Fig. 47
highlight the differences in difficulty for likelihood learning
across various orders. Figure 2 illustrates how the flatten-
ing order affects the way of autoregressive generation. For
grid-based representation, it is ambiguous if the flattening
order along axes is y-x-z, x-z-y or other combinations.
Discrete Representation. Given input point clouds P ∈
Rn×3 where n means the number of points, an encoder is
adopted to extract features for each point cloud and then
perform voxelization to get features of regular volumetric
grids fv ∈ Rr×r×r×c, where r denote the resolution of
voxels and c is the feature dimension. To learn discrete rep-
resentation for each 3D shape, a codebook q ∈ Rm×c is
thus introduced whose entry is a learned code describing
a particular type of local-part shape in a grid. Formally,

for each grid
{
fv
(h,l,w)

}r

h,l,w=1
, vector quantization Q (·)

is performed by replacing it with the closest entry in code-
books [11],

zv = Q (fv) := arg min
ei∈q

||fv
(h,l,w) − ei|| (1)

where ei ∈ q represents the i-th entry in the codebook.
Thus, learning the correlations between entries in the sec-
ond stage can explore the underlying priors for shape gener-
ation. However, autoregressive generation [11, 45] requires
sequential outputs, facing two limitations. First, the reso-
lution of zv matters the quality of synthesized shapes. If r
is too small, it lacks the capacity to represent intricate and
detailed geometries, while a large value of r can learn a spe-
cific code for each local gird, it inevitably increase the com-
putational complexity since the number of required codes
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Figure 3: Overview of our ImAM. Given an arbitrary 3D shape, we first project encoded volumetric grids into the three
axis-aligned planes, and then use a coupling network to further project them into a latent vector. Vector quantization is thus
performed on it for discrete representation. Taking advantages of such a compact representation with tractable orders, vanilla
transformers are adopted to auto-repressively learn shape distributions. Furthermore, we can freely switch from unconditional
generation to conditional generation by concatenating various conditions, such as point clouds, categories and images.

explodes as r grows. Second, the order of zv affects the
generation quality. Each grid is highly coupled with neigh-
bors, simply flattening (say, along x-y-z axes) may cause
‘ambiguity’, leading to sub-optimal generation quality.

3.2. Improved Discrete Representation Learning

One possible solution to solve the first limitation is ap-
plying vector quantization in spatial grids instead of volu-
metric grids inspired by [3]. Specifically, after obtaining
point cloud features fp ∈ Rn×c, we first project points onto
three axis-aligned orthogonal planes. Features of points
falling into the same plane grid are aggregated via sum-
mation, resulting in three feature maps for the three planes
{fxy, fyz, fxz} ∈ Rl×w×c. Next, the vector quantization
is applied to the three planes separately. The primary advan-
tage of tri-planar representation is efficient and compact. It
can dramatically reduce the number of grids from O(r3) to
O(r2) while preserving essential 3D information. However,
it still suffers from the the ambiguity of order, or worse,
since it involves the flattening order of three planes and the
order of entries of each plane.

To this end, we further introduce a projection by learning
a higher latent space for features of the three planes. This
is simply achieved by first concatenating three planes with
arbitrary order and then feeding them into a coupling net-
work. Finally, the output is flattened as a projected latent
vector, formulated as,

f = τ (G ([fxy; fyz; fxz] ; θ)) ∈ Rm×d (2)

where [·; ·] denotes the concatenation operation; G (·; θ) is a
series of convolution layers with parameters θ; τ (·) means
the operation of flatten with row-major order; m and d in-
dicate the length of latent vector and feature dimension. By

applying discrete representation learning in the latent vec-
tor, we can describe each 3D shape with z = Q (f), where
Q (·) represents vector quantization in Eq. 1.
Remark. Different from existing works [23, 45] that rely
on structure design and training strategies in second stage
to address the problem of ambiguous order, we tackle it by
learning the coupling relationship of spatial grids in the first
stage with the help of the second projection. By stacking
convolution layers, we increase the receptive field of each
element in the latent vector. Additionally, since the fea-
tures of each spatial grid on the three planes are fused and
highly encoded, each element does not have a definite po-
sition mapping in 3D space, which results in a tractable or-
der for auto-regression. More in-depth discussions can be
found in Sec. 4.6 and the supplementary materials.
Training Objective. We optimize parameters with recon-
struction loss. After getting discrete representation z which
represents indices of entries in the codebook, we retrieve the
corresponding codes with indices, denoted as q(z). Subse-
quently, a decoder with symmetric structures of the encoder
are designed to decode q(z) back to features of the three
planes *. Given sampling points x ∈ R3, we query their
features by projecting them onto each of the three feature
planes and performing bilinear interpolation. Features from
three planes are accumulated and fed into an implicit func-
tion to predict their occupancy values. Finally, we apply
binary cross-entropy loss between the predicted values yo
and the ground-truth ones ỹo,

Locc = − (ỹo · log (yo) + (1− ỹo) · log (1− yo)) (3)

To further train the codebook, we encourage pulling the

*For more details about the first stage architecture, please refer to the
Supplementary.
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distance between features before and after the vector quan-
tization. Thus, the codebook loss is derived as,

Lcode = β||sg [f ]− q(z)||22 + ||f − sg
[
q(z)

]
||22 (4)

where sg [·] denotes the stop-gradient operation [38] and we
set β = 0.4 by default. In sum, the overall loss for the first
stage is Lrec = Locc + Lcode.

3.3. Learning Priors with Vanilla Transformers

Benefiting from a compact composition and tractable or-
der of discrete representation, models in the second stage
can absorbedly learn the correlation between discrete codes,
effectively exploring priors of shape composition. We thus
adopt a vanilla decoder-only transformer [11] without any
specific-designed module.

For unconditional generation, given discretized indices
of latent vector z = {z1, z2, · · · , zm}, we feed them into
a learnable embedding layer to retrieve features with dis-
crete indices †. Then, the transformer with multi-head self-
attention mechanism predicts the next possible index by
learning the distribution of previous indices, p (zi | z<i).
This gives the joint distribution of full representation as,

p (z) =

m∏
i=1

p (zi | z<i) (5)

For conditional generation, users often expect to control
the generation process by providing additional conditions.
Instead of designing complex modules or training strate-
gies, we simply learn joint distribution given conditions c
by prepending it to z. Equation 5 is thus extended as,

p (z) =

m∏
i=1

p (zi | c, z<i) (6)

where c denotes a feature vector of given conditions. The
simplicity of our model gives the flexibility to learn con-
ditions of any form. Specifically, for 3D conditions such
as point clouds, we use our discrete representation learning
in Sec. 3.2 to transform them into a vector. As for 2D/1D
conditions such as images and classes, we either adopt pre-
trained models or embedding layers to extract their features.
Objective. To train second stage, we minimize negative
log-likelihood of Eq. 5 or 6 as Lnll = Ex∼p(x) [− log p (z)],
where p (x) is the distribution of real data.
Inference. With both models trained on two stages, we use
Eq. 5 or 6 to perform shape generation by progressively
sampling the next index with top-k sampling strategy, un-
til all elements in z are completed. Then, we feed q(z) into
the decoder of the first stage, and query probabilities of oc-
cupancy values for all sampled 3D positions (e.g., 1283).
The output shapes are extracted with Marching Cubes [18].

†We reuse the symbol of z after embedding for simplicity

4. Experiments
This section starts with comparing results on uncon-

ditional 3D shape generation, showing more faithful and
diverse shapes synthesized by our approach in Sec. 4.1.
Next, we show extensive studies on four generation tasks,
demonstrating the powerful and flexible ability of ImAM (in
Sec. 4.2 ∼ 4.5). Lastly, we provide in-depth studies to eval-
uate the efficacy of our modules and show generalization to
real-world data and zero-shot generation (in Sec. 4.6). For
all experiments, if necessary, we sample point clouds from
output meshes with Poisson Disk Sampling, or reconstruct
meshes with our auto-encoder from output points, which is
better than Poisson Surface Reconstruction [16]. Please re-
fer to the Supplementary for more details about implemen-
tations and qualitative results.

4.1. Unconditional Shape Generation

Data. We consider ShapeNet [4] as our main dataset for
generation, following previous literature [14, 8, 36]. We use
the same training split and evaluation setup from [14] for
fair comparability. Five categories of car, chair, plane, rifle
and table are used for testing. As ground-truth, we extract
mesh from voxelized models with 2563 resolution in [13].
Baselines. We compare ImAM with five state-of-the-art
models, including GAN-based IM-GAN[8] and GBIF [14],
flow-based PointFlow [46], score-based ShapeGF [2] and
diffusion-based PVD [51]. We train these methods on the
same data split with the official implementation.
Metrics and Settings. The size of the generated set is
5 times the size of the test set, the same as [8, 14]. As
suggested by [8], we use the Light Field Descriptor (LFD)
[6] as our primary similarity distance metric between two
shapes. Coverage (COV) [1], Minimum Matching Distance
(MMD) [1] and Edge Count Difference (ECD) [14] are
adopted to evaluate the diversity, fidelity and overall quality
of synthesized shapes. We also use 1-Nearest Neighbor Ac-
curacy (1-NNA) [46] (with Chamfer Distance) to measure
the distribution similarity. The number of sampled points is
2048. Besides, it is well known that COV does not penalize
outliers. To rule out the false positive coverage, we intro-
duce CovT, counting as match between a generation and
ground truth shape only if LFD between them is smaller
than a threshold t. In practice, t could vary across different
categories based on the scale and complexity of the shape,
and we empirically use mean MMD as the threshold and
found it effective in identifying correct matches.
Results Analysis. Results are reported in Table 1. First,
ImAM achieves state-of-the-art performance with regard to
ECD and 1-NNA. It significantly demonstrates the superi-
ority of our model over synthesizing high-quality shapes.
We notice that the result of Car is not good on the metric
of 1-NNA. One possible reason is that ImAM tries to gen-
erate meshes of tires and seats inside cars, which may not
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METRICS METHODS
CATEGORIES AVGPlane Car Chair Rifle Table

ECD ↓

IM-GAN [8] 923 3172 658 371 418 1108
GBIF [14] 945 2388 354 195 411 858
PointFlow [46] 2395 5318 426 2708 3559 2881
ShapeGF [2] 1200 2547 443 672 114 915
PVD [51] 6661 7404 1265 3443 745 3904
Ours 236 842 27 65 31 240

1-NNA ↓

IM-GAN [8] 78.18 89.39 65.83 69.38 65.31 73.62
GBIF [14] 80.22 87.19 63.95 66.98 60.96 71.86
PointFlow [46] 73.61 74.75 70.18 64.77 74.81 71.62
ShapeGF [2] 74.72 62.81 59.15 60.65 55.58 62.58
PVD [51] 81.09 57.37 62.36 77.32 74.31 70.49
Ours 59.95 76.58 57.31 57.28 54.76 61.17

COV ↑

IM-GAN [8] 77.01 65.37 76.38 73.21 85.71 75.53
GBIF [14] 80.96 78.85 80.95 77.00 85.13 80.57
PointFlow [46] 65.64 64.97 57.49 48.52 71.95 61.71
ShapeGF [2] 76.64 71.85 79.41 70.67 87.54 77.22
PVD [51] 58.09 58.64 68.93 56.12 76.84 63.72
Ours 79.11 73.25 80.81 74.26 84.01 78.29

CovT ↑

IM-GAN [8] 41.03 50.63 45.68 51.68 46.50 47.10
GBIF [14] 32.38 52.76 39.77 50.00 43.68 43.72
PointFlow [46] 35.85 47.76 28.48 34.81 30.98 35.57
ShapeGF [2] 40.17 53.63 43.69 51.05 48.50 47.41
PVD [51] 12.11 43.36 38.82 33.33 43.68 34.26
Ours 45.12 56.64 49.82 55.27 48.03 50.98

MMD ↓

IM-GAN [8] 3418 1290 2881 3691 2505 2757
GBIF [14] 3754 1333 3015 3865 2584 2910
PointFlow [46] 3675 1393 3322 4038 2936 3072
ShapeGF [2] 3530 1307 2880 3762 2420 2780
PVD [51] 4376 1432 3064 4274 2623 3154
Ours 3124 1213 2703 3628 2374 2608

Table 1: Results of unconditional generation. Models are
trained for each category. The best and second results are
highlighted in bold and underlined.

be very friendly to CD. Second, our model has a clear ad-
vantage on both MMD and CovT metrics compared with all
competitors, which separately indicates the outstanding fi-
delity and diversity of our generated shapes. Third, though
GBIF achieves relatively good results on COV, it gets worse
results on CovT, suggesting that most of the matched sam-
ples come from false positive pairs. ImAM, on the con-
trary, gets second best performance on COV, but higher than
GBIF on CovT by about 6 points, showing that our gener-
ated shapes enjoy the advantage of high-quality and fewer
outliers. Lastly, we visualize shapes with multiple cate-
gories in Fig. 4, further supporting the quantitative results
and conclusions described above.

4.2. Class-guide Generation

We first evaluate the versatility of ImAM on class-guide
generation, which requires generating shapes given a cate-
gory label. It is a basic conditional generation task. We use
the same dataset and evaluation metrics as in Sec. 4.1.
Baselines. We choose two recently-published works as
competitors due to the similar motivation. One is two-stage
generative model GBIF [14], the other is AR method Au-

Figure 4: Qualitative results of unconditional generation.

toSDF [23]. We simply modify mask-condition of [14] to
class-condition, and additionally add class token to trans-
formers for [23] which is the same as ImAM.
Results Analysis. As shown in Tab. 2, ImAM outperforms
both competitors across 5 categories by a significant mar-
gin, achieving state-of-the-art results on all metrics. Partic-
ularly, it gets advantages on the metric of 1-NNA, strongly
demonstrating the versatility of ImAM on class-guide gen-
eration. Qualitative results of 5 different categories are fur-
ther illustrated in Fig. 5. As observed, the generated quality
of our method is clearly better than GBIF and AutoSDF,
while preserving more diversity in types and shapes.

4.3. Multi-modal Partial Point Completion

We further verify the ability of our model in conditional
generation by giving partial point clouds. Here, we advo-
cate the multi-modal completion, since there are many pos-
sibilities of the completed shape given the partial shape. It
is the essence of generative model, where being faithful to
the given partial conditions but using your imagination.
Data. We use ShapeNet dataset for testing. Two settings are
considered here, (1) perspective completion [49]: randomly
sampling a viewpoint and then removing the 25% ∼ 75%
furthest points from the viewpoint; (2) bottom-half comple-
tion [23]: removing all points from the top half of shapes.
Baselines. Four multi-modal completion models are cho-
sen as baselines, including one generative adversarial model
cGAN [42], one diffusion model PVD [51], two AR models
ShapeFormer [45] and AutoSDF [23].
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METRICS METHODS
CATEGORIES AVGPlane Car Chair Rifle Table

COV ↑
GBIF [14] 68.72 69.64 75.94 68.98 81.72 73.00
AutoSDF [23] 70.46 52.77 63.25 48.10 72.19 61.35
Ours 81.58 71.58 83.98 75.74 85.48 79.67

CovT ↑
GBIF [14] 24.10 38.63 32.69 35.44 37.80 33.73
AutoSDF [23] 30.66 40.49 31.00 34.60 36.10 34.57
Ours 56.49 52.70 45.09 52.74 49.32 51.27

MMD ↓
GBIF [14] 4736 1479 3220 4246 2763 3289
AutoSDF [23] 3706 1456 3249 4115 2744 3054
Ours 3195 1285 2871 3729 2430 2702

ECD ↓
GBIF [14] 1327 2752 1589 434 869 1394
AutoSDF [23] 1619 4256 1038 1443 462 1764
Ours 571 1889 419 196 285 672

1-NNA ↓
GBIF [14] 91.47 92.43 75.61 83.12 70.19 82.56
AutoSDF [23] 83.31 87.76 69.34 77.43 67.20 77.01
Ours 66.81 83.39 64.83 57.28 59.55 66.37

Table 2: Results of class-guide generation. Models are
trained on 13 categories of ShapeNet.

Figure 5: Qualitative results of class-guide generation.

Metrics and Settings. We complete 10 samples for 100
randomly selected shapes of three categories, i.e., chair,
sofa and table. Following [42], we use Total Mutual Dif-
ference (TMD) to measure the diversity. Minimum Match-
ing Distance [1] (MMD) with Chamfer Distance and Uni-
directional Hausdorff Distance (UHD) [32] are adopted to
measure the faithfulness of completed shapes.
Results Analysis. We first report perspective completion
results in Tab. 3. ImAM beats all baselines and achieves
state-of-the-art performance. Importantly, we outperform
Shapeformer on all classes and metrics, which also utilizes
an AR model with transformers to learn shape distribu-
tion. On the other hand, we compare with AutoSDF in its
bottom-half completion setting. Results from Tab. 4 illus-

Figure 6: Qualitative results of partial point completion.

METRICS METHODS
CATEGORIES AVGChair Sofa Table

cGAN [42] 1.708 0.687 1.707 1.367
TMD ↑ PVD [51] 1.098 0.811 0.839 0.916
(×102) ShapeFormer [45] 1.159 0.698 0.677 0.845

Ours 2.042 1.221 1.538 1.600
cGAN [42] 7.836 7.047 9.406 8.096

UHD ↓ PVD [51] 10.79 13.88 11.38 12.02
(×102) ShapeFormer [45] 6.884 8.658 6.688 7.410

Ours 6.439 6.447 5.948 6.278
cGAN [42] 1.665 1.813 1.596 1.691

MMD ↓ PVD [51] 2.352 2.041 2.174 2.189
(×103) ShapeFormer [45] 1.055 1.100 1.066 1.074

Ours 0.961 0.819 0.828 0.869

Table 3: Results of multi-modal partial point completion.
The missing parts vary according to random viewpoints.

METRICS METHODS
CATEGORIES AVGChair Sofa Table

TMD ↑ AutoSDF [23] 2.046 1.609 3.116 2.257
(×102) Ours 3.682 2.673 10.30 5.552
UHD ↓ AutoSDF [23] 6.793 9.950 8.122 8.289
(×102) Ours 6.996 6.599 10.87 8.155
MMD ↓ AutoSDF [23] 1.501 1.154 2.600 1.751
(×103) Ours 1.477 1.127 2.906 1.837

Table 4: Quantitative results of multi-modal partial point
completion. The missing parts are always the top half.

trates that ImAM outperforms AutoSDF in terms of TMD
and MMD. It strongly suggests the flexibility and versatility
of our proposed method. Qualitative results in Fig. 6 show
the diversity and fidelity of our completed shapes.

4.4. Image-guide Generation

Next, we show the flexibility that ImAM can easily ex-
tend to image-guide generation, which is a more challeng-
ing task. The flexibility lies in that (1) it is implemented
by the easiest way of feature concatenation; (2) the condi-
tion form of images is various, which could be 1-D feature
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Figure 7: Visualizations of image-guide shape generation.

vector or patch tokens, or 2-D feature maps. For simplicity,
we use a pretrained CLIP model (i.e., ViT-B/32) to extract
feature vectors of images as conditions. All experiments are
conducted on ShapeNet dataset with rendered images.
Baselines. CLIP-Forge [31] is a flow-based model, which
is trained with pairs of images and shapes. We take it as
our primary baseline for two reasons: (1) it is a generation
model instead of reconstruction model, and (2) it originally
uses CLIP models to extract image features.
Metrics and Settings. We evaluate models with the test
split of 13 categories. For each category, we randomly sam-
ple 50 singe-view images and then generate 5 shapes for
evaluation. As a generation task, TMD is adopted to mea-
sure the diversity. We further use MMD with Chamfer Dis-
tance and Fréchet Point Cloud distance (FPD) [32] to mea-
sure the fidelity compared with the ground truth.
Results Analysis. Results are reported in Tab. 5. ImAM
wins out in terms of both fidelity and diversity. In particu-
lar, we achieve a great advantage on both TMD and FPD,
demonstrating the effectiveness of ImAM applied to image-
guide generation. It is also successfully echoed by qualita-
tive visualizations in Fig. 7. Our samples are diverse and
appear visually faithful to attributes of the object in images.

4.5. Text-guide Generation

Encouraged by promising results on image-guide gener-
ation, we also turn ImAM to text-to-shape generation. The
same pretrained CLIP model is used to extract single em-
bedding for text conditions. Note that we did it on purpose,
not using word sequence embedding, but only using a sin-
gle features vectors in our model to show its efficacy and
scalability to the simplest forms of conditions.
Data. To our knowledge, the only existing largest paired
text-shape dataset is Text2Shape [7], which provides lan-
guage descriptions for two objects from ShapeNet, i.e.,
chair and table. Thereby, we consider it as our main dataset
to perform text-guide shape generation.
Baselines. We compare our model with two state-of-the-
arts text-to-shape generation model. One is CLIP-Forge
[31] under the supervised learning setting, using the same

METHOD TMD (×102) ↑ MMD (×103) ↓ FPD ↓
AutoSDF [23] 2.523 1.383 2.092
Clip-Forge [31] 2.858 1.926 8.094
Ours 4.274 1.590 1.680

Table 5: Quantitative results of image-guide generation.

METHOD TMD (×101) ↑ MMD (×103) ↓ Acc ↑
ITG [17] N/A 2.187 29.13
AutoSDF [23] 0.342 2.165 36.95
CLIP-Forge [31] 0.400 2.136 53.68
Ours 0.565 1.846 59.93

(a) Descriptions as text queries
METHOD TMD (×101) ↑ FPD ↓ Acc. ↑

AutoSDF [23] 0.752 5.84 41.09
CLIP-Forge [31] 0.961 4.14 55.00
Ours 1.246 5.39 60.87

(b) Prompts as text queries

Table 6: Quantitative results of text-guide generation.

condition extractor as ours. The other is ITG [17], which
adopts BERT to encode texts into sequence embeddings.
Metrics and Settings. All models are trained on the train
split of Text2Shape dataset with their official codes. We
evaluate our model with two types of text queries: (1) de-
scription: the test split of Text2Shape; (2) prompts: cus-
tomized short phrases provided by [31] containing attributes
for chair and table. We additionally use Accuracy (Acc.)
[31] to measure the fidelity. The Accuracy is calculated by
a pretrained PointNet [27] classifier on ShapeNet.
Results Analysis. We report quantitative results of text-
guide generation in Tab. 6. ImAM achieves promising re-
sults on TMD, MMD and Acc, showing good generalization
performance across different conditional generation tasks.

4.6. Ablation Study

Lastly, we provide in-depth studies to dissect the effi-
cacy of our ImAM framework, and several proposed de-
signs. More discussions are provided in the Supplementary.
Design Choices in Discrete Representation Learning. As
a key contribution of this paper, we first discuss the efficacy
of our improved discrete representation learning. We use
‘Vector’ to denote our design since we apply vector quan-
tization to latent vector. Similarly, ’Grid’ and ’Tri-Plane’
refer to baselines applying vector quantization to volumet-
ric grids and the three planes, respectively. Results in Tab. 7
show that ‘Grid’ gets better IoU performance for shape re-
construction in the first stage, but fails to train transformers
in the second stage due to extreme long length of sequence
(e.g., 323). In contrast, our model not only achieves com-
parable reconstruction results (#0 vs. #2), but also outper-
forms ’Tri-Plane’ by a large margin on generation quality
(#1 vs. #2). The latter shows inferior results due to ‘ambigu-
ity of order’ (see Suppl.) It significantly proves the efficacy
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Figure 8: Results of real-world image-guide generation.
Images are randomly selected from internet.

CLIP-ForgeInput OursAutoSDF

Figure 9: Results of real-world image-guide generation.
Samples are from Pix3D dataset.

of our proposed coupling network, improving the plasticity
and flexibility of the model. We also explore different de-
sign choices in Tab. 7. By gradually increasing feature reso-
lutions or the number of entries in the codebook, we achieve
better performance on IoU. This observation is consistent
with [48], as the capacity of the discrete representation is
affected by these two factors. We do not try larger parame-
ters, as it would significantly increase the computation cost.
Image-guide Generation in Real-world. We further in-
vestigate the generalizability of our model on real-world im-
ages. We use the model trained on ShapeNet as described in
Sec. 4.4, and download images from internet as conditions.
Figure 8 shows the qualitative results for three categories,
i.e., plane, chair and table. Our model sensitively capture
major attributes of objects in the image and produce shapes
faithful to them (see the first column to the left). Mean-
while, our synthesized samples enjoy the advantage of di-
versity by partially sticking to the images.

Figure 9 also show results of our model on Pix3D dataset
(trained on ShapeNet, without any finetuning). Compared
with other competitors, ImAM is capable of generating
high-quality and realistic shapes that highly match the shape

“a square table”

“a long sofa”

“a circular table”

Figure 10: Results of zero-shot text-to-shape generation.

NUM. TYPE #ENTRY RESO. STAGE 1 STAGE 2
IoU ↑ 1-NNA / ECD ↓

0 Grid
4096 32

88.87 ×
1 Tri-Plane 87.81 73.67 / 743
2

Vector

88.01 59.95 / 236
3 4096 16 79.17

-4 2048 32 86.99
5 1024 86.57

Table 7: Ablation study of auto-encoder design choices. We
report 1-NNA/ECD for plane category. ‘RESO.’ means the
resolution of feature map for vector quantization. ‘×’: can-
not report due to extreme memory cost. ‘-’: not report. No-
tably, without the coupling network, our method naturally
degenerates into ‘Tri-Plane’ representation.

of objects in real-world images. It significantly highlights
the strong generalization ability of our method.
Zero-shot Text-to-shape Generation. Inspired by CLIP-
Forge [31], we utilize the CLIP model to achieve zero-shot
text-to-shape generation. At training, we only use the ren-
dered images of 3D shapes. At inference, we substitute im-
age features with text features encoded by the CLIP model.
Figure 10 shows our ability of zero-shot generation, where
shape attributes are controlled with different prompts.

5. Conclusion

We introduce an improved AR model for 3D shape gen-
eration. By projecting volumetric grids of encoded input
shapes onto three axis-aligned orthogonal feature planes,
which are then coupled into a latent vector, we reduce com-
putational costs and create a more tractable order for AR
learning. Our compact and tractable representations enable
easy switching between unconditional and conditional gen-
eration with multi-modal conditioning inputs. Extensive ex-
periments show that our model outperforms previous meth-
ods on multiple generation tasks.
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